Abstract
1,4-benzodiazepines play a valuable role in organic and medicinal chemistry. In this review article, we have mainly discussed the synthesis of various 1,4-benzodiazepines in the presence of a palladium catalyst. Different reactions, such as intramolecular N-arylation, reductive elimination, oxidative addition, intramolecular alkylation, C-H activation, aryl-aryl bond formation, etc., are included. For these types of syntheses, an easy and efficient catalytic domino process has been reported, including the intermolecular or intramolecular reactions. In this review article, we have also discussed catalyst regeneration and some ligand-free Pdcatalyzed reactions.
Graphical Abstract
[http://dx.doi.org/10.2174/1570193x15666180221152535];
(b) Kaur, N. Metal catalysts: Applications in higher-membered N-heterocycles synthesis. J. Indian Chem. Soc., 2015, 12(1), 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5];
(c) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., Sci. Eng., 2015, 57(4), 478-564.
[http://dx.doi.org/10.1080/01614940.2015.1082824];
(d) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15(7), 940-971.
[http://dx.doi.org/10.2174/1570179415666180815144442];
(e) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48(19), 2457-2474.
[http://dx.doi.org/10.1080/00397911.2018.1487070];
(f) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun., 2019, 49(15), 1847-1894.
[http://dx.doi.org/10.1080/00397911.2019.1606922];
(g) Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and biological attributes of pyrimidine derivatives: a recent update. Curr. Org. Synth., 2021, 18(8), 790-825.
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770];
(h) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N.K. Photochemical C–N bond forming reactions for the synthesis of five-membered fused N- heterocycles. Synth. Commun., 2020, 50(9), 1286-1334.
[http://dx.doi.org/10.1080/00397911.2020.1713378];
i) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Metal and organo-complex promoted synthesis of fused five-membered O - heterocycles. Synth. Commun.,, 2020, 50(4), 457-505.
[http://dx.doi.org/10.1080/00397911.2019.1700522];
(j) Kaur, N. Advances in microwave-assisted synthesis for five membered Nheterocycles synthesis. Synth. Commun., 2015, 45(4), 432-457.
[http://dx.doi.org/10.1080/00397911.2013.824982];
(k) Kaur, N. Ionic liquid promoted eco-friendly and efficient synthesis of sixmembered N-polyheterocycles. Curr. Org. Synth., 2018, 15(8), 1124-1146.
[http://dx.doi.org/10.2174/1570179415666180903102542]
[http://dx.doi.org/10.1080/01614940.2014.976118];
(b) Kaur, N. Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49(13), 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149];
(c) Kaur, N. Multiple nitrogen-containing heterocycles: Metal and non-metal assisted synthesis. Synth. Commun., 2019, 49(13), 1633-1658.
[http://dx.doi.org/10.1080/00397911.2018.1542497];
(d) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun., 2019, 49(12), 1543-1577.
[http://dx.doi.org/10.1080/00397911.2019.1594306];
(e) Kaur, N. Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synth. Commun., 2019, 49(12), 1459-1485.
[http://dx.doi.org/10.1080/00397911.2019.1575423];
(f) Kaur, N. Synthesis of six- and seven-membered and larger heterocylces using Au and Ag catalysts. Inorganic and Nano-Metal Chemistry, 2018, 48(11), 541-568.
[http://dx.doi.org/10.1080/24701556.2019.1567544];
(g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun., 2019, 49(18), 2281-2318.
[http://dx.doi.org/10.1080/00397911.2019.1622732];
(h) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Crown ethers for the synthesis of heterocycles. Curr. Org. Chem., 2021, 25(11), 1270-1297.
[http://dx.doi.org/10.2174/1385272825666210521121820];
i) Kaur, N.; Bhardwaj, P.; Gupta, M. Recent developments in the synthesis of five- and six-membered N-heterocycles from dicarbonyl compounds. Curr. Org. Chem., 2021, 25(22), 2765-2790.
[http://dx.doi.org/10.2174/1385272825666210812102416];
j) Kaur, N. Microwave-assisted synthesis of five-membered S-heterocycles. J. Indian Chem. Soc., 2014, 11(2), 523-564.
[http://dx.doi.org/10.1007/s13738-013-0325-2];
k) Kaur, N. Synthesis of five-membered heterocycles containing nitrogen heteroatom under ultrasonic irradiation. Mini Rev. Org. Chem., 2019, 16(5), 481-503.
[http://dx.doi.org/10.2174/1570193X15666180709144028]
[http://dx.doi.org/10.1080/00397911.2013.828755];
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941];
(c) Kaur, N. Photochemical reactions: Synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14(7), 972-998.
[http://dx.doi.org/10.2174/1570179414666170201150701];
(d) Kaur, N. Ionic liquids: Promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14(1), 3-23.
[http://dx.doi.org/10.2174/1570193X13666161019120050];
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 983-1020.
[http://dx.doi.org/10.1080/15533174.2014.989620];
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O -heterocycles. Inorg. Nano Met. Chem., 2017, 47(2), 163-187.
[http://dx.doi.org/10.1080/15533174.2015.1068809];
(g) Kaur, N. Photochemical irradiation: Seven and higher membered O -heterocycles. Synth. Commun., 2018, 48(23), 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051];
(h) Kaur, N.; Grewal, P.; Poonia, K. Dicarbonyl compounds in O- heterocycle synthesis. Synth. Commun., 2021, 51(16), 2423-2444.
[http://dx.doi.org/10.1080/00397911.2021.1941114];
i) Kaur, N. Microwave-assisted synthesis: fused five membered N-heterocycles. Synth. Commun., 2015, 45(7), 789-823.
[http://dx.doi.org/10.1080/00397911.2013.824984];
j) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45(2), 151-172.
[http://dx.doi.org/10.1080/00397911.2013.813550];
k) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734]
[http://dx.doi.org/10.1080/00397911.2013.783922];
(b) Kaur, N. Synthesis of three-membered and four-membered heterocycles with the assistance of photochemical reactions. J. Heterocycl. Chem., 2019, 56(4), 1141-1167.
[http://dx.doi.org/10.1002/jhet.3491];
(c) Kaur, N.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Verma, Y. Organo or metal complex catalyzed synthesis of five-membered oxygen heterocycles. Curr. Org. Chem., 2020, 23(25), 2822-2847.
[http://dx.doi.org/10.2174/1385272823666191122111351];
(d) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Ahlawat, N.; Verma, Y. Synthesis of five-membered N -heterocycles using silver metal. Synth. Commun., 2019, 49(22), 3058-3100.
[http://dx.doi.org/10.1080/00397911.2019.1655767];
(e) Kaur, N.; Verma, Y.; Grewal, P.; Ahlawat, N.; Bhardwaj, P.; Jangid, N.K. Palladium acetate assisted synthesis of five-membered N- polyheterocycles. Synth. Commun., 2020, 50(11), 1567-1621.
[http://dx.doi.org/10.1080/00397911.2020.1723640];
(f) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Cu-assisted C–N bond formations in six-membered N -heterocycle synthesis. Synth. Commun., 2020, 50(8), 1075-1132.
[http://dx.doi.org/10.1080/00397911.2019.1695278];
(g) Kaur, N. Ruthenium catalysis in six-membered O -heterocycles synthesis. Synth. Commun., 2018, 48(13), 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698];
(h) Kaur, N. Green synthesis of three- to five-membered O -heterocycles using ionic liquids. Synth. Commun., 2018, 48(13), 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243];
i) Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S- heterocycles. Synth. Commun., 2018, 48(14), 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671];
j) Kaur, N. Photochemical mediated reactions in five-membered O- heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165];
k) Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun., 2018, 48(21), 2715-2749.
[http://dx.doi.org/10.1080/00397911.2018.1497657];
l) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024];
m) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: Solid-phase synthesis. Synth. Commun., 2014, 44(9), 1173-1211.
[http://dx.doi.org/10.1080/00397911.2012.760129]
[http://dx.doi.org/10.1080/00397911.2013.816735];
(b) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Ag-mediated synthesis of six-membered N -heterocycles. Synth. Commun., 2020, 50(6), 753-795.
[http://dx.doi.org/10.1080/00397911.2019.1703196];
(c) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Silver-assisted syntheses of fused five-membered N-heterocycles. Curr. Org. Chem., 2021, 25(19), 2232-2257.
[http://dx.doi.org/10.2174/1385272825666210716144555];
(d) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202];
(e) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45(2), 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734];
(f) Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Synthesis of five-membered N -heterocycles using Rh based metal catalysts. Synth. Commun., 2020, 50(2), 137-160.
[http://dx.doi.org/10.1080/00397911.2019.1689271];
(g) Kaur, N.; Ahlawat, N.; Verma, Y.; Bhardwaj, P.; Grewal, P.; Jangid, N.K. Rhodium catalysis in the synthesis of fused five-membered N- heterocycles. Inorg. Nano-Met. Chem, 2020, 50(12), 1260-1289.
[http://dx.doi.org/10.1080/24701556.2020.1745838];
(h) Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O -heterocycles. Synth. Commun., 2019, 49(6), 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525];
i) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(8), 909-943.
[http://dx.doi.org/10.1080/00397911.2013.825808];
j) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(10), 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208];
k) Kaur, N.; Verma, Y.; Ahlawat, N.; Grewal, P.; Bhardwaj, P.; Jangid, N.K. Copper-assisted synthesis of five-membered O- heterocycles. Inorg. Nano-Met. Chem, 2020, 50(8), 705-740.
[http://dx.doi.org/10.1080/24701556.2020.1724144];
l) Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49(5), 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711];
m) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45(3), 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736]
[http://dx.doi.org/10.1007/s10562-019-02746-2];
(b) Kaur, N. Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894];
(c) Kaur, N. Photochemical reactions as key steps in five-membered N- heterocycle synthesis. Synth. Commun., 2018, 48(11), 1259-1284.
[http://dx.doi.org/10.1080/00397911.2018.1443218];
(d) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
[http://dx.doi.org/10.1080/17415993.2018.1457673];
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354];
(f) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756];
(g) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45(4), 403-431.
[http://dx.doi.org/10.1080/00397911.2013.824981];
(h) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45(5), 539-568.
[http://dx.doi.org/10.1080/00397911.2013.824983];
i) Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N -heterocycles. Synth. Commun., 2019, 49(4), 483-514.
[http://dx.doi.org/10.1080/00397911.2018.1536213];
j) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(13), 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236];
k) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O, N -heterocycles using metal and nonmetal. Synth. Commun., 2019, 49(11), 1345-1384.
[http://dx.doi.org/10.1080/00397911.2019.1594308];
l) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Ionic liquids in the synthesis of five-membered N,N-, N,N,N- and N,N,N,N-heterocycles. Curr. Org. Chem., 2019, 23(11), 1214-1238.
[http://dx.doi.org/10.2174/1385272823666190717101741]
[http://dx.doi.org/10.1080/10426507.2018.1539493];
(b) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4(2), 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349];
(c) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N -heterocycles. Synth. Commun., 2019, 49(10), 1205-1230.
[http://dx.doi.org/10.1080/00397911.2018.1540048];
(d) Kaur, N. Copper catalyzed synthesis of seven and higher membered heterocycles. Synth. Commun., 2019, 49(7), 879-916.
[http://dx.doi.org/10.1080/00397911.2018.1543780];
(e) Kaur, N. Ionic liquid assisted synthesis of S -heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 165-185.
[http://dx.doi.org/10.1080/10426507.2018.1539492];
(f) Kaur, N. Nickel catalysis: Six membered heterocycle syntheses. Synth. Commun., 2019, 49(9), 1103-1133.
[http://dx.doi.org/10.1080/00397911.2019.1568499];
(g) Kaur, N. Seven-membered N -heterocycles: Metal and nonmetal assisted synthesis. Synth. Commun., 2019, 49(8), 987-1030.
[http://dx.doi.org/10.1080/00397911.2019.1574351];
(h) Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P. A review of ruthenium catalyzed C-N bond formation reactions for the synthesis of five-membered N-heterocycles. Curr. Org. Chem., 2019, 23(18), 1901-1944.
[http://dx.doi.org/10.2174/1385272823666191021104118];
i) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Gold-catalyzed C–O bond forming reactions for the synthesis of six-membered O-heterocycles. SN Appl. Sci., 2019, 1(8), 903.
[http://dx.doi.org/10.1007/s42452-019-0920-7];
j) Kaur, N. Ionic liquid assisted synthesis of six-membered oxygen heterocycles. SN Appl. Sci., 2019, 1(8), 932.
[http://dx.doi.org/10.1007/s42452-019-0861-1];
k) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131];
l) Kaur, N. Metal and non-metal catalysts in the synthesis of five-membered S-heterocycles. Curr. Org. Synth., 2019, 16(2), 258-275.
[http://dx.doi.org/10.2174/1570179416666181207144430] [PMID: 31975675]
[http://dx.doi.org/10.1039/c1cs15082k] [PMID: 21643614];
(b) Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738];
(c) Yao, W.; Wang, J.; Zhong, A.; Li, J.; Yang, J. Combined KOH/BEt3 catalyst for selective deaminative hydroboration of aromatic carboxamides for construction of luminophores. Org. Lett., 2020, 22(20), 8086-8090.
[http://dx.doi.org/10.1021/acs.orglett.0c03033] [PMID: 33026813];
(d) Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front., 2021, 8(16), 4554-4559.
[http://dx.doi.org/10.1039/D1QO00705J]
[http://dx.doi.org/10.1038/nchembio0606-284] [PMID: 16710330]
[http://dx.doi.org/10.1039/c3cs60228a] [PMID: 24077333]
[http://dx.doi.org/10.1021/cr00026a006]
[http://dx.doi.org/10.1021/jm0491039] [PMID: 15916422]
[http://dx.doi.org/10.1021/jm00106a040] [PMID: 1995896]
[http://dx.doi.org/10.1021/ol900210h] [PMID: 19320504]
[http://dx.doi.org/10.2174/092986706775197999] [PMID: 16457640]
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855];
(b) Ellman, J.A. Design, synthesis, and evaluation of small-molecule libraries. Acc. Chem. Res., 1996, 29(3), 132-143.
[http://dx.doi.org/10.1021/ar950190w]
[http://dx.doi.org/10.1021/ol1028404] [PMID: 21275426];
(b) Sakai, N.; Watanabe, A.; Ikeda, R.; Nakaike, Y.; Konakahara, T. Me3SiCl-promoted intramolecular cyclization of aromatic compounds tethered with N,O-acetals leading to the facile preparation of 1,4-benzodiazepine skeletons. Tetrahedron, 2010, 66(46), 8837-8845.
[http://dx.doi.org/10.1016/j.tet.2010.09.077];
(c) Mishra, J.K.; Samanta, K.; Jain, M.; Dikshit, M.; Panda, G. Amino acid based enantiomerically pure 3-substituted benzofused heterocycles: A new class of antithrombotic agents. Bioorg. Med. Chem. Lett., 2010, 20(1), 244-247.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.126] [PMID: 19932967];
(d) Rujirawanich, J.; Gallagher, T. Substituted 1,4-benzoxazepines, 1,5-benzoxazocines, and N- and S-variants. Org. Lett., 2009, 11(23), 5494-5496.
[http://dx.doi.org/10.1021/ol9023453] [PMID: 19877693];
(e) Yar, M.; McGarrigle, E.M.; Aggarwal, V.K. Bromoethylsulfonium salt--a more effective annulation agent for the synthesis of 6- and 7-membered 1,4-heterocyclic compounds. Org. Lett., 2009, 11(2), 257-260.
[http://dx.doi.org/10.1021/ol8023727] [PMID: 19072319];
(f) Wang, J.Y.; Guo, X.F.; Wang, D.X.; Huang, Z.T.; Wang, M.X. A new strategy for the synthesis of 1,4-benzodiazepine derivatives based on the tandem N-alkylation-ring opening-cyclization reactions of methyl 1-arylaziridine-2-carboxylates with N-[2-bromomethyl(phenyl)]trifluoroacetamides. J. Org. Chem., 2008, 73(5), 1979-1982.
[http://dx.doi.org/10.1021/jo7024306] [PMID: 18229941]
[http://dx.doi.org/10.1021/ol200429a] [PMID: 21446677];
(b) DeSimone, R.; Currie, K.; Mitchell, S.; Darrow, J.; Pippin, D. Privileged structures: Applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-493.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713];
(c) Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124];
(d) Hoog, S.S.; Zhao, B.; Winborne, E.; Fisher, S.; Green, D.W.; DesJarlais, R.L.; Newlander, K.A.; Callahan, J.F.; Abdel-Meguid, S.S.; Moore, M.L.; Huffman, W.F. A check on rational drug design: Crystal structure of a complex of human immunodeficiency virus type 1 protease with a novel gamma-turn mimetic inhibitor. J. Med. Chem., 1995, 38(17), 3246-3252.
[http://dx.doi.org/10.1021/jm00017a008] [PMID: 7650677]
(b) Shi, F.; Xu, X.; Zheng, L.; Dang, Q.; Bai, X. Method development for a pyridobenzodiazepine library with multiple diversification points. J. Comb. Chem., 2008, 10(2), 158-161.
[http://dx.doi.org/10.1021/cc7002039] [PMID: 18260649];
(c) Yang, J.; Che, X.; Dang, Q.; Wei, Z.; Gao, S.; Bai, X. Synthesis of Tricyclic 4-Chloro-pyrimido[4,5- b ][1,4]benzodiazepines. Org. Lett., 2005, 7(8), 1541-1543.
[http://dx.doi.org/10.1021/ol050181f] [PMID: 15816747];
(d) Smits, R.A.; Lim, H.D.; Stegink, B.; Bakker, R.A.; de Esch, I.J.P.; Leurs, R. Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives. J. Med. Chem., 2006, 49(15), 4512-4516.
[http://dx.doi.org/10.1021/jm051008s] [PMID: 16854056];
(e) Loudni, L.; Roche, J.; Potiron, V.; Clarhaut, J.; Bachmann, C.; Gesson, J.P.; Tranoy-Opalinski, I. Design, synthesis and biological evaluation of 1,4- benzodiazepine-2,5-dione-based HDAC inhibitors. Bioorg. Med. Chem. Lett, 2007, 17(17), 4819-4823.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.067] [PMID: 17624773];
(f) Mohapatra, D.K.; Maity, P.K.; Shabab, M.; Khan, M.I. Click chemistry based rapid one-pot synthesis and evaluation for protease inhibition of new tetracyclic triazole fused benzodiazepine derivatives. Bioorg. Med. Chem. Lett., 2009, 19(17), 5241-5245.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.107] [PMID: 19648009];
(g) Sharma, U.K.; Sharma, N.; Vachhani, D.D.; Van der Eycken, E.V. Metalmediated post-Ugi transformations for the construction of diverse heterocyclic scaffolds. Chem. Soc. Rev.,, 2015, 44(7), 1836-1860.
[http://dx.doi.org/10.1039/C4CS00253A] [PMID: 25652577];
(h) De Silva, R.A.; Santra, S.; Andreana, P.R. A tandem one-pot, microwaveassisted synthesis of regiochemically differentiated 1,2,4,5-tetrahydro-1,4- benzodiazepin-3-ones. Org. Lett., 2008, 10(20), 4541-4544.
[http://dx.doi.org/10.1021/ol801841m] [PMID: 18811177];
i) Ried, W.; Torinus, E. Über heterocyclische Siebenringsysteme, X. Synthesen kondensierter 5‐, 7‐ und 8‐gliedriger Heterocyclen mit 2 Stickstoffatomen. Chem. Ber., 1959, 92(11), 2902-2916.
[http://dx.doi.org/10.1002/cber.19590921138];
j) Chemistry, O.; Mahavidyalaya, Y. Copper-bronze catalyst: An efficient green approach for the synthesis of dibenzo[b,e][1,4]diazepine derivatives. Chem. Sci. Trans., 2015, 4, 194-198.;
k) Wang, J.; Wang, L.; Guo, S.; Zha, S.; Zhu, J. Synthesis of 2,3- benzodiazepines via Rh(III)-catalyzed C-H functionalization of N-Boc hydrazones with diazoketoesters. Org. Lett., 2017, 19(13), 3640-3643.
[http://dx.doi.org/10.1021/acs.orglett.7b01642] [PMID: 28641013];
l) Gawande, S.D.; Kavala, V.; Zanwar, M.R.; Kuo, C.W.; Huang, W.C.; Kuo, T.S.; Huang, H.N.; He, C.H.; Yao, C.F. Synthesis of dibenzodiazepinones via tandem copper(I)-catalyzed C-N bond formation. Adv. Synth. Catal., 2014, 356(11-12), 2599-2608.
[http://dx.doi.org/10.1002/adsc.201301020]
[http://dx.doi.org/10.1016/j.chempr.2019.06.005]
[http://dx.doi.org/10.1002/ejoc.201900481]
[http://dx.doi.org/10.1002/ejoc.201900439]
[http://dx.doi.org/10.1021/acs.organomet.9b00110]
[http://dx.doi.org/10.1002/chem.201002323] [PMID: 21207600]
[http://dx.doi.org/10.1021/ja051406k] [PMID: 15913354]
[http://dx.doi.org/10.1021/cr00032a009]
[http://dx.doi.org/10.1039/b111276g]
[http://dx.doi.org/10.1021/cr100371y] [PMID: 21428440]
[http://dx.doi.org/10.1021/ja055190y] [PMID: 16231907];
(b) Martínez, C.; Muñiz, K. Palladium-catalyzed vicinal difunctionalization of internal alkenes: diastereoselective synthesis of diamines. Angew. Chem. Int. Ed., 2012, 51(28), 7031-7034.
[http://dx.doi.org/10.1002/anie.201201719] [PMID: 22644876]
[http://dx.doi.org/10.1021/ja711029u] [PMID: 18281992];
(b) Neufeldt, S.R.; Sanford, M.S. Asymmetric chiral ligand-directed alkene dioxygenation. Org. Lett., 2013, 15(1), 46-49.
[http://dx.doi.org/10.1021/ol303003g] [PMID: 23249401];
(c) Wang, W.; Wang, F.; Shi, M. Bis(NHC)-palladium(II) complex-catalyzed dioxygenation of alkenes. Organometallics, 2010, 29(4), 928-933.
[http://dx.doi.org/10.1021/om900975a]
[http://dx.doi.org/10.1021/ja061706h] [PMID: 16734468];
(b) Desai, L.V.; Sanford, M.S. Construction of tetrahydrofurans by PdII/PdIV-catalyzed aminooxygenation of alkenes. Angew. Chem. Int. Ed., 2007, 46(30), 5737-5740.
[http://dx.doi.org/10.1002/anie.200701454] [PMID: 17600808];
(c) Cui, S.; Wojtas, L.; Antilla, J.C. Palladium-catalyzed tunable functionalization of allylic imidates: regioselective aminodiacetoxylation and aziridination. Angew. Chem. Int. Ed., 2011, 50(38), 8927-8930.
[http://dx.doi.org/10.1002/anie.201103500] [PMID: 21834109];
(d) Martínez, C.; Wu, Y.; Weinstein, A.B.; Stahl, S.S.; Liu, G.; Muñiz, K. Palladium-catalyzed intermolecular aminoacetoxylation of alkenes and the influence of PhI(OAc)2 on aminopalladation stereoselectivity. J. Org. Chem., 2013, 78(12), 6309-6315.
[http://dx.doi.org/10.1021/jo400671q] [PMID: 23734834]
[http://dx.doi.org/10.1021/ja9076588] [PMID: 19856929]
[http://dx.doi.org/10.1021/ja053335v] [PMID: 16089447];
(b) Sequeira, F.C.; Chemler, S.R. Stereoselective synthesis of morpholines via copper-promoted oxyamination of alkenes. Org. Lett., 2012, 14(17), 4482-4485.
[http://dx.doi.org/10.1021/ol301984b] [PMID: 22894680];
(c) Nakanishi, M.; Minard, C.; Retailleau, P.; Cariou, K.; Dodd, R.H. Copper(I) catalyzed regioselective asymmetric alkoxyamination of aryl enamide derivatives. Org. Lett., 2011, 13(21), 5792-5795.
[http://dx.doi.org/10.1021/ol202367d] [PMID: 21973176];
(d) de Haro, T.; Nevado, C. Flexible gold-catalyzed regioselective oxidative difunctionalization of unactivated alkenes. Angew. Chem. Int. Ed., 2011, 50(4), 906-910.
[http://dx.doi.org/10.1002/anie.201005763] [PMID: 21246688];
(e) Liu, G.S.; Zhang, Y.Q.; Yuan, Y.A.; Xu, H. Iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines. J. Am. Chem. Soc., 2013, 135(9), 3343-3346.
[http://dx.doi.org/10.1021/ja311923z] [PMID: 23402638];
(f) Williamson, K.S.; Yoon, T.P. Iron catalyzed asymmetric oxyamination of olefins. J. Am. Chem. Soc., 2012, 134(30), 12370-12373.
[http://dx.doi.org/10.1021/ja3046684] [PMID: 22793789];
(g) Lu, D.F.; Liu, G.S.; Zhu, C.L.; Yuan, B.; Xu, H. Iron(II)-catalyzed intramolecular olefin aminofluorination. Org. Lett., 2014, 16(11), 2912-2915.
[http://dx.doi.org/10.1021/ol501051p] [PMID: 24829034]
[http://dx.doi.org/10.1021/jo800707q] [PMID: 18576606];
(b) Kammerer, C.; Prestat, G.; Madec, D.; Poli, G. Phosphine-free palladium-catalyzed allene carbopalladation/allylic alkylation domino sequence: a new route to 4-(α-styryl) γ-lactams. Chemistry, 2009, 15(17), 4224-4227.
[http://dx.doi.org/10.1002/chem.200900184] [PMID: 19301328];
(c) Bantreil, X.; Prestat, G.; Moreno, A.; Madec, D.; Fristrup, P.; Norrby, P.O.; Pregosin, P.S.; Poli, G. γ- and δ-lactams through palladium-catalyzed intramolecular allylic alkylation: enantioselective synthesis, NMR Investigation, and DFT rationalization Chemistry, 2011, 17(10), 2885-2896.
[http://dx.doi.org/10.1002/chem.201001300] [PMID: 21294194];
(d) Boutier, A.; Kammerer-Pentier, C.; Krause, N.; Prestat, G.; Poli, G. Pd-catalyzed asymmetric synthesis of N-allenyl amides and their Au-catalyzed cycloisomerizative hydroalkylation: a new route toward enantioenriched pyrrolidones. Chemistry, 2012, 18(13), 3840-3844.
[http://dx.doi.org/10.1002/chem.201103902] [PMID: 22378545]
[http://dx.doi.org/10.1021/ja9031659] [PMID: 19545153]
[http://dx.doi.org/10.1021/jo0495135] [PMID: 15307732]
[http://dx.doi.org/10.1016/j.jorganchem.2013.11.010]
[http://dx.doi.org/10.1039/C4QO00179F]
[http://dx.doi.org/10.1021/ar800098p] [PMID: 18681463]
[http://dx.doi.org/10.1039/C0SC00331J] [PMID: 22432049]
[http://dx.doi.org/10.1016/j.tetlet.2010.01.035]
[http://dx.doi.org/10.1016/B978-0-08-096805-6.00016-4]
[http://dx.doi.org/10.1021/ol017036w] [PMID: 11772110]
[http://dx.doi.org/10.3390/catal10060634]
[http://dx.doi.org/10.1021/ol7029799] [PMID: 18225910]
[http://dx.doi.org/10.1021/acs.orglett.0c00010] [PMID: 32027136]
[http://dx.doi.org/10.1055/s-2001-14606]
[http://dx.doi.org/10.1021/ja047472o] [PMID: 15521768]
[http://dx.doi.org/10.1021/ol016258r] [PMID: 11483066]
[http://dx.doi.org/10.1016/j.tetlet.2006.03.069]
[http://dx.doi.org/10.1021/acs.joc.6b01919] [PMID: 27704829]
[http://dx.doi.org/10.1002/adsc.201500661]
[http://dx.doi.org/10.1055/s-0035-1561671]
[http://dx.doi.org/10.1021/jo0614442] [PMID: 17109551]
[http://dx.doi.org/10.1039/C4RA15765F]
[http://dx.doi.org/10.1039/C8QO01154K]
[http://dx.doi.org/10.1002/chem.201804244] [PMID: 30136746]
[http://dx.doi.org/10.1002/anie.200351923] [PMID: 14562345]
[http://dx.doi.org/10.1021/jo005761z] [PMID: 11348123];
(b) Gaertzen, O.; Buchwald, S.L. Palladium-catalyzed intramolecular α-arylation of α-amino acid esters. J. Org. Chem., 2002, 67(2), 465-475.
[http://dx.doi.org/10.1021/jo0107756] [PMID: 11798319]
[http://dx.doi.org/10.1021/jm960652r] [PMID: 9057858];
(b) Keating, T.A.; Armstrong, R.W. A remarkable two-step synthesis of diverse 1,4-benzodiazepine-2,5-diones using the Ugi four-component condensation. J. Org. Chem., 1996, 61(25), 8935-8939.
[http://dx.doi.org/10.1021/jo961517p] [PMID: 11667874];
(c) Gilman, N.W.; Rosen, P.; Earley, J.V.; Cook, C.; Todaro, L.J. Atropisomers of 1,4-benzodiazepines. Synthesis and resolution of a diazepam-related 1,4-benzodiazepine. J. Am. Chem. Soc., 1990, 112(10), 3969-3978.
[http://dx.doi.org/10.1021/ja00166a038];
(d) Šunjić V.; Lisini, A.; Sega, A.; Kovač T.; Kajfež, F.; Ruščić B. Conformation of 7-chloro-5-phenyl- d5 −3(S)-methyl-dihydro-1,4-benzodiazepin-2-one in solution. J. Heterocycl. Chem., 1979, 16(4), 757-761.
[http://dx.doi.org/10.1002/jhet.5570160429];
(e) Linscheid, P.; Lehn, J.-M. Bull. Chem. Soc. Fr., 1967, 992-997.
[http://dx.doi.org/10.1021/ol9905351] [PMID: 10822529]
(b) Wallow, T.I.; Novak, B.M. Highly efficient and accelerated Suzuki aryl couplings mediated by phosphine-free palladium sources. J. Org. Chem., 1994, 59(17), 5034-5037.
[http://dx.doi.org/10.1021/jo00096a056];
(c) Moreno-Manas, M.; Pajuelo, F.; Pleixats, R. Preparation of 1,3-diarylpropenes by phosphine-free palladium(0)-catalyzed Suzuki-type coupling of allyl bromides with arylboronic acids. J. Org. Chem., 1995, 60(8), 2396-2397.
[http://dx.doi.org/10.1021/jo00113a019];
(d) Badone, D.; Baroni, M.; Cardamone, R.; Ielmini, A.; Guzzi, U. Highly efficient palladium-catalyzed boronic acid coupling reactions in water: scope and limitations. J. Org. Chem., 1997, 62(21), 7170-7173.
[http://dx.doi.org/10.1021/jo970439i] [PMID: 11671822];
(e) Blettner, C.G.; König, W.A.; Stenzel, W.; Schotten, T. Microwave-assisted aqueous Suzuki cross-coupling reactions. J. Org. Chem., 1999, 64(11), 3885-3890.
[http://dx.doi.org/10.1021/jo982135h];
(f) Leadbeater, N.E.; Marco, M. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Org. Lett., 2002, 4(17), 2973-2976.
[http://dx.doi.org/10.1021/ol0263907] [PMID: 12182602];
(g) Bedford, R.B.; Blake, M.E.; Butts, C.P.; Holder, D. The Suzuki coupling of aryl chlorides in TBAB–water mixtures. Chem. Commun. (Camb.), 2003, 4(4), 466-467.
[http://dx.doi.org/10.1039/b211329e] [PMID: 12638952]
[http://dx.doi.org/10.1021/ja00770a021];
(b) Hartwig, J.F.; Richards, S.; Barañano, D.; Paul, F. Influences on the relative rates for C-N bond-forming reductive elimination and β-hydrogen elimination of amides. A case study on the origins of competing reduction in the palladium-catalyzed amination of aryl halides. J. Am. Chem. Soc., 1996, 118(15), 3626-3633.
[http://dx.doi.org/10.1021/ja954121o];
(c) Marcoux, J.F.; Wagaw, S.; Buchwald, S.L. Palladium-catalyzed amination of aryl bromides: use of phosphinoether ligands for the efficient coupling of acyclic secondary amines. J. Org. Chem., 1997, 62(6), 1568-1569.
[http://dx.doi.org/10.1021/jo9622946]
[http://dx.doi.org/10.1002/hlca.19710540762];
(b) Amatore, C.; Bahsoun, A.A.; Jutand, A.; Meyer, G.; Ndedi Ntepe, A.; Ricard, L. Mechanism of the Stille reaction catalyzed by palladium ligated to arsine ligand: PhPdI(AsPh3)(DMF) is the species reacting with vinylstannane in DMF. J. Am. Chem. Soc., 2003, 125(14), 4212-4222.
[http://dx.doi.org/10.1021/ja0204978] [PMID: 12670243]
[http://dx.doi.org/10.1002/1099-0682(200108)2001:8<1917:AID-EJIC1917>3.0.CO;2-M]
[http://dx.doi.org/10.1002/(SICI)1521-3765(19991001)5:10<3066:AID-CHEM3066>3.0.CO;2-F];
(b) Ohff, M.; Ohff, A.; Milstein, D. Highly active PdII cyclometallated imine catalysts for the Heck reaction. Chem. Commun. (Camb.), 1999, 4(4), 357-358.
[http://dx.doi.org/10.1039/a809883b];
(c) Gai, X.; Grigg, R.; Ramzan, M.I.; Sridharan, V.; Collard, S.; Muir, J.E. Pyrazole and benzothiazole palladacycles: stable and efficient catalysts for carbon–carbon bond formation. Chem. Commun. (Camb.), 2000, 20(20), 2053-2054.
[http://dx.doi.org/10.1039/b005452f];
(d) Bedford, R.B.; Cazin, C.S.J. Highly active catalysts for the Suzuki coupling of aryl chlorides. Chem. Commun. (Camb.), 2001, 17(17), 1540-1541.
[http://dx.doi.org/10.1039/b105394a] [PMID: 12240371];
(e) Alonso, D.A.; Nájera, C.; Pacheco, M.C. Oxime palladacycles: stable and efficient catalysts for carbon-carbon coupling reactions. Org. Lett., 2000, 2(13), 1823-1826.
[http://dx.doi.org/10.1021/ol0058644] [PMID: 10891167];
(f) Viciu, M.S.; Kelly, R.A., III; Stevens, E.D.; Naud, F.; Studer, M.; Nolan, S.P. Synthesis, characterization, and catalytic activity of N-heterocyclic carbene (NHC) palladacycle complexes. Org. Lett., 2003, 5(9), 1479-1482.
[http://dx.doi.org/10.1021/ol034264c] [PMID: 12713303];
(g) Solé, D.; Vallverdú, L.; Solans, X.; Font-Bardía, M.; Bonjoch, J. Intramolecular Pd-mediated processes of amino-tethered aryl halides and ketones: insight into the ketone α-arylation and carbonyl-addition dichotomy. A new class of four-membered azapalladacycles. J. Am. Chem. Soc., 2003, 125(6), 1587-1594.
[http://dx.doi.org/10.1021/ja029114w] [PMID: 12568619]
[http://dx.doi.org/10.1002/1521-3773(20010417)40:8<1439:AID-ANIE1439>3.0.CO;2-F]
[http://dx.doi.org/10.1002/1521-3765(20010601)7:11<2341:AID-CHEM23410>3.0.CO;2-S] [PMID: 11446637]
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<147:AID-ANIE147>3.0.CO;2-I]
[http://dx.doi.org/10.1016/0022-328X(92)80031-R]
[http://dx.doi.org/10.1016/S0040-4020(01)88762-7]
[http://dx.doi.org/10.1021/cr9411886] [PMID: 11851481]
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1698:AID-ANIE1698>3.0.CO;2-6] [PMID: 29711186]
[http://dx.doi.org/10.1021/ar000209h] [PMID: 11513570]
[http://dx.doi.org/10.1021/cr0104330] [PMID: 11996548]
[http://dx.doi.org/10.1021/ar960318p] [PMID: 12379135]
[http://dx.doi.org/10.1055/s-2003-37102]
[http://dx.doi.org/10.1021/jo961876k] [PMID: 11671356]
[http://dx.doi.org/10.3987/COM-98-S15]
[http://dx.doi.org/10.1055/s-2001-11424]
[http://dx.doi.org/10.1248/cpb.50.519] [PMID: 11964001]
[http://dx.doi.org/10.1021/ja029273f] [PMID: 12580585]
[http://dx.doi.org/10.1021/ja0289189] [PMID: 12580586]
[http://dx.doi.org/10.1021/ja035121o] [PMID: 13129347]
[http://dx.doi.org/10.1002/anie.200352461] [PMID: 14661210]
[http://dx.doi.org/10.1021/ja036157j] [PMID: 12940740]
[http://dx.doi.org/10.1021/ja049111e] [PMID: 15161275]
[http://dx.doi.org/10.1021/ja047980y] [PMID: 15198591]
[http://dx.doi.org/10.1002/1521-3773(20010401)40:7<1291:AID-ANIE1291>3.0.CO;2-9] [PMID: 11301455]
[http://dx.doi.org/10.1021/jo001416y] [PMID: 11429827]
[http://dx.doi.org/10.1021/ja971057x]
[http://dx.doi.org/10.1055/s-1997-722]
[http://dx.doi.org/10.1021/ol006520g] [PMID: 11082013]