Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of 1,4-Benzodiazepines by Palladium-Catalyzed C-N Coupling

Author(s): Pranshu Bhardwaj and Navjeet Kaur*

Volume 27, Issue 4, 2023

Published on: 12 May, 2023

Page: [282 - 296] Pages: 15

DOI: 10.2174/1385272827666230412080929

Price: $65

Abstract

1,4-benzodiazepines play a valuable role in organic and medicinal chemistry. In this review article, we have mainly discussed the synthesis of various 1,4-benzodiazepines in the presence of a palladium catalyst. Different reactions, such as intramolecular N-arylation, reductive elimination, oxidative addition, intramolecular alkylation, C-H activation, aryl-aryl bond formation, etc., are included. For these types of syntheses, an easy and efficient catalytic domino process has been reported, including the intermolecular or intramolecular reactions. In this review article, we have also discussed catalyst regeneration and some ligand-free Pdcatalyzed reactions.

Graphical Abstract

[1]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3, 2947-2954.
[2]
Mahajan, N.D.; Jain, N. Heterocyclic compounds and their applications in the field of biology: A detailed study. Nat. Volatiles Essent. Oils, 2021, 8, 13223-13229.
[3]
(a) Kaur, N. Ultrasound assisted synthesis of six-membered N-heterocycles. Mini Rev. Org. Chem., 2018, 15(6), 520-536.
[http://dx.doi.org/10.2174/1570193x15666180221152535];
(b) Kaur, N. Metal catalysts: Applications in higher-membered N-heterocycles synthesis. J. Indian Chem. Soc., 2015, 12(1), 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5];
(c) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., Sci. Eng., 2015, 57(4), 478-564.
[http://dx.doi.org/10.1080/01614940.2015.1082824];
(d) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15(7), 940-971.
[http://dx.doi.org/10.2174/1570179415666180815144442];
(e) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48(19), 2457-2474.
[http://dx.doi.org/10.1080/00397911.2018.1487070];
(f) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun., 2019, 49(15), 1847-1894.
[http://dx.doi.org/10.1080/00397911.2019.1606922];
(g) Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and biological attributes of pyrimidine derivatives: a recent update. Curr. Org. Synth., 2021, 18(8), 790-825.
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770];
(h) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N.K. Photochemical C–N bond forming reactions for the synthesis of five-membered fused N- heterocycles. Synth. Commun., 2020, 50(9), 1286-1334.
[http://dx.doi.org/10.1080/00397911.2020.1713378];
i) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Metal and organo-complex promoted synthesis of fused five-membered O - heterocycles. Synth. Commun.,, 2020, 50(4), 457-505.
[http://dx.doi.org/10.1080/00397911.2019.1700522];
(j) Kaur, N. Advances in microwave-assisted synthesis for five membered Nheterocycles synthesis. Synth. Commun., 2015, 45(4), 432-457.
[http://dx.doi.org/10.1080/00397911.2013.824982];
(k) Kaur, N. Ionic liquid promoted eco-friendly and efficient synthesis of sixmembered N-polyheterocycles. Curr. Org. Synth., 2018, 15(8), 1124-1146.
[http://dx.doi.org/10.2174/1570179415666180903102542]
[4]
(a) Kaur, N. Palladium catalysts: Synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., Sci. Eng., 2015, 57(1), 1-78.
[http://dx.doi.org/10.1080/01614940.2014.976118];
(b) Kaur, N. Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49(13), 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149];
(c) Kaur, N. Multiple nitrogen-containing heterocycles: Metal and non-metal assisted synthesis. Synth. Commun., 2019, 49(13), 1633-1658.
[http://dx.doi.org/10.1080/00397911.2018.1542497];
(d) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun., 2019, 49(12), 1543-1577.
[http://dx.doi.org/10.1080/00397911.2019.1594306];
(e) Kaur, N. Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synth. Commun., 2019, 49(12), 1459-1485.
[http://dx.doi.org/10.1080/00397911.2019.1575423];
(f) Kaur, N. Synthesis of six- and seven-membered and larger heterocylces using Au and Ag catalysts. Inorganic and Nano-Metal Chemistry, 2018, 48(11), 541-568.
[http://dx.doi.org/10.1080/24701556.2019.1567544];
(g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun., 2019, 49(18), 2281-2318.
[http://dx.doi.org/10.1080/00397911.2019.1622732];
(h) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Crown ethers for the synthesis of heterocycles. Curr. Org. Chem., 2021, 25(11), 1270-1297.
[http://dx.doi.org/10.2174/1385272825666210521121820];
i) Kaur, N.; Bhardwaj, P.; Gupta, M. Recent developments in the synthesis of five- and six-membered N-heterocycles from dicarbonyl compounds. Curr. Org. Chem., 2021, 25(22), 2765-2790.
[http://dx.doi.org/10.2174/1385272825666210812102416];
j) Kaur, N. Microwave-assisted synthesis of five-membered S-heterocycles. J. Indian Chem. Soc., 2014, 11(2), 523-564.
[http://dx.doi.org/10.1007/s13738-013-0325-2];
k) Kaur, N. Synthesis of five-membered heterocycles containing nitrogen heteroatom under ultrasonic irradiation. Mini Rev. Org. Chem., 2019, 16(5), 481-503.
[http://dx.doi.org/10.2174/1570193X15666180709144028]
[5]
(a) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N,N-heterocycles. Synth. Commun., 2015, 45(14), 1599-1631.
[http://dx.doi.org/10.1080/00397911.2013.828755];
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941];
(c) Kaur, N. Photochemical reactions: Synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14(7), 972-998.
[http://dx.doi.org/10.2174/1570179414666170201150701];
(d) Kaur, N. Ionic liquids: Promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14(1), 3-23.
[http://dx.doi.org/10.2174/1570193X13666161019120050];
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 983-1020.
[http://dx.doi.org/10.1080/15533174.2014.989620];
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O -heterocycles. Inorg. Nano Met. Chem., 2017, 47(2), 163-187.
[http://dx.doi.org/10.1080/15533174.2015.1068809];
(g) Kaur, N. Photochemical irradiation: Seven and higher membered O -heterocycles. Synth. Commun., 2018, 48(23), 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051];
(h) Kaur, N.; Grewal, P.; Poonia, K. Dicarbonyl compounds in O- heterocycle synthesis. Synth. Commun., 2021, 51(16), 2423-2444.
[http://dx.doi.org/10.1080/00397911.2021.1941114];
i) Kaur, N. Microwave-assisted synthesis: fused five membered N-heterocycles. Synth. Commun., 2015, 45(7), 789-823.
[http://dx.doi.org/10.1080/00397911.2013.824984];
j) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45(2), 151-172.
[http://dx.doi.org/10.1080/00397911.2013.813550];
k) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734]
[6]
(a) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44(18), 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922];
(b) Kaur, N. Synthesis of three-membered and four-membered heterocycles with the assistance of photochemical reactions. J. Heterocycl. Chem., 2019, 56(4), 1141-1167.
[http://dx.doi.org/10.1002/jhet.3491];
(c) Kaur, N.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Verma, Y. Organo or metal complex catalyzed synthesis of five-membered oxygen heterocycles. Curr. Org. Chem., 2020, 23(25), 2822-2847.
[http://dx.doi.org/10.2174/1385272823666191122111351];
(d) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Ahlawat, N.; Verma, Y. Synthesis of five-membered N -heterocycles using silver metal. Synth. Commun., 2019, 49(22), 3058-3100.
[http://dx.doi.org/10.1080/00397911.2019.1655767];
(e) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N.K. Palladium acetate assisted synthesis of five-membered N- polyheterocycles. Synth. Commun., 2020, 50(11), 1567-1621.
[http://dx.doi.org/10.1080/00397911.2020.1723640];
(f) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Cu-assisted C–N bond formations in six-membered N -heterocycle synthesis. Synth. Commun., 2020, 50(8), 1075-1132.
[http://dx.doi.org/10.1080/00397911.2019.1695278];
(g) Kaur, N. Ruthenium catalysis in six-membered O -heterocycles synthesis. Synth. Commun., 2018, 48(13), 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698];
(h) Kaur, N. Green synthesis of three- to five-membered O -heterocycles using ionic liquids. Synth. Commun., 2018, 48(13), 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243];
i) Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S- heterocycles. Synth. Commun., 2018, 48(14), 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671];
j) Kaur, N. Photochemical mediated reactions in five-membered O- heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165];
k) Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun., 2018, 48(21), 2715-2749.
[http://dx.doi.org/10.1080/00397911.2018.1497657];
l) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024];
m) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: Solid-phase synthesis. Synth. Commun., 2014, 44(9), 1173-1211.
[http://dx.doi.org/10.1080/00397911.2012.760129]
[7]
(a) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45(3), 273-299.
[http://dx.doi.org/10.1080/00397911.2013.816735];
(b) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Ag-mediated synthesis of six-membered N -heterocycles. Synth. Commun., 2020, 50(6), 753-795.
[http://dx.doi.org/10.1080/00397911.2019.1703196];
(c) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Silver-assisted syntheses of fused five-membered N-heterocycles. Curr. Org. Chem., 2021, 25(19), 2232-2257.
[http://dx.doi.org/10.2174/1385272825666210716144555];
(d) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202];
(e) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45(2), 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734];
(f) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Synthesis of five-membered N -heterocycles using Rh based metal catalysts. Synth. Commun., 2020, 50(2), 137-160.
[http://dx.doi.org/10.1080/00397911.2019.1689271];
(g) Kaur, N.; Ahlawat, N.; Verma, Y.; Bhardwaj, P.; Grewal, P.; Jangid, N.K. Rhodium catalysis in the synthesis of fused five-membered N- heterocycles. Inorg. Nano-Met. Chem, 2020, 50(12), 1260-1289.
[http://dx.doi.org/10.1080/24701556.2020.1745838];
(h) Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O -heterocycles. Synth. Commun., 2019, 49(6), 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525];
i) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(8), 909-943.
[http://dx.doi.org/10.1080/00397911.2013.825808];
j) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(10), 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208];
k) Kaur, N.; Verma, Y.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Copper-assisted synthesis of five-membered O- heterocycles. Inorg. Nano-Met. Chem, 2020, 50(8), 705-740.
[http://dx.doi.org/10.1080/24701556.2020.1724144];
l) Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49(5), 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711];
m) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45(3), 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736]
[8]
(a) Kaur, N. Synthesis of six-membered N-heterocycles using ruthenium catalysts. Catal. Lett., 2019, 149(6), 1513-1559.
[http://dx.doi.org/10.1007/s10562-019-02746-2];
(b) Kaur, N. Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894];
(c) Kaur, N. Photochemical reactions as key steps in five-membered N- heterocycle synthesis. Synth. Commun., 2018, 48(11), 1259-1284.
[http://dx.doi.org/10.1080/00397911.2018.1443218];
(d) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
[http://dx.doi.org/10.1080/17415993.2018.1457673];
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354];
(f) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756];
(g) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45(4), 403-431.
[http://dx.doi.org/10.1080/00397911.2013.824981];
(h) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45(5), 539-568.
[http://dx.doi.org/10.1080/00397911.2013.824983];
i) Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N -heterocycles. Synth. Commun., 2019, 49(4), 483-514.
[http://dx.doi.org/10.1080/00397911.2018.1536213];
j) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(13), 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236];
k) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O, N -heterocycles using metal and nonmetal. Synth. Commun., 2019, 49(11), 1345-1384.
[http://dx.doi.org/10.1080/00397911.2019.1594308];
l) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Ionic liquids in the synthesis of five-membered N,N-, N,N,N- and N,N,N,N-heterocycles. Curr. Org. Chem., 2019, 23(11), 1214-1238.
[http://dx.doi.org/10.2174/1385272823666190717101741]
[9]
(a) Kaur, N. Synthetic routes to seven and higher membered S -heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 186-209.
[http://dx.doi.org/10.1080/10426507.2018.1539493];
(b) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4(2), 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349];
(c) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N -heterocycles. Synth. Commun., 2019, 49(10), 1205-1230.
[http://dx.doi.org/10.1080/00397911.2018.1540048];
(d) Kaur, N. Copper catalyzed synthesis of seven and higher membered heterocycles. Synth. Commun., 2019, 49(7), 879-916.
[http://dx.doi.org/10.1080/00397911.2018.1543780];
(e) Kaur, N. Ionic liquid assisted synthesis of S -heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 165-185.
[http://dx.doi.org/10.1080/10426507.2018.1539492];
(f) Kaur, N. Nickel catalysis: Six membered heterocycle syntheses. Synth. Commun., 2019, 49(9), 1103-1133.
[http://dx.doi.org/10.1080/00397911.2019.1568499];
(g) Kaur, N. Seven-membered N -heterocycles: Metal and nonmetal assisted synthesis. Synth. Commun., 2019, 49(8), 987-1030.
[http://dx.doi.org/10.1080/00397911.2019.1574351];
(h) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P. A review of ruthenium catalyzed C-N bond formation reactions for the synthesis of five-membered N-heterocycles. Curr. Org. Chem., 2019, 23(18), 1901-1944.
[http://dx.doi.org/10.2174/1385272823666191021104118];
i) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Gold-catalyzed C–O bond forming reactions for the synthesis of six-membered O-heterocycles. SN Appl. Sci., 2019, 1(8), 903.
[http://dx.doi.org/10.1007/s42452-019-0920-7];
j) Kaur, N. Ionic liquid assisted synthesis of six-membered oxygen heterocycles. SN Appl. Sci., 2019, 1(8), 932.
[http://dx.doi.org/10.1007/s42452-019-0861-1];
k) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131];
l) Kaur, N. Metal and non-metal catalysts in the synthesis of five-membered S-heterocycles. Curr. Org. Synth., 2019, 16(2), 258-275.
[http://dx.doi.org/10.2174/1570179416666181207144430] [PMID: 31975675]
[10]
(a) Cho, S.H.; Kim, J.Y.; Kwak, J.; Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev., 2011, 40(10), 5068-5083.
[http://dx.doi.org/10.1039/c1cs15082k] [PMID: 21643614];
(b) Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738];
(c) Yao, W.; Wang, J.; Zhong, A.; Li, J.; Yang, J. Combined KOH/BEt3 catalyst for selective deaminative hydroboration of aromatic carboxamides for construction of luminophores. Org. Lett., 2020, 22(20), 8086-8090.
[http://dx.doi.org/10.1021/acs.orglett.0c03033] [PMID: 33026813];
(d) Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front., 2021, 8(16), 4554-4559.
[http://dx.doi.org/10.1039/D1QO00705J]
[11]
Hili, R.; Yudin, A.K. Making carbon-nitrogen bonds in biological and chemical synthesis. Nat. Chem. Biol., 2006, 2(6), 284-287.
[http://dx.doi.org/10.1038/nchembio0606-284] [PMID: 16710330]
[12]
Bariwal, J.; Van der Eycken, E. C–N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2013, 42(24), 9283-9303.
[http://dx.doi.org/10.1039/c3cs60228a] [PMID: 24077333]
[13]
Thurston, D.E.; Bose, D.S. Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines. Chem. Rev., 1994, 94(2), 433-465.
[http://dx.doi.org/10.1021/cr00026a006]
[14]
Nallan, L.; Bauer, K.D.; Bendale, P.; Rivas, K.; Yokoyama, K.; Hornéy, C.P.; Pendyala, P.R.; Floyd, D.; Lombardo, L.J.; Williams, D.K.; Hamilton, A.; Sebti, S.; Windsor, W.T.; Weber, P.C.; Buckner, F.S.; Chakrabarti, D.; Gelb, M.H.; Van Voorhis, W.C. Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J. Med. Chem., 2005, 48(11), 3704-3713.
[http://dx.doi.org/10.1021/jm0491039] [PMID: 15916422]
[15]
Kukla, M.J.; Breslin, H.J.; Pauwels, R.; Fedde, C.L.; Miranda, M.; Scott, M.K.; Sherrill, R.G.; Raeymaekers, A.; Van Gelder, J.; Andries, K.; Andries, K.; Moens, L.J.; Janssen, M.A.C.; Janssen, P.A.J. Synthesis and anti-HIV-1 activity of 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-one (TIBO) derivatives. J. Med. Chem., 1991, 34(2), 746-751.
[http://dx.doi.org/10.1021/jm00106a040] [PMID: 1995896]
[16]
Tardibono, L.P., Jr; Miller, M.J. Synthesis and anticancer activity of new hydroxamic acid containing 1,4-benzodiazepines. Org. Lett., 2009, 11(7), 1575-1578.
[http://dx.doi.org/10.1021/ol900210h] [PMID: 19320504]
[17]
Costantino, L.; Barlocco, D. Privileged structures as leads in medicinal chemistry. Curr. Med. Chem., 2006, 13(1), 65-85.
[http://dx.doi.org/10.2174/092986706775197999] [PMID: 16457640]
[18]
(a) Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855];
(b) Ellman, J.A. Design, synthesis, and evaluation of small-molecule libraries. Acc. Chem. Res., 1996, 29(3), 132-143.
[http://dx.doi.org/10.1021/ar950190w]
[19]
(a) Donald, J.R.; Martin, S.F. Synthesis and diversification of 1,2,3-triazole-fused 1,4-benzodiazepine scaffolds. Org. Lett., 2011, 13(5), 852-855.
[http://dx.doi.org/10.1021/ol1028404] [PMID: 21275426];
(b) Sakai, N.; Watanabe, A.; Ikeda, R.; Nakaike, Y.; Konakahara, T. Me3SiCl-promoted intramolecular cyclization of aromatic compounds tethered with N,O-acetals leading to the facile preparation of 1,4-benzodiazepine skeletons. Tetrahedron, 2010, 66(46), 8837-8845.
[http://dx.doi.org/10.1016/j.tet.2010.09.077];
(c) Mishra, J.K.; Samanta, K.; Jain, M.; Dikshit, M.; Panda, G. Amino acid based enantiomerically pure 3-substituted benzofused heterocycles: A new class of antithrombotic agents. Bioorg. Med. Chem. Lett., 2010, 20(1), 244-247.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.126] [PMID: 19932967];
(d) Rujirawanich, J.; Gallagher, T. Substituted 1,4-benzoxazepines, 1,5-benzoxazocines, and N- and S-variants. Org. Lett., 2009, 11(23), 5494-5496.
[http://dx.doi.org/10.1021/ol9023453] [PMID: 19877693];
(e) Yar, M.; McGarrigle, E.M.; Aggarwal, V.K. Bromoethylsulfonium salt--a more effective annulation agent for the synthesis of 6- and 7-membered 1,4-heterocyclic compounds. Org. Lett., 2009, 11(2), 257-260.
[http://dx.doi.org/10.1021/ol8023727] [PMID: 19072319];
(f) Wang, J.Y.; Guo, X.F.; Wang, D.X.; Huang, Z.T.; Wang, M.X. A new strategy for the synthesis of 1,4-benzodiazepine derivatives based on the tandem N-alkylation-ring opening-cyclization reactions of methyl 1-arylaziridine-2-carboxylates with N-[2-bromomethyl(phenyl)]trifluoroacetamides. J. Org. Chem., 2008, 73(5), 1979-1982.
[http://dx.doi.org/10.1021/jo7024306] [PMID: 18229941]
[20]
(a) Neukom, J.D.; Aquino, A.S.; Wolfe, J.P. Synthesis of saturated 1,4-benzodiazepines via Pd-catalyzed carboamination reactions. Org. Lett., 2011, 13(9), 2196-2199.
[http://dx.doi.org/10.1021/ol200429a] [PMID: 21446677];
(b) DeSimone, R.; Currie, K.; Mitchell, S.; Darrow, J.; Pippin, D. Privileged structures: Applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-493.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713];
(c) Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124];
(d) Hoog, S.S.; Zhao, B.; Winborne, E.; Fisher, S.; Green, D.W.; DesJarlais, R.L.; Newlander, K.A.; Callahan, J.F.; Abdel-Meguid, S.S.; Moore, M.L.; Huffman, W.F. A check on rational drug design: Crystal structure of a complex of human immunodeficiency virus type 1 protease with a novel gamma-turn mimetic inhibitor. J. Med. Chem., 1995, 38(17), 3246-3252.
[http://dx.doi.org/10.1021/jm00017a008] [PMID: 7650677]
[21]
Meanwell, N.A.; Walker, M.A. 1,4-Diazepines; The Bristol Myers Squibb Pharmaceutical Research Institute: Wallingford, CT, USA, 2008, pp. 1-52.;
(b) Shi, F.; Xu, X.; Zheng, L.; Dang, Q.; Bai, X. Method development for a pyridobenzodiazepine library with multiple diversification points. J. Comb. Chem., 2008, 10(2), 158-161.
[http://dx.doi.org/10.1021/cc7002039] [PMID: 18260649];
(c) Yang, J.; Che, X.; Dang, Q.; Wei, Z.; Gao, S.; Bai, X. Synthesis of Tricyclic 4-Chloro-pyrimido[4,5- b ][1,4]benzodiazepines. Org. Lett., 2005, 7(8), 1541-1543.
[http://dx.doi.org/10.1021/ol050181f] [PMID: 15816747];
(d) Smits, R.A.; Lim, H.D.; Stegink, B.; Bakker, R.A.; de Esch, I.J.P.; Leurs, R. Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives. J. Med. Chem., 2006, 49(15), 4512-4516.
[http://dx.doi.org/10.1021/jm051008s] [PMID: 16854056];
(e) Loudni, L.; Roche, J.; Potiron, V.; Clarhaut, J.; Bachmann, C.; Gesson, J.P.; Tranoy-Opalinski, I. Design, synthesis and biological evaluation of 1,4- benzodiazepine-2,5-dione-based HDAC inhibitors. Bioorg. Med. Chem. Lett, 2007, 17(17), 4819-4823.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.067] [PMID: 17624773];
(f) Mohapatra, D.K.; Maity, P.K.; Shabab, M.; Khan, M.I. Click chemistry based rapid one-pot synthesis and evaluation for protease inhibition of new tetracyclic triazole fused benzodiazepine derivatives. Bioorg. Med. Chem. Lett., 2009, 19(17), 5241-5245.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.107] [PMID: 19648009];
(g) Sharma, U.K.; Sharma, N.; Vachhani, D.D.; Van der Eycken, E.V. Metalmediated post-Ugi transformations for the construction of diverse heterocyclic scaffolds. Chem. Soc. Rev.,, 2015, 44(7), 1836-1860.
[http://dx.doi.org/10.1039/C4CS00253A] [PMID: 25652577];
(h) De Silva, R.A.; Santra, S.; Andreana, P.R. A tandem one-pot, microwaveassisted synthesis of regiochemically differentiated 1,2,4,5-tetrahydro-1,4- benzodiazepin-3-ones. Org. Lett., 2008, 10(20), 4541-4544.
[http://dx.doi.org/10.1021/ol801841m] [PMID: 18811177];
i) Ried, W.; Torinus, E. Über heterocyclische Siebenringsysteme, X. Synthesen kondensierter 5‐, 7‐ und 8‐gliedriger Heterocyclen mit 2 Stickstoffatomen. Chem. Ber., 1959, 92(11), 2902-2916.
[http://dx.doi.org/10.1002/cber.19590921138];
j) Chemistry, O.; Mahavidyalaya, Y. Copper-bronze catalyst: An efficient green approach for the synthesis of dibenzo[b,e][1,4]diazepine derivatives. Chem. Sci. Trans., 2015, 4, 194-198.;
k) Wang, J.; Wang, L.; Guo, S.; Zha, S.; Zhu, J. Synthesis of 2,3- benzodiazepines via Rh(III)-catalyzed C-H functionalization of N-Boc hydrazones with diazoketoesters. Org. Lett., 2017, 19(13), 3640-3643.
[http://dx.doi.org/10.1021/acs.orglett.7b01642] [PMID: 28641013];
l) Gawande, S.D.; Kavala, V.; Zanwar, M.R.; Kuo, C.W.; Huang, W.C.; Kuo, T.S.; Huang, H.N.; He, C.H.; Yao, C.F. Synthesis of dibenzodiazepinones via tandem copper(I)-catalyzed C-N bond formation. Adv. Synth. Catal., 2014, 356(11-12), 2599-2608.
[http://dx.doi.org/10.1002/adsc.201301020]
[22]
Hagui, W.; Doucet, H.; Soulé, J.F. Application of palladium-catalyzed C(sp2)-H bond arylation to the synthesis of polycyclic (hetero)aromatics. Chem, 2019, 5(8), 2006-2078.
[http://dx.doi.org/10.1016/j.chempr.2019.06.005]
[23]
Gabriele, B.; Mancuso, R.; Veltri, L.; Ziccarelli, I.; Della Ca’, N. Palladiumcatalyzed double cyclization processes leading to polycyclic heterocycles: recent advances. Eur. J. Org. Chem., 2019, 2019(31-32), 5073-5092.
[http://dx.doi.org/10.1002/ejoc.201900481]
[24]
Perrone, S.; Troisi, L.; Salomone, A. Heterocycle synthesis through Pd-catalyzed carbonylative coupling. Eur. J. Org. Chem., 2019, 2019(29), 4626-4643.
[http://dx.doi.org/10.1002/ejoc.201900439]
[25]
Döndaş H.A.; Retamosa, M.G.; Sansano, J.M. Recent development in palladium-catalyzed domino reactions: access to materials and biologically important carbo- and heterocycles. Organometallics, 2019, 38(9), 1828-1867.
[http://dx.doi.org/10.1021/acs.organomet.9b00110]
[26]
Casnatia, A.; Mottia, E.; Mancusob, R.; Gabrieleb, B.; Della Ca’, N. Palladium- catalyzed syntheses of fused tricyclic heterocycles: A personal account, 302-323.
[27]
Donohoe, T.J.; Callens, C.K.A.; Flores, A.; Lacy, A.R.; Rathi, A.H. Recent developments in methodology for the direct oxyamination of olefins. Chemistry, 2011, 17(1), 58-76.
[http://dx.doi.org/10.1002/chem.201002323] [PMID: 21207600]
[28]
Zaitsev, A.B.; Adolfsson, H. Recent developments in asymmetric dihydroxylations. Synthesis, 2006, 11, 1725-1756.
[29]
Alexanian, E.J.; Lee, C.; Sorensen, E.J. Palladium-catalyzed ring-forming aminoacetoxylation of alkenes. J. Am. Chem. Soc., 2005, 127(21), 7690-7691.
[http://dx.doi.org/10.1021/ja051406k] [PMID: 15913354]
[30]
Kolb, H.C.; VanNieuwenhze, M.S.; Sharpless, K.B. Catalytic asymmetric dihydroxylation. Chem. Rev., 1994, 94(8), 2483-2547.
[http://dx.doi.org/10.1021/cr00032a009]
[31]
Bodkin, J.A.; McLeod, M.D. The Sharpless asymmetric aminohydroxylation. J. Chem. Soc., Perkin Trans. 1, 2002, 24(24), 2733-2746.
[http://dx.doi.org/10.1039/b111276g]
[32]
McDonald, R.I.; Liu, G.; Stahl, S.S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev., 2011, 111(4), 2981-3019.
[http://dx.doi.org/10.1021/cr100371y] [PMID: 21428440]
[33]
(a) Streuff, J.; Hövelmann, C.H.; Nieger, M.; Muñiz, K. Palladium(II)-catalyzed intramolecular diamination of unfunctionalized alkenes. J. Am. Chem. Soc., 2005, 127(42), 14586-14587.
[http://dx.doi.org/10.1021/ja055190y] [PMID: 16231907];
(b) Martínez, C.; Muñiz, K. Palladium-catalyzed vicinal difunctionalization of internal alkenes: diastereoselective synthesis of diamines. Angew. Chem. Int. Ed., 2012, 51(28), 7031-7034.
[http://dx.doi.org/10.1002/anie.201201719] [PMID: 22644876]
[34]
(a) Li, Y.; Song, D.; Dong, V.M. Palladium-catalyzed olefin dioxygenation. J. Am. Chem. Soc., 2008, 130(10), 2962-2964.
[http://dx.doi.org/10.1021/ja711029u] [PMID: 18281992];
(b) Neufeldt, S.R.; Sanford, M.S. Asymmetric chiral ligand-directed alkene dioxygenation. Org. Lett., 2013, 15(1), 46-49.
[http://dx.doi.org/10.1021/ol303003g] [PMID: 23249401];
(c) Wang, W.; Wang, F.; Shi, M. Bis(NHC)-palladium(II) complex-catalyzed dioxygenation of alkenes. Organometallics, 2010, 29(4), 928-933.
[http://dx.doi.org/10.1021/om900975a]
[35]
(a) Liu, G.; Stahl, S.S. Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and S(N)2 C-O bond formation. J. Am. Chem. Soc., 2006, 128(22), 7179-7181.
[http://dx.doi.org/10.1021/ja061706h] [PMID: 16734468];
(b) Desai, L.V.; Sanford, M.S. Construction of tetrahydrofurans by PdII/PdIV-catalyzed aminooxygenation of alkenes. Angew. Chem. Int. Ed., 2007, 46(30), 5737-5740.
[http://dx.doi.org/10.1002/anie.200701454] [PMID: 17600808];
(c) Cui, S.; Wojtas, L.; Antilla, J.C. Palladium-catalyzed tunable functionalization of allylic imidates: regioselective aminodiacetoxylation and aziridination. Angew. Chem. Int. Ed., 2011, 50(38), 8927-8930.
[http://dx.doi.org/10.1002/anie.201103500] [PMID: 21834109];
(d) Martínez, C.; Wu, Y.; Weinstein, A.B.; Stahl, S.S.; Liu, G.; Muñiz, K. Palladium-catalyzed intermolecular aminoacetoxylation of alkenes and the influence of PhI(OAc)2 on aminopalladation stereoselectivity. J. Org. Chem., 2013, 78(12), 6309-6315.
[http://dx.doi.org/10.1021/jo400671q] [PMID: 23734834]
[36]
Wu, T.; Yin, G.; Liu, G. Palladium-catalyzed intramolecular aminofluorination of unactivated alkenes. J. Am. Chem. Soc., 2009, 131(45), 16354-16355.
[http://dx.doi.org/10.1021/ja9076588] [PMID: 19856929]
[37]
(a) Zabawa, T.P.; Kasi, D.; Chemler, S.R. Copper(II) acetate promoted intramolecular diamination of unactivated olefins. J. Am. Chem. Soc., 2005, 127(32), 11250-11251.
[http://dx.doi.org/10.1021/ja053335v] [PMID: 16089447];
(b) Sequeira, F.C.; Chemler, S.R. Stereoselective synthesis of morpholines via copper-promoted oxyamination of alkenes. Org. Lett., 2012, 14(17), 4482-4485.
[http://dx.doi.org/10.1021/ol301984b] [PMID: 22894680];
(c) Nakanishi, M.; Minard, C.; Retailleau, P.; Cariou, K.; Dodd, R.H. Copper(I) catalyzed regioselective asymmetric alkoxyamination of aryl enamide derivatives. Org. Lett., 2011, 13(21), 5792-5795.
[http://dx.doi.org/10.1021/ol202367d] [PMID: 21973176];
(d) de Haro, T.; Nevado, C. Flexible gold-catalyzed regioselective oxidative difunctionalization of unactivated alkenes. Angew. Chem. Int. Ed., 2011, 50(4), 906-910.
[http://dx.doi.org/10.1002/anie.201005763] [PMID: 21246688];
(e) Liu, G.S.; Zhang, Y.Q.; Yuan, Y.A.; Xu, H. Iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines. J. Am. Chem. Soc., 2013, 135(9), 3343-3346.
[http://dx.doi.org/10.1021/ja311923z] [PMID: 23402638];
(f) Williamson, K.S.; Yoon, T.P. Iron catalyzed asymmetric oxyamination of olefins. J. Am. Chem. Soc., 2012, 134(30), 12370-12373.
[http://dx.doi.org/10.1021/ja3046684] [PMID: 22793789];
(g) Lu, D.F.; Liu, G.S.; Zhu, C.L.; Yuan, B.; Xu, H. Iron(II)-catalyzed intramolecular olefin aminofluorination. Org. Lett., 2014, 16(11), 2912-2915.
[http://dx.doi.org/10.1021/ol501051p] [PMID: 24829034]
[38]
(a) Vitale, M.; Prestat, G.; Lopes, D.; Madec, D.; Kammerer, C.; Poli, G.; Girnita, L. New picropodophyllin analogs via palladium-catalyzed allylic alkylation-Hiyama cross-coupling sequences. J. Org. Chem., 2008, 73(15), 5795-5805.
[http://dx.doi.org/10.1021/jo800707q] [PMID: 18576606];
(b) Kammerer, C.; Prestat, G.; Madec, D.; Poli, G. Phosphine-free palladium-catalyzed allene carbopalladation/allylic alkylation domino sequence: a new route to 4-(α-styryl) γ-lactams. Chemistry, 2009, 15(17), 4224-4227.
[http://dx.doi.org/10.1002/chem.200900184] [PMID: 19301328];
(c) Bantreil, X.; Prestat, G.; Moreno, A.; Madec, D.; Fristrup, P.; Norrby, P.O.; Pregosin, P.S.; Poli, G. γ- and δ-lactams through palladium-catalyzed intramolecular allylic alkylation: enantioselective synthesis, NMR Investigation, and DFT rationalization Chemistry, 2011, 17(10), 2885-2896.
[http://dx.doi.org/10.1002/chem.201001300] [PMID: 21294194];
(d) Boutier, A.; Kammerer-Pentier, C.; Krause, N.; Prestat, G.; Poli, G. Pd-catalyzed asymmetric synthesis of N-allenyl amides and their Au-catalyzed cycloisomerizative hydroalkylation: a new route toward enantioenriched pyrrolidones. Chemistry, 2012, 18(13), 3840-3844.
[http://dx.doi.org/10.1002/chem.201103902] [PMID: 22378545]
[39]
Rosewall, C.F.; Sibbald, P.A.; Liskin, D.V.; Michael, F.E. Palladium-catalyzed carboamination of alkenes promoted by N-fluorobenzenesulfonimide via C-H activation of arenes. J. Am. Chem. Soc., 2009, 131(27), 9488-9489.
[http://dx.doi.org/10.1021/ja9031659] [PMID: 19545153]
[40]
Beccalli, E.M.; Broggini, G.; Paladino, G.; Penoni, A.; Zoni, C. Regioselective formation of six- and seven-membered ring by intramolecular Pd-catalyzed amination of N-allyl-anthranilamides. J. Org. Chem., 2004, 69(17), 5627-5630.
[http://dx.doi.org/10.1021/jo0495135] [PMID: 15307732]
[41]
Rigamonti, M.; Prestat, G.; Broggini, G.; Poli, G. Synthesis of 1,4-benzodiazepinones via palladium-catalysed allene carbopalladation/amination domino sequence. J. Organomet. Chem., 2014, 760, 149-155.
[http://dx.doi.org/10.1016/j.jorganchem.2013.11.010]
[42]
Manick, A.D.; Duret, G.; Tran, D.N.; Berhal, F.; Prestat, G. Synthesis of 1,4-benzodiazepinones and 1,4-benzoxazepinones via palladium-catalyzed amino and oxyacetoxylation. Org. Chem. Front., 2014, 1(9), 1058-1061.
[http://dx.doi.org/10.1039/C4QO00179F]
[43]
Hartwig, J.F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res., 2008, 41(11), 1534-1544.
[http://dx.doi.org/10.1021/ar800098p] [PMID: 18681463]
[44]
Surry, D.S.; Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed amination: A user’s guide. Chem. Sci., 2011, 2(1), 27-50.
[http://dx.doi.org/10.1039/C0SC00331J] [PMID: 22432049]
[45]
Das, S.K.; Srivastava, A.K.; Panda, G. A new route to 1,4-oxazepanes and 1,4-diazepanes from Garner aldehyde. Tetrahedron Lett., 2010, 51(11), 1483-1485.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.035]
[46]
Ryan, J.H.; Green, J.L.; Hyland, C.; Smith, J.A.; Williams, C.C. Seven-membered rings. Adv. Heterocycl. Chem., 2011, 23, 465-504.
[http://dx.doi.org/10.1016/B978-0-08-096805-6.00016-4]
[47]
Qian, Z.; Baxendale, I.R.; Ley, S.V. A flow process using microreactors for the preparation of a quinolone derivative as a potent 5HT1B antagonist. Synlett, 2010, 4, 505-508.
[48]
Surman, M.D.; Mulvihill, M.J.; Miller, M.J. Novel 1,4-benzodiazepines from acylnitroso-derived hetero-Diels-Alder cycloadducts. Org. Lett., 2002, 4(1), 139-141.
[http://dx.doi.org/10.1021/ol017036w] [PMID: 11772110]
[49]
Christodoulou, M.S.; Beccalli, E.M.; Giofrè, S. Palladium-catalyzed benzodiazepines synthesis. Catalysts, 2020, 10(6), 634-634.
[http://dx.doi.org/10.3390/catal10060634]
[50]
Salcedo, A.; Neuville, L.; Rondot, C.; Retailleau, P.; Zhu, J. Palladium-catalyzed domino intramolecular N-arylation/intermolecular C-C bond formation for the synthesis of functionalized benzodiazepinediones. Org. Lett., 2008, 10(5), 857-860.
[http://dx.doi.org/10.1021/ol7029799] [PMID: 18225910]
[51]
Foschi, F.; Loro, C.; Sala, R.; Oble, J.; Lo Presti, L.; Beccalli, E.M.; Poli, G.; Broggini, G. Intramolecular aminoazidation of unactivated terminal alkenes by palladium-catalyzed reactions with hydrogen peroxide as the oxidant. Org. Lett., 2020, 22(4), 1402-1406.
[http://dx.doi.org/10.1021/acs.orglett.0c00010] [PMID: 32027136]
[52]
Catellani, M.; Catucci, C.; Celentano, G.; Ferraccioli, R. Palladium-catalyzed synthesis of enantiopure 1,2,4,5-tetrahydro-1,4-benzodiazepin-3-(3H)-one derivatives. Synlett, 2001, 2001(6), 0803-0805.
[http://dx.doi.org/10.1055/s-2001-14606]
[53]
Cuny, G.; Bois-Choussy, M.; Zhu, J. Palladium- and copper-catalyzed synthesis of medium- and large-sized ring-fused dihydroazaphenanthrenes and 1,4-benzodiazepine-2,5-diones. control of reaction pathway by metal-switching. J. Am. Chem. Soc., 2004, 126(44), 14475-14484.
[http://dx.doi.org/10.1021/ja047472o] [PMID: 15521768]
[54]
Ma, D.; Xia, C. CuI-catalyzed coupling reaction of β-amino acids or esters with aryl halides at temperature lower than that employed in the normal Ullmann reaction. Facile synthesis of SB-214857. Org. Lett., 2001, 3(16), 2583-2586.
[http://dx.doi.org/10.1021/ol016258r] [PMID: 11483066]
[55]
Kalinski, C.; Umkehrer, M.; Ross, G.; Kolb, J.; Burdack, C.; Hiller, W. Highly substituted indol-2-ones, quinoxalin-2-ones and benzodiazepin-2,5-diones via a new Ugi(4CR)-Pd assisted N-aryl amidation strategy. Tetrahedron Lett., 2006, 47(20), 3423-3426.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.069]
[56]
Shahi, C.K.; Bhattacharyya, A.; Nanaji, Y.; Ghorai, M.K. A stereoselective route to tetrahydrobenzoxazepines and tetrahydrobenzodiazepines via ring-opening and aza-Michael addition of activated aziridines with 2-hydroxyphenyl and 2-aminophenyl acrylates. J. Org. Chem., 2017, 82(1), 37-47.
[http://dx.doi.org/10.1021/acs.joc.6b01919] [PMID: 27704829]
[57]
Kundu, P.; Mondal, A.; Das, B.; Chowdhury, C. A straightforward approach for the stereoselective synthesis of (E)-2-aryl/vinylmethylidene-1,4-benzodiazepines and -1,4-benzodiazepin-5-ones through palladium/charcoal-catalyzed reactions. Adv. Synth. Catal., 2015, 357(16-17), 3737-3752.
[http://dx.doi.org/10.1002/adsc.201500661]
[58]
Berhal, F.; Prestat, G.; Manick, A-D. Synthesis of six- and seven-membered chloromethyl-substituted heterocycles via palladium-catalyzed amino- and oxychlorination. Synthesis, 2016, 48(21), 3719-3729.
[http://dx.doi.org/10.1055/s-0035-1561671]
[59]
Ferrini, S.; Ponticelli, F.; Taddei, M. Rapid approach to 3,5-disubstituted 1,4-benzodiazepines via the photo-fries rearrangement of anilides. J. Org. Chem., 2006, 71(24), 9217-9220.
[http://dx.doi.org/10.1021/jo0614442] [PMID: 17109551]
[60]
Zhu, K.; Hao, J.H.; Zhang, C.P.; Zhang, J.; Feng, Y.; Qin, H.L. Diversified facile synthesis of benzimidazoles, quinazolin-4(3H)-ones and 1,4-benzodiazepine-2,5-diones via palladium-catalyzed transfer hydrogenation/condensation cascade of nitro arenes under microwave irradiation. RSC Advances, 2015, 5(15), 11132-11135.
[http://dx.doi.org/10.1039/C4RA15765F]
[61]
Gao, Y.; Li, C.; Xu, B.; Liu, H. Rapid access to difluoroalkylated pyrrolobenzodiazepines via a Pd-catalyzed C–H difluoroalkylation/cyclization cascade reaction. Org. Chem. Front., 2019, 6(3), 410-414.
[http://dx.doi.org/10.1039/C8QO01154K]
[62]
Virelli, M.; Moroni, E.; Colombo, G.; Fiengo, L.; Porta, A.; Ackermann, L.; Zanoni, G. Expedient access to 2-benzazepines by palladium-catalyzed C-H activation: identification of a unique Hsp90 inhibitor scaffold. Chemistry, 2018, 24(62), 16516-16520.
[http://dx.doi.org/10.1002/chem.201804244] [PMID: 30136746]
[63]
Cuny, G.; Bois-Choussy, M.; Zhu, J. One-pot synthesis of polyheterocycles by a palladium-catalyzed intramolecular N-arylation/C[bond]H activation/aryl[bond]aryl bond-forming domino process. Angew. Chem. Int. Ed., 2003, 42(39), 4774-4777.
[http://dx.doi.org/10.1002/anie.200351923] [PMID: 14562345]
[64]
(a) Lee, S.; Hartwig, J.F. Improved catalysts for the palladium-catalyzed synthesis of oxindoles by amide α-arylation. Rate acceleration, use of aryl chloride substrates, and a new carbene ligand for asymmetric transformations. J. Org. Chem., 2001, 66(10), 3402-3415.
[http://dx.doi.org/10.1021/jo005761z] [PMID: 11348123];
(b) Gaertzen, O.; Buchwald, S.L. Palladium-catalyzed intramolecular α-arylation of α-amino acid esters. J. Org. Chem., 2002, 67(2), 465-475.
[http://dx.doi.org/10.1021/jo0107756] [PMID: 11798319]
[65]
(a) Blackburn, B.K.; Lee, A.; Baier, M.; Kohl, B.; Olivero, A.G.; Matamoros, R.; Robarge, K.D.; McDowell, R.S. From peptide to non-peptide. 3. Atropisomeric GPIIbIIIa antagonists containing the 3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione nucleus. J. Med. Chem., 1997, 40(5), 717-729.
[http://dx.doi.org/10.1021/jm960652r] [PMID: 9057858];
(b) Keating, T.A.; Armstrong, R.W. A remarkable two-step synthesis of diverse 1,4-benzodiazepine-2,5-diones using the Ugi four-component condensation. J. Org. Chem., 1996, 61(25), 8935-8939.
[http://dx.doi.org/10.1021/jo961517p] [PMID: 11667874];
(c) Gilman, N.W.; Rosen, P.; Earley, J.V.; Cook, C.; Todaro, L.J. Atropisomers of 1,4-benzodiazepines. Synthesis and resolution of a diazepam-related 1,4-benzodiazepine. J. Am. Chem. Soc., 1990, 112(10), 3969-3978.
[http://dx.doi.org/10.1021/ja00166a038];
(d) Šunjić V.; Lisini, A.; Sega, A.; Kovač T.; Kajfež, F.; Ruščić B. Conformation of 7-chloro-5-phenyl- d5 −3(S)-methyl-dihydro-1,4-benzodiazepin-2-one in solution. J. Heterocycl. Chem., 1979, 16(4), 757-761.
[http://dx.doi.org/10.1002/jhet.5570160429];
(e) Linscheid, P.; Lehn, J.-M. Bull. Chem. Soc. Fr., 1967, 992-997.
[66]
Yang, B.H.; Buchwald, S.L. The development of efficient protocols for the palladium-catalyzed cyclization reactions of secondary amides and carbamates. Org. Lett., 1999, 1(1), 35-38.
[http://dx.doi.org/10.1021/ol9905351] [PMID: 10822529]
[67]
(a) Beletskaya, I.P. Organometallic compounds in synthesis and catalysis. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 39, 2013-2028.;
(b) Wallow, T.I.; Novak, B.M. Highly efficient and accelerated Suzuki aryl couplings mediated by phosphine-free palladium sources. J. Org. Chem., 1994, 59(17), 5034-5037.
[http://dx.doi.org/10.1021/jo00096a056];
(c) Moreno-Manas, M.; Pajuelo, F.; Pleixats, R. Preparation of 1,3-diarylpropenes by phosphine-free palladium(0)-catalyzed Suzuki-type coupling of allyl bromides with arylboronic acids. J. Org. Chem., 1995, 60(8), 2396-2397.
[http://dx.doi.org/10.1021/jo00113a019];
(d) Badone, D.; Baroni, M.; Cardamone, R.; Ielmini, A.; Guzzi, U. Highly efficient palladium-catalyzed boronic acid coupling reactions in water: scope and limitations. J. Org. Chem., 1997, 62(21), 7170-7173.
[http://dx.doi.org/10.1021/jo970439i] [PMID: 11671822];
(e) Blettner, C.G.; König, W.A.; Stenzel, W.; Schotten, T. Microwave-assisted aqueous Suzuki cross-coupling reactions. J. Org. Chem., 1999, 64(11), 3885-3890.
[http://dx.doi.org/10.1021/jo982135h];
(f) Leadbeater, N.E.; Marco, M. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Org. Lett., 2002, 4(17), 2973-2976.
[http://dx.doi.org/10.1021/ol0263907] [PMID: 12182602];
(g) Bedford, R.B.; Blake, M.E.; Butts, C.P.; Holder, D. The Suzuki coupling of aryl chlorides in TBAB–water mixtures. Chem. Commun. (Camb.), 2003, 4(4), 466-467.
[http://dx.doi.org/10.1039/b211329e] [PMID: 12638952]
[68]
(a) Whitesides, G.M.; Gaasch, J.F.; Stedronsky, E.R. Mechanism of thermal decomposition of dibutylbis(triphenylphosphine)platinum(II). J. Am. Chem. Soc., 1972, 94(15), 5258-5270.
[http://dx.doi.org/10.1021/ja00770a021];
(b) Hartwig, J.F.; Richards, S.; Barañano, D.; Paul, F. Influences on the relative rates for C-N bond-forming reductive elimination and β-hydrogen elimination of amides. A case study on the origins of competing reduction in the palladium-catalyzed amination of aryl halides. J. Am. Chem. Soc., 1996, 118(15), 3626-3633.
[http://dx.doi.org/10.1021/ja954121o];
(c) Marcoux, J.F.; Wagaw, S.; Buchwald, S.L. Palladium-catalyzed amination of aryl bromides: use of phosphinoether ligands for the efficient coupling of acyclic secondary amines. J. Org. Chem., 1997, 62(6), 1568-1569.
[http://dx.doi.org/10.1021/jo9622946]
[69]
(a) Gioria, J.M.; Susz, B.P. Etude des composés d’addition des acides de Lewis - XXXV. Note sur les composés d’addition entre amides et, respectivement, PdCl 2 et PtCl 2. Helv. Chim. Acta, 1971, 54(7), 2251-2256.
[http://dx.doi.org/10.1002/hlca.19710540762];
(b) Amatore, C.; Bahsoun, A.A.; Jutand, A.; Meyer, G.; Ndedi Ntepe, A.; Ricard, L. Mechanism of the Stille reaction catalyzed by palladium ligated to arsine ligand: PhPdI(AsPh3)(DMF) is the species reacting with vinylstannane in DMF. J. Am. Chem. Soc., 2003, 125(14), 4212-4222.
[http://dx.doi.org/10.1021/ja0204978] [PMID: 12670243]
[70]
Dupont, J.; Pfeffer, M.; Spencer, J. Palladacycles - an old organometallic family revisited: new, simple, and efficient catalyst precursors for homogeneous catalysis. Eur. J. Inorg. Chem., 2001, 2001(8), 1917-1927.
[http://dx.doi.org/10.1002/1099-0682(200108)2001:8<1917:AID-EJIC1917>3.0.CO;2-M]
[71]
(a) Vicente, J.; Abad, J.A.; Frankland, A.D.; Ramírez de Arellano, M.C. Synthesis and reactivity of 2-aminophenylpalladium(II) complexes: insertion reactions of oxygen and carbon monoxide into carbon-palladium bonds-new examples of “Transphobia”. Chemistry, 1999, 5(10), 3066-3075.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19991001)5:10<3066:AID-CHEM3066>3.0.CO;2-F];
(b) Ohff, M.; Ohff, A.; Milstein, D. Highly active PdII cyclometallated imine catalysts for the Heck reaction. Chem. Commun. (Camb.), 1999, 4(4), 357-358.
[http://dx.doi.org/10.1039/a809883b];
(c) Gai, X.; Grigg, R.; Ramzan, M.I.; Sridharan, V.; Collard, S.; Muir, J.E. Pyrazole and benzothiazole palladacycles: stable and efficient catalysts for carbon–carbon bond formation. Chem. Commun. (Camb.), 2000, 20(20), 2053-2054.
[http://dx.doi.org/10.1039/b005452f];
(d) Bedford, R.B.; Cazin, C.S.J. Highly active catalysts for the Suzuki coupling of aryl chlorides. Chem. Commun. (Camb.), 2001, 17(17), 1540-1541.
[http://dx.doi.org/10.1039/b105394a] [PMID: 12240371];
(e) Alonso, D.A.; Nájera, C.; Pacheco, M.C. Oxime palladacycles: stable and efficient catalysts for carbon-carbon coupling reactions. Org. Lett., 2000, 2(13), 1823-1826.
[http://dx.doi.org/10.1021/ol0058644] [PMID: 10891167];
(f) Viciu, M.S.; Kelly, R.A., III; Stevens, E.D.; Naud, F.; Studer, M.; Nolan, S.P. Synthesis, characterization, and catalytic activity of N-heterocyclic carbene (NHC) palladacycle complexes. Org. Lett., 2003, 5(9), 1479-1482.
[http://dx.doi.org/10.1021/ol034264c] [PMID: 12713303];
(g) Solé, D.; Vallverdú, L.; Solans, X.; Font-Bardía, M.; Bonjoch, J. Intramolecular Pd-mediated processes of amino-tethered aryl halides and ketones: insight into the ketone α-arylation and carbonyl-addition dichotomy. A new class of four-membered azapalladacycles. J. Am. Chem. Soc., 2003, 125(6), 1587-1594.
[http://dx.doi.org/10.1021/ja029114w] [PMID: 12568619]
[72]
Oestreich, M.; Dennison, P.R.; Kodanko, J.J.; Overman, L.E. Thwarting β-hydride elimination: capture of the alkyl palladium intermediate of an asymmetric intramolecular Heck reaction. Angew. Chem. Int. Ed., 2001, 40(8), 1439-1442.
[http://dx.doi.org/10.1002/1521-3773(20010417)40:8<1439:AID-ANIE1439>3.0.CO;2-F]
[73]
Martín-Matute, B.; Mateo, C.; Cárdenas, D.J.; Echavarren, A.M. Intramolecular C-H activation by alkylpalladium(II) complexes: insights into the mechanism of the palladium-catalyzed arylation reaction. Chemistry, 2001, 7(11), 2341-2348.
[http://dx.doi.org/10.1002/1521-3765(20010601)7:11<2341:AID-CHEM23410>3.0.CO;2-S] [PMID: 11446637]
[74]
Cámpora, J.; López, J.A.; Palma, P.; Valerga, P.; Spillner, E.; Carmona, E. Cleavage of palladium metallacycles by acids: a probe for the study of the cyclometalation reaction. Angew. Chem. Int. Ed., 1999, 38(1-2), 147-151.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<147:AID-ANIE147>3.0.CO;2-I]
[75]
Catellani, M.; Chiusoli, G.P. Palladacycle formation by electrophilic aromatic substitution, as monitored by 1H NMR spectroscopy. J. Organomet. Chem., 1992, 425(1-2), 151-154.
[http://dx.doi.org/10.1016/0022-328X(92)80031-R]
[76]
Pfeffer, M.; Sutter, J.P.; Rotteveel, M.A.; Cian, A.D.; Fischer, J. Further insight into the mechanism of the palladium induced carbocyclisation of aryl rings. Tetrahedron, 1992, 48(12), 2427-2440.
[http://dx.doi.org/10.1016/S0040-4020(01)88762-7]
[77]
Shilov, A.E.; Shul’pin, G.B. Activation of C-H bonds by metal complexes. Chem. Rev., 1997, 97(8), 2879-2932.
[http://dx.doi.org/10.1021/cr9411886] [PMID: 11851481]
[78]
Dyker, G. Transition metal catalyzed coupling reactions under C-H activation. Angew. Chem. Int. Ed., 1999, 38(12), 1698-1712.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1698:AID-ANIE1698>3.0.CO;2-6] [PMID: 29711186]
[79]
Jia, C.; Kitamura, T.; Fujiwara, Y. Catalytic functionalization of arenes and alkanes via C-H bond activation. Acc. Chem. Res., 2001, 34(8), 633-639.
[http://dx.doi.org/10.1021/ar000209h] [PMID: 11513570]
[80]
Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem. Rev., 2002, 102(5), 1731-1770.
[http://dx.doi.org/10.1021/cr0104330] [PMID: 11996548]
[81]
Kakiuchi, F.; Murai, S. Catalytic C-h/olefin coupling. Acc. Chem. Res., 2002, 35(10), 826-834.
[http://dx.doi.org/10.1021/ar960318p] [PMID: 12379135]
[82]
Catellani, M. Catalytic multistep reactions via palladacycles. Synlett, 2003, 3(3), 0298-0313.
[http://dx.doi.org/10.1055/s-2003-37102]
[83]
Hennings, D.D.; Iwasa, S.; Rawal, V.H. Anion-accelerated palladium-catalyzed intramolecular coupling of phenols with aryl halides. J. Org. Chem., 1997, 62(1), 2-3.
[http://dx.doi.org/10.1021/jo961876k] [PMID: 11671356]
[84]
Harayama, T.; Shibaike, K. Concise synthesis of nitidine by palladium-assisted biaryl coupling reaction. Heterocycles, 1998, 49(1), 191-195.
[http://dx.doi.org/10.3987/COM-98-S15]
[85]
Harayama, T.; Akiyama, T.; Akamatsu, H.; Kawano, K.; Abe, H.; Takeuchi, Y. Total synthesis of benzo[c]phenanthridine alkaloids, chelerythrine and 12- methoxydihydrochelerythrine, by a palladium-assisted internal biaryl coupling reaction. Synthesis, 2001, 2001(3), 0444-0450.
[http://dx.doi.org/10.1055/s-2001-11424]
[86]
Harayama, T.; Akiyama, T.; Nakano, Y.; Nishioka, H.; Abe, H.; Takeuchi, Y. Aryl-aryl coupling reaction using a novel and highly active palladium reagent prepared from Pd(OAc)2, 1,3-bis[diphenylphosphino]propane (DPPP), and Bu3P. Chem. Pharm. Bull., 2002, 50(4), 519-522.
[http://dx.doi.org/10.1248/cpb.50.519] [PMID: 11964001]
[87]
Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. A ruthenium-catalyzed reaction of aromatic ketones with arylboronates: A new method for the arylation of aromatic compounds via C-H bond cleavage. J. Am. Chem. Soc., 2003, 125(7), 1698-1699.
[http://dx.doi.org/10.1021/ja029273f] [PMID: 12580585]
[88]
Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. Facile synthesis of 2,5-diarylthiazoles via palladium-catalyzed tandem C-H substitutions. Design of tunable light emission and liquid crystalline characteristics. J. Am. Chem. Soc., 2003, 125(7), 1700-1701.
[http://dx.doi.org/10.1021/ja0289189] [PMID: 12580586]
[89]
Campo, M.A.; Huang, Q.; Yao, T.; Tian, Q.; Larock, R.C. 1,4-palladium migration via C-H activation, followed by arylation: synthesis of fused polycycles. J. Am. Chem. Soc., 2003, 125(38), 11506-11507.
[http://dx.doi.org/10.1021/ja035121o] [PMID: 13129347]
[90]
Baudoin, O.; Herrbach, A.; Guéritte, F. The palladium-catalyzed C-H activation of benzylic gem-dialkyl groups. Angew. Chem. Int. Ed., 2003, 42(46), 5736-5740.
[http://dx.doi.org/10.1002/anie.200352461] [PMID: 14661210]
[91]
Sezen, B.; Sames, D. Diversity synthesis via C-H bond functionalization: Concept-guided development of new C-arylation methods for imidazoles. J. Am. Chem. Soc., 2003, 125(35), 10580-10585.
[http://dx.doi.org/10.1021/ja036157j] [PMID: 12940740]
[92]
DeBoef, B.; Pastine, S.J.; Sames, D. Cross-coupling of sp(3) C-H bonds and alkenes: Catalytic cyclization of alkene-amide substrates. J. Am. Chem. Soc., 2004, 126(21), 6556-6557.
[http://dx.doi.org/10.1021/ja049111e] [PMID: 15161275]
[93]
Huang, Q.; Fazio, A.; Dai, G.; Campo, M.A.; Larock, R.C. Pd-catalyzed alkyl to aryl migration and cyclization: an efficient synthesis of fused polycycles via multiple C-H activation. J. Am. Chem. Soc., 2004, 126(24), 7460-7461.
[http://dx.doi.org/10.1021/ja047980y] [PMID: 15198591]
[94]
Mauleón, P.; Alonso, I.; Carretero, J.C. Unusual palladium-catalyzed cascade arylation of αβ-unsaturated phenyl sulfones under heck reaction conditions. Angew. Chem. Int. Ed. Engl., 2001, 40(7), 1291-1293.
[http://dx.doi.org/10.1002/1521-3773(20010401)40:7<1291:AID-ANIE1291>3.0.CO;2-9] [PMID: 11301455]
[95]
Olofsson, K.; Sahlin, H.; Larhed, M.; Hallberg, A. Regioselective palladium-catalyzed synthesis of β-arylated primary allylamine equivalents by an efficient Pd-N coordination. J. Org. Chem., 2001, 66(2), 544-549.
[http://dx.doi.org/10.1021/jo001416y] [PMID: 11429827]
[96]
Driver, M.S.; Hartwig, J.F. Carbon-nitrogen-bond-forming reductive elimination of aryl amines from palladium(II) phosphine complexes. J. Am. Chem. Soc., 1997, 119(35), 8232-8245.
[http://dx.doi.org/10.1021/ja971057x]
[97]
Zhu, J. SNAr bases macrocyclization via biaryl ether formation: Application in natural product synthesis. Synlett, 1997, 1997(2), 133-144.
[http://dx.doi.org/10.1055/s-1997-722]
[98]
Carbonnelle, A.C.; Zhu, J. A novel synthesis of biaryl-containing macrocycles by a domino Miyaura arylboronate formation: Intramolecular Suzuki reaction. Org. Lett., 2000, 2(22), 3477-3480.
[http://dx.doi.org/10.1021/ol006520g] [PMID: 11082013]
[99]
Zhao, G.; Sun, X.; Bienayme, H.; Zhu, J. Activation of a terminal carboxylic acid by an internal oxazole: A novel synthesis of macrocyclodepsipeptide. J. Am. Chem. Soc., 2001, 123, 6700-6701.
[100]
Janvier, P.; Bois-Choussy, M.; Bienayme, H.; Bienayme, H.; Zhu, J. A one-pot four-component (ABC2) synthesis of macrocycles. Angew. Chem. Int. Ed., 2003, 42, 811-814.
[101]
Domling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3168-3210.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy