Abstract
The current review focused on the various methods for synthesizing pyrido[2,3- d]pyrimidine derivatives and the reactions of pyrido[2,3-d]pyrimidine derivatives with important pharmaceutical and biological activities.
Graphical Abstract
[1]
Andrews, L.D.; Kane, T.R.; Dozzo, P.; Haglund, C.M.; Hilderbrandt, D.J.; Linsell, M.S.; Machajewski, T.; McEnroe, G.; Serio, A.W.; Wlasichuk, K.B.; Neau, D.B.; Pakhomova, S.; Waldrop, G.L.; Sharp, M.; Pogliano, J.; Cirz, R.T.; Cohen, F. Optimization and mechanistic characterization of pyridopyrimidine inhibitors of bacterial biotin carboxylase. J. Med. Chem., 2019, 62(16), 7489-7505.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00625] [PMID: 31306011]
[http://dx.doi.org/10.1021/acs.jmedchem.9b00625] [PMID: 31306011]
[2]
Mahmoud, N.F.H.; El-Sewedy, A. Facile synthesis of novel heterocyclic compounds based on pyridine moiety with pharmaceutical activities. J. Heterocycl. Chem., 2020, 57(4), 1559-1572.
[http://dx.doi.org/10.1002/jhet.3881]
[http://dx.doi.org/10.1002/jhet.3881]
[3]
Dasari, S.R.; Tondepu, S.; Vadali, L.R.; Seelam, N. PEG-400 mediated an efficient eco-friendly synthesis of new isoxazolyl pyrido[2,3- d]pyrimidines and their anti-inflammatory and analgesic activity. Synth. Commun., 2020, 50(19), 2950-2961.
[http://dx.doi.org/10.1080/00397911.2020.1787449]
[http://dx.doi.org/10.1080/00397911.2020.1787449]
[4]
Rani, N.V.; Kunta, R. PEG-400 promoted a simple, efficient and eco-friendly synthesis of functionalized novel isoxazolyl pyrido[2,3- d]pyrimidines and their antimicrobial and anti-inflammatory activity. Synth. Commun., 2021, 51, 1-13.
[http://dx.doi.org/10.1080/00397911.2021.1871759]
[http://dx.doi.org/10.1080/00397911.2021.1871759]
[5]
Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Larijani, B. New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: A simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. Eur. J. Med. Chem., 2018, 155, 353-363.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.046] [PMID: 29902721]
[http://dx.doi.org/10.1016/j.ejmech.2018.05.046] [PMID: 29902721]
[6]
Yousif, M.N.M.; El-Gazzar, A.R.B.A.; El-Enany, M.M. Synthesis and biological evaluation of pyrido(2,3-d)pyrimidines. Mini Rev. Org. Chem., 2021, 18(1), 43-54.
[http://dx.doi.org/10.2174/1570193X17999200511010402]
[http://dx.doi.org/10.2174/1570193X17999200511010402]
[7]
Rabie, S.T.; Abdel Monem, R.A. Effect of some biologically active pyridopyrimidine derivatives on photostability and bioactivity of rigid poly(vinyl chloride). J. Vinyl Additive Technol., 2018, 24(3), 208-216.
[http://dx.doi.org/10.1002/vnl.21547]
[http://dx.doi.org/10.1002/vnl.21547]
[8]
Campos, J.F.; Besson, T.; Berteina-Raboin, S. Review on the synthesis and therapeutic potential of pyrido[2,3-d], [3,2-d], [3,4-d] and [4,3-d]pyrimidine derivatives. Pharmaceuticals, 2022, 15(3), 352.
[http://dx.doi.org/10.3390/ph15030352] [PMID: 35337149]
[http://dx.doi.org/10.3390/ph15030352] [PMID: 35337149]
[9]
Mamaghani, M.; Hossein Nia, R. Recent developments in the MCRs synthesis of pyridopyrimidines and spiro-pyridopyrimidines. J. Heterocycl. Chem., 2017, 54(3), 1700-1722.
[http://dx.doi.org/10.1002/jhet.2783]
[http://dx.doi.org/10.1002/jhet.2783]
[10]
Panchabhai, V.B.; Ingole, P.G.; Butle, S.R. Design, synthesis and antibacterial studies of some new pyridopyrimidine derivatives as biotin carboxylase inhibitors. Bull. Fac. Pharm. Cairo Univ., 2020, 58, 40-52.
[http://dx.doi.org/10.21608/bfpc.2019.10149.1017]
[http://dx.doi.org/10.21608/bfpc.2019.10149.1017]
[11]
Dongre, R.S.; Meshram, J.S.; Selokar, R.S.; Almalki, F.A.; Hadda, T.B. Antibacterial activity of synthetic pyrido[2,3- d]pyrimidines armed with nitrile groups: POM analysis and identification of pharmacophore sites of nitriles as important pro-drugs. New J. Chem., 2018, 42(19), 15610-15617.
[http://dx.doi.org/10.1039/C8NJ02081G]
[http://dx.doi.org/10.1039/C8NJ02081G]
[12]
Fares, M.; Abd El Hadi, S.R.; Eladwy, R.A.; Shoun, A.A.; Abdel-Aziz, M.M.; Eldehna, W.M.; Abdel-Aziz, H.A.; Keller, P.A. An improved synthesis of pyrido[2,3- d]pyrimidin-4(1 H)-ones and their antimicrobial activity. Org. Biomol. Chem., 2018, 16(18), 3389-3395.
[http://dx.doi.org/10.1039/C8OB00627J] [PMID: 29671455]
[http://dx.doi.org/10.1039/C8OB00627J] [PMID: 29671455]
[13]
Aryan, R.; Beyzaei, H.; Nojavan, M.; Pirani, F.; Samareh Delarami, H.; Sanchooli, M. Expedient multicomponent synthesis of a small library of some novel highly substituted pyrido[2,3-d]pyrimidine derivatives mediated and promoted by deep eutectic solvent and in vitro and quantum mechanical study of their antibacterial and antifungal activities. Mol. Divers., 2019, 23(1), 93-105.
[http://dx.doi.org/10.1007/s11030-018-9859-7] [PMID: 30027387]
[http://dx.doi.org/10.1007/s11030-018-9859-7] [PMID: 30027387]
[14]
El Azab, I.H.; Bakr, R.B.; Elkanzi, N.A.A. Facile one-pot multicomponent synthesis of pyrazolo-thiazole substituted pyridines with potential anti-proliferative activity: Synthesis, in vitro and in silico studies. Molecules, 2021, 26(11), 3103.
[http://dx.doi.org/10.3390/molecules26113103] [PMID: 34067399]
[http://dx.doi.org/10.3390/molecules26113103] [PMID: 34067399]
[15]
Abdelaziz, O.A.; El Husseiny, W.M.; Selim, K.B.; Eisa, H.M. Dihydrofolate reductase inhibition effect of 5-substituted pyrido[2,3-d]pyrimidines: Synthesis, antitumor activity and molecular modeling study. Bioorg. Chem., 2019, 90, 103076.
[http://dx.doi.org/10.1016/j.bioorg.2019.103076] [PMID: 31260878]
[http://dx.doi.org/10.1016/j.bioorg.2019.103076] [PMID: 31260878]
[16]
Abbas, S.E.S.; George, R.F.; Samir, E.M.; Aref, M.M.A.; Abdel-Aziz, H.A. Synthesis and anticancer activity of some pyrido[2,3- d]pyrimidine derivatives as apoptosis inducers and cyclin-dependent kinase inhibitors. Future Med. Chem., 2019, 11(18), 2395-2414.
[http://dx.doi.org/10.4155/fmc-2019-0050] [PMID: 31544523]
[http://dx.doi.org/10.4155/fmc-2019-0050] [PMID: 31544523]
[17]
Chen, D.; Chen, Y.; Yang, D.; Zheng, Z.; Zhou, Z. Synthesis and antitumor activity of novel pyridino[2,3-d]pyrimidine urea derivatives. J. Heterocycl. Chem., 2021, 2021, 1-9.
[http://dx.doi.org/10.1002/jhet.4287]
[http://dx.doi.org/10.1002/jhet.4287]
[18]
Hayallah, A.M.; Abdel-Hamid, M.K. Design and synthesis of new pyrido[2,3-d] pyrimidine-1,4-dione derivatives as anti-inflammatory agents. Pharma Chem., 2014, 5, 45-57.
[19]
El-Sharkawy, K.A.; AlBratty, M.M.; Alhazmi, H.A. Synthesis of some novel pyrimidine, thiophene, coumarin, pyridine and pyrrole derivatives and their biological evaluation as analgesic, antipyretic and anti-inflammatory agents. Braz. J. Pharm. Sci., 2018, 54(4), e00153.
[http://dx.doi.org/10.1590/s2175-97902018000400153]
[http://dx.doi.org/10.1590/s2175-97902018000400153]
[20]
Lavanya, M.; Asharani, I.V.; Thirumalai, D. One pot multi-component synthesis of functionalized spiropyridine and pyrido[2,3- d]pyrimidine scaffolds and their potent in-vitro anti-inflammatory and anti-oxidant investigations. Chem. Biol. Drug Des., 2019, 93(4), 464-472.
[http://dx.doi.org/10.1111/cbdd.13434] [PMID: 30393996]
[http://dx.doi.org/10.1111/cbdd.13434] [PMID: 30393996]
[21]
Reyes-Díaz, I.; Gómez-Jeria, J.S. Quantum-chemical modeling of the Hepatitis C Virus replicon inhibitory potency and cytotoxicity of some pyrido[2,3-d]pyrimidine analogues. J. Comput. Methods Mol. Des., 2013, 3, 11-21.
[22]
Camarasa, M.; Puig de la Bellacasa, R.; González, À.L.; Ondoño, R.; Estrada, R.; Franco, S.; Badia, R.; Esté, J.; Martínez, M.Á.; Teixidó, J.; Clotet, B.; Borrell, J.I. Design, synthesis and biological evaluation of pyrido[2,3-d]pyrimidin-7-(8H)-ones as HCV inhibitors. Eur. J. Med. Chem., 2016, 115, 463-483.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.055] [PMID: 27054294]
[http://dx.doi.org/10.1016/j.ejmech.2016.03.055] [PMID: 27054294]
[23]
DeGoey, D.A.; Betebenner, D.A.; Grampovnik, D.J.; Liu, D.; Pratt, J.K.; Tufano, M.D.; He, W.; Krishnan, P.; Pilot-Matias, T.J.; Marsh, K.C.; Molla, A.; Kempf, D.J.; Maring, C.J. Discovery of pyrido[2,3-d]pyrimidine-based inhibitors of HCV NS5A. Bioorg. Med. Chem. Lett., 2013, 23(12), 3627-3630.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.009] [PMID: 23642966]
[http://dx.doi.org/10.1016/j.bmcl.2013.04.009] [PMID: 23642966]
[24]
Bennett, L.R.; Blankley, C.J.; Fleming, R.W.; Smith, R.D.; Tessman, D.K. Antihypertensive activity of 6-arylpyrido[2,3-d]pyrimidin-7-amine derivatives. J. Med. Chem., 1981, 24(4), 382-389.
[http://dx.doi.org/10.1021/jm00136a006] [PMID: 7265125]
[http://dx.doi.org/10.1021/jm00136a006] [PMID: 7265125]
[25]
Suhagia, B.N.; Chhabria, M.T.; Makwana, A.G. Design, synthesis and pharmacological screening of a series of N 1 -(substituted)aryl-5,7-dimethyl-2-(substituted)pyrido(2,3- d)pyrimidin-4(3H)-ones as potential histamine H 1 -receptor antagonists. J. Enzyme Inhib. Med. Chem., 2006, 21(6), 681-691.
[http://dx.doi.org/10.1080/14756360600851104] [PMID: 17252940]
[http://dx.doi.org/10.1080/14756360600851104] [PMID: 17252940]
[26]
Quintela, J.; Peinador, C.; Botana, L.; Estévez, M.; Riguera, R. Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines. Bioorg. Med. Chem., 1997, 5(8), 1543-1553.
[http://dx.doi.org/10.1016/S0968-0896(97)00108-9] [PMID: 9313860]
[http://dx.doi.org/10.1016/S0968-0896(97)00108-9] [PMID: 9313860]
[27]
Agarwal, A. Ramesh; Ashutosh; Goyal, N.; Chauhan, P.M.S.; Gupta, S. Dihydropyrido[2,3-d]pyrimidines as a new class of antileishmanial agents. Bioorg. Med. Chem., 2005, 13(24), 6678-6684.
[http://dx.doi.org/10.1016/j.bmc.2005.07.043] [PMID: 16126395]
[http://dx.doi.org/10.1016/j.bmc.2005.07.043] [PMID: 16126395]
[28]
Flefel, E.M.; Sayed, H.H.; Hashem, A.I.; Shalaby, E.A.; El-Sofany, W.; Abdel-Megeid, F.M.E. Pharmacological evaluation of some novel synthesized compounds derived from spiro(cyclohexane-1,2′-thiazolidines). Med. Chem. Res., 2014, 23(5), 2515-2527.
[http://dx.doi.org/10.1007/s00044-013-0830-y]
[http://dx.doi.org/10.1007/s00044-013-0830-y]
[29]
Mohire, P.P.; Chandam, D.R.; Patravale, A.A.; Choudhari, P.; Karande, V.; Ghosh, J.S.; Deshmukh, M.B. An expedient four component synthesis of substituted pyrido-pyrimidine heterocycles in glycerol:Proline based low transition temperature mixture and their antioxidant activity with molecular docking studies. Polycycl. Aromat. Compd., 2020, 42(1), 137-155.
[30]
Albratty, M.M. El-SHARKAWY, K.A.; AlHAZMI, H.A. Design, synthesis and biological evaluation of pyrimidine-based derivatives as antitumor agents. Rev. Roum. Chim., 2020, 65(3), 227-238.
[http://dx.doi.org/10.33224/rrch.2020.65.3.02]
[http://dx.doi.org/10.33224/rrch.2020.65.3.02]
[31]
Gangjee, A.; Namjoshi, O.A.; Raghavan, S.; Queener, S.F.; Kisliuk, R.L.; Cody, V. Design, synthesis, and molecular modeling of novel pyrido[2,3-d]pyrimidine analogues as antifolates; application of Buchwald-Hartwig aminations of heterocycles. J. Med. Chem., 2013, 56(11), 4422-4441.
[http://dx.doi.org/10.1021/jm400086g] [PMID: 23627352]
[http://dx.doi.org/10.1021/jm400086g] [PMID: 23627352]
[32]
Nixha, A.R.; Ergun, A.; Gencer, N.; Arslan, O.; Arslan, M. Development of carbazole-bearing pyridopyrimidine-substituted urea/thiourea as polyphenol oxidase inhibitors: Synthesis, biochemistry, and theoretical studies. Arch. Physiol. Biochem., 2018, 23, 1.
[PMID: 29569496]
[PMID: 29569496]
[33]
Shi, C.; Wang, Q.; Liao, X.; Ge, H.; Huo, G.; Zhang, L.; Chen, N.; Zhai, X.; Hong, Y.; Wang, L.; Wang, Z.; Shi, W.; Mao, Y.; Yu, J.; Ke, Y.; Xia, G. Discovery of a novel series of imidazo[1/,2′:1,6]pyrido[2,3-d]pyrimidin derivatives as potent cyclin-dependent kinase 4/6 inhibitors. Eur. J. Med. Chem., 2020, 193, 112239.
[34]
Chaudhari, P.K. Synthesis and biological studies of trihydro pyrido[2,3-d]pyrimidines 6 –carbonitrile. Int. J. Pharm. Life Sci., 2011, 1, 71-76.
[35]
Shanmugasundaram, P.; Harikrishnan, N.; Aanandini, M.; Aanandini, M.V.; Kumar, M.S.; Sateesh, J.N. Synthesis and biological evaluation of pyrido(2,3-d)pyrimidine-carboxylate derivatives. Indian J. Chem., 2011, 50B, 284-289.
[36]
Komkov, A.V.; Potapova, T.V.; Zuev, M.I.; Baranin, S.V.; Bubnov, Yu.N. Synthesis of new trichloromethyl- and alkoxy-substituted pyrido[2,3-d]pyrimidine derivatives. Russ. Chem. Bull., 2019, 68, 365.
[37]
Gineinah, M.M.; Nasr, M.N.A.; Badr, S.M.I.; El-Husseiny, W.M. Synthesis and antitumor activity of new pyrido[2,3-d]pyrimidine derivatives. Med. Chem. Res., 2013, 22(8), 3943-3952.
[http://dx.doi.org/10.1007/s00044-012-0396-0]
[http://dx.doi.org/10.1007/s00044-012-0396-0]
[38]
Sarg, M.T.M.; El-Shaer, S.S. Efficient utilization of 6-aminouracil to synthesize fused and related heterocyclic compounds and their evaluation as prostate cytotoxic agents with cathepsin B inhibition. J. Med. Chem., 2014, 4, 39-60.
[39]
Wu, Y.C.; Liu, L.; Li, H.J.; Wang, D.; Chen, Y.J. Skraup-Doebner-Von Miller quinoline synthesis revisited: reversal of the regiochemistry for γ-aryl-βγ-unsaturated α-ketoesters. J. Org. Chem., 2006, 71(17), 6592-6595.
[http://dx.doi.org/10.1021/jo060290n] [PMID: 16901148]
[http://dx.doi.org/10.1021/jo060290n] [PMID: 16901148]
[40]
Hassanien, A.A.; Ibrahim, E.I.; Afifia, M.E. Synthesis of some new pyridines, thienopyridines and pyrido[2,3:4′5′]thieno[3′2′-d]pyrimidin-8-ones from 2-acetylbenzo imidazole. Croat. Chem. Acta, 2005, 78, 63-70.
[41]
Hamama, W.S.; Ismail, M.A.; Al-Saman, H.A.; Zoorob, H.H. Convenient selective synthesis of substituted pyrido[2,3-d]pyrimidones and annulated derivatives. Z. Naturforsch. B. J. Chem. Sci., 2007, 62(1), 104-110.
[http://dx.doi.org/10.1515/znb-2007-0115]
[http://dx.doi.org/10.1515/znb-2007-0115]
[42]
Tu, S.; Zhang, J.; Jia, R.; Jiang, B.; Zhang, Y.; Jiang, H. An efficient route for the synthesis of a new class of pyrido[2,3-d]pyrimidine derivatives. Org. Biomol. Chem., 2007, 5(9), 1450-1453.
[http://dx.doi.org/10.1039/b617201f] [PMID: 17464415]
[http://dx.doi.org/10.1039/b617201f] [PMID: 17464415]
[43]
Farghaly, T.A.; Hassaneen, H.M.E. Synthesis of pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones as potential antimicrobial agents. Arch. Pharm. Res., 2013, 36(5), 564-572.
[http://dx.doi.org/10.1007/s12272-013-0045-2] [PMID: 23446650]
[http://dx.doi.org/10.1007/s12272-013-0045-2] [PMID: 23446650]
[44]
Elzahabi, H.S.A.; Nossier, E.S.; Khalifa, N.M.; Alasfoury, R.A.; El-Manawaty, M.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3- d]pyrimidine scaffold. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 546-557.
[http://dx.doi.org/10.1080/14756366.2018.1437729] [PMID: 29482389]
[http://dx.doi.org/10.1080/14756366.2018.1437729] [PMID: 29482389]
[45]
Fares, M.; Eladwy, R.A.; Nocentini, A.; El Hadi, S.R.A.; Ghabbour, H.A.; Abdel-Megeed, A.; Eldehna, W.M.; Abdel-Aziz, H.A.; Supuran, C.T. Synthesis of bulky-tailed sulfonamides incorporating pyrido[2,3- d][1,2,4]triazolo[4,3- a]pyrimidin-1(5H)-yl) moieties and evaluation of their carbonic anhydrases I, II, IV and IX inhibitory effects. Bioorg. Med. Chem., 2017, 25(7), 2210-2217.
[http://dx.doi.org/10.1016/j.bmc.2017.02.037] [PMID: 28256371]
[http://dx.doi.org/10.1016/j.bmc.2017.02.037] [PMID: 28256371]
[46]
Fares, M.; Abou-Seri, S.M.; Abdel-Aziz, H.A.; Abbas, S.E.S.; Youssef, M.M.; Eladwy, R.A. Synthesis and antitumor activity of pyrido [2,3-d]pyrimidine and pyrido[2,3-d] [1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest. Eur. J. Med. Chem., 2014, 83(18), 155-166.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.027] [PMID: 24956552]
[http://dx.doi.org/10.1016/j.ejmech.2014.06.027] [PMID: 24956552]
[47]
Abdelhameed, R.M.; Darwesh, O.M.; El-Shahat, M. Synthesis of arylidene hydrazinylpyrido[2,3-d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon, 2020, 6(9), e04956.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04956] [PMID: 32995633]
[http://dx.doi.org/10.1016/j.heliyon.2020.e04956] [PMID: 32995633]
[48]
Kuday, H.; Sonmez, F.; Bilen, C.; Yavuz, E.; Gençer, N.; Kucukislamoglu, M. Synthesis and in vitro inhibition effect of new pyrido[2,3-d]pyrimidine derivatives on erythrocyte carbonic anhydrase I and II. BioMed Res. Int., 2014, 2014, 594879.
[49]
Zaki, Y.H.; Gomha, S.M.; Mohamed, A.M.G. Utility of 2-thioxo-pyrido[2,3-d]pyrimidinone in synthesis of pyridopyrimido[2,1-b][1,3,5]-thiadiazinones and pyridopyrimido[2,1-b][1,3]thiazinones as antimicrobial agents. Chem. Cent. J., 2017, 11(1), 57.
[http://dx.doi.org/10.1186/s13065-017-0286-0] [PMID: 29086849]
[http://dx.doi.org/10.1186/s13065-017-0286-0] [PMID: 29086849]
[50]
Ghaedi, A.; Bardajee, G.R.; Mirshokrayi, A.; Mahdavi, M.; Akbarzadeh, T. Facile access to new pyrido[2,3-d]pyrimidine derivatives. Mol. Divers., 2019, 23(2), 333-340.
[http://dx.doi.org/10.1007/s11030-018-9852-1] [PMID: 30238394]
[http://dx.doi.org/10.1007/s11030-018-9852-1] [PMID: 30238394]
[51]
Kumaran, K.; Jaisankar, K.; Baskaran, S.R.M.; Jegatheesan, A. Efficient synthesis, spectral characterization of novel Di substituted 1- ethyl – 7 –methylpyrido[2, 3-d]pyrimidine-2, 4, 5 (1H, 3H, 8H) – trione derivatives and anti-microbial studies. Int. J. Chemtech Res., 2012, 4(3), 1187-1192.
[52]
Abdelrazek, F.M.; Gomha, S.M.; Abdel-aziz, H.M.; Farghaly, M.S.; Metz, P.; Abdel-Shafy, A. Efficient synthesis and in silico study of some novel pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine derivatives. J. Heterocycl. Chem., 2020, 57(4), 1759-1769.
[http://dx.doi.org/10.1002/jhet.3901]
[http://dx.doi.org/10.1002/jhet.3901]
[53]
Rashidi, A.; Baradarani, M.M.; Joule, J.A. The synthesis of 6-substituted Pyrido[2,3- d]pyrimidine-2,4(1 H, 3 H)-diones using aminomethylene malondialdehydes and 6-aminouracils. J. Heterocycl. Chem., 2014, 51(4), 1068-1072.
[http://dx.doi.org/10.1002/jhet.2102]
[http://dx.doi.org/10.1002/jhet.2102]
[54]
El-Gazzar, A.R.B.A.; Hafez, H.N. Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2009, 19(13), 3392-3397.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.044] [PMID: 19481936]
[http://dx.doi.org/10.1016/j.bmcl.2009.05.044] [PMID: 19481936]
[55]
Maddila, S.; Gorle, S.; Seshadri, N.; Lavanya, P.; Jonnalagadda, S.B. Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arab. J. Chem., 2016, 9(5), 681-687.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.003]
[http://dx.doi.org/10.1016/j.arabjc.2013.04.003]
[56]
Mahmoud, M.R.; Madkour, H.M.F.; Habashy, M.M.; El-Shwaf, A.M. Heteroannulation of pyrido[2,3-d]Pyrimidines. Synthesis and spectral characterization of pyridotriazolo pyrimidines, pyridopyrimidotriazine and pyridopyrimidotriazepine derivatives. J. Org. Chem., 2012, 2(1), 39-47.
[http://dx.doi.org/10.5923/j.ajoc.20120201.08]
[http://dx.doi.org/10.5923/j.ajoc.20120201.08]
[57]
Abdel-Aziem, A.; El-Gendy, M.S.; Abdelhamid, A.O. Synthesis and antimicrobial activities of pyrido[2,3-d]pyrimidine, pyridotriazolopyrimidine, triazolopyrimidine, and pyrido[2,3-d:6,5d’]dipyrimidine derivatives. Eur. J. Chem., 2012, 3(4), 455-460.
[http://dx.doi.org/10.5155/eurjchem.3.4.455-460.683]
[http://dx.doi.org/10.5155/eurjchem.3.4.455-460.683]
[58]
Mahmoud, M.R.; Shalaby, A.A.; Gad, T.A.; El-Khamry, A.A. A facile synthesis and heteroannulation of pyrido[2,3- d]pyrimidine and related heterocyclic systems. J. Chem. Res., 2009, 2009(10), 612-615.
[http://dx.doi.org/10.3184/030823409X12523324765777]
[http://dx.doi.org/10.3184/030823409X12523324765777]
[59]
El Sayed, M.T.; Hussein, H.A.R.; Elebiary, N.M.; Hassan, G.S.; Elmessery, S.M.; Elsheakh, A.R.; Nayel, M.; Abdel-Aziz, H.A. Tyrosine kinase inhibition effects of novel Pyrazolo[1,5-a]pyrimidines and Pyrido[2,3-d]pyrimidines ligand: Synthesis, biological screening and molecular modeling studies. Bioorg. Chem., 2018, 78, 312-323.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.009] [PMID: 29625271]
[http://dx.doi.org/10.1016/j.bioorg.2018.03.009] [PMID: 29625271]
[60]
Abdel-Aziz, H.A.; Hamdy, N.A.; Fakhr, I.M.I.; Farag, A.M. Synthesis of some novel pyrazolo[1,5- a]pyrimidine, 1,2,4-triazolo[1,5- a]pyrimidine, pyrido[2,3- d]pyrimidine, pyrazolo[5,1- c]-1,2,4-triazine and 1,2,4-triazolo[5,1- c]-1,2,4-triazine derivatives incorporating a thiazolo[3,2- a]benzimidazole moiety. J. Heterocycl. Chem., 2008, 45(4), 1033-1037.
[http://dx.doi.org/10.1002/jhet.5570450413]
[http://dx.doi.org/10.1002/jhet.5570450413]
[61]
Mohamed, N.R.; El-Saidi, M.M.T.; Ali, Y.M.; Elnagdi, M.H. Utility of 6-amino-2-thiouracil as a precursor for the synthesis of bioactive pyrimidine derivatives. Bioorg. Med. Chem., 2007, 15(18), 6227-6235.
[http://dx.doi.org/10.1016/j.bmc.2007.06.023] [PMID: 17600721]
[http://dx.doi.org/10.1016/j.bmc.2007.06.023] [PMID: 17600721]
[62]
Bischoff, K.; Girreser, U.; Heber, D.; Schütt, M. Two-step synthetic approach to 6-Substituted Pyrido[2,3-d]pyrimidine(1H,3H)-2,4-diones from 6-Amino-, 6-Alkylamino-, and 6-Arylamino-1,3-dimethyluracils. Z. Naturforsch. B. J. Chem. Sci., 2006, 61(4), 486-494.
[http://dx.doi.org/10.1515/znb-2006-0415]
[http://dx.doi.org/10.1515/znb-2006-0415]
[63]
Ayed, M.A.H.; Gmiza, T.; Khiari, J.E.; Ben Hassine, B. Efficient one-pot synthesis of substituted pyrido[2,3-d]pyrimidines from vinamidinium and chloropropeniminium salts. Synth. Commun., 2012, 42(12), 1824-1831.
[http://dx.doi.org/10.1080/00397911.2010.545163]
[http://dx.doi.org/10.1080/00397911.2010.545163]
[64]
Edupuganti, R.; Wang, Q.; Tavares, C.D.J.; Chitjian, C.A.; Bachman, J.L.; Ren, P.; Anslyn, E.V.; Dalby, K.N. Synthesis and biological evaluation of pyrido[2,3-d]pyrimidine-2,4-dione derivatives as eEF-2K inhibitors. Bioorg. Med. Chem., 2014, 22(17), 4910-4916.
[http://dx.doi.org/10.1016/j.bmc.2014.06.050] [PMID: 25047940]
[http://dx.doi.org/10.1016/j.bmc.2014.06.050] [PMID: 25047940]
[65]
a) Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G];
b) Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S.; Varma, R.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409];
c) Laird, T. Green chemistry is good process chemistry. Org. Process Res. Dev., 2012, 16(1), 1-2.
[http://dx.doi.org/10.1021/op200366y];
d) Dunn, P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev., 2012, 41(4), 1452-1461.
[http://dx.doi.org/10.1039/C1CS15041C] [PMID: 21562677]
[http://dx.doi.org/10.1039/C4GC00013G];
b) Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S.; Varma, R.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409];
c) Laird, T. Green chemistry is good process chemistry. Org. Process Res. Dev., 2012, 16(1), 1-2.
[http://dx.doi.org/10.1021/op200366y];
d) Dunn, P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev., 2012, 41(4), 1452-1461.
[http://dx.doi.org/10.1039/C1CS15041C] [PMID: 21562677]
[66]
Rabie, S.T.; Abdel-Monem, R.A.; Mohamed, N.R.; Hashem, A.I.; Nada, A.A. Utility of 6-Amino-2-thiouracils as a Core of Biologically Potent Polynitrogen-Sulfur Fused Heterocycles. J. Heterocycl. Chem., 2014, 51(S1), E189-E196.
[http://dx.doi.org/10.1002/jhet.1936]
[http://dx.doi.org/10.1002/jhet.1936]
[67]
Bakherad, M.; Bagherian, G.; Rezaeifard, A.; Mosayebi, F.; Shokoohi, B.; Keivanloo, A. Synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines in the magnetized deionized water based on UV–visible study. J. Indian Chem. Soc., 2021, 18(4), 839-852.
[http://dx.doi.org/10.1007/s13738-020-02073-z]
[http://dx.doi.org/10.1007/s13738-020-02073-z]
[68]
Rad, A.M.; Mokhtary, M. Efficient one-pot synthesis of pyrido[2,3-d]pyrimidines catalyzed by nanocrystalline MgO in water. Int. Nano Lett., 2015, 5(2), 109-123.
[http://dx.doi.org/10.1007/s40089-015-0145-8]
[http://dx.doi.org/10.1007/s40089-015-0145-8]
[69]
Farahmand, T.; Hashemian, S.; Sheibani, A. Efficient one-pot synthesis of pyrano[2,3-d]pyrimidinone and pyrido [2,3-d] pyrimidine derivatives by using of Mn-ZIF-8@ZnTiO3 nanocatalyst. J. Mol. Struct., 2020, 1206, 127667.
[http://dx.doi.org/10.1016/j.molstruc.2019.127667]
[http://dx.doi.org/10.1016/j.molstruc.2019.127667]
[70]
Dastmard, S.; Mamaghani, M.; Farahnak, L.; Rassa, M. Facile synthesis of polyfunctional indole-pyrido[2,3-d]Pyrimidine hybrids using nickel-incorporated fluorapatite encapsulated iron oxide nanocatalyst and study of their antibacterial activities. Polycycl. Aromat. Compd., 2020, 42(4), 1-14.
[71]
Wang, Y.; Zhou, L.; Zhu, Y.; Zhang, M.; Song, L.; Deng, H. Unexpected straightforward formation of trifluoromethylated pyrido[2,3- d]pyrimidine derivatives via one-pot, MCRs. J. Fluor. Chem., 2017, 200, 162-168.
[http://dx.doi.org/10.1016/j.jfluchem.2017.06.016]
[http://dx.doi.org/10.1016/j.jfluchem.2017.06.016]
[72]
Ambati, S.R.; Patel, J.L.; Gudala, S.; Chandrakar, K.; Penta, S.; Mahapatra, S.P.; Banerjee, S. Synthesis of novel coumarinyl-pyrido[2,3- d]pyrimidine-2,4-diones using task-specific magnetic ionic liquid, [AcMIm]FeCl 4 as catalyst. Synth. Commun., 2020, 50(1), 104-111.
[http://dx.doi.org/10.1080/00397911.2019.1686526]
[http://dx.doi.org/10.1080/00397911.2019.1686526]
[73]
Jahanshahi, P.; Mamaghani, M.; Haghbin, F.; Nia, R.H.; Rassa, M. One-pot chemoselective synthesis of novel pyrrole-substituted pyrido [2,3- d]pyrimidines using [γ-Fe 2 O 3 @HAp-SO 3 H] as an efficient nanocatalyst. J. Mol. Struct., 2018, 1155, 520-529.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.034]
[http://dx.doi.org/10.1016/j.molstruc.2017.11.034]
[74]
Kumari, P.; Yadav, R.; Bharti, R.; Parvin, T. Regioselective synthesis of pyrimidine-fused tetrahydropyridines and pyridines by microwave-assisted one-pot reaction. Mol. Divers., 2020, 24(1), 107-117.
[http://dx.doi.org/10.1007/s11030-019-09929-4] [PMID: 30843127]
[http://dx.doi.org/10.1007/s11030-019-09929-4] [PMID: 30843127]
[75]
Enriz, R.D.; Tosso, R.D.; Andújar, S.A.; Cabedo, N.; Cortés, D.; Nogueras, M.; Cobo, J.; Vargas, D.F.; Trilleras, J. Indole-substituted 2,4-diamino-5,8-dihydropyrido[2,3-d]pyrimidines from one-pot process and evaluation of their ability to bind dopamine receptors. Tetrahedron, 2018, 74(49), 7047-7057.
[http://dx.doi.org/10.1016/j.tet.2018.10.038]
[http://dx.doi.org/10.1016/j.tet.2018.10.038]
[76]
Saraev, V.E.; Zviagin, I.M.; Melik-Oganjanyan, R.G.; Sen’ko, Y.V.; Desenko, S.M.; Chebanov, V.A. Green microwave-assisted multicomponent route to the formation of 5,8-Dihydropyrido[2,3- d]pyrimidine skeleton in aqueous media. J. Heterocycl. Chem., 2017, 54(1), 318-324.
[http://dx.doi.org/10.1002/jhet.2586]
[http://dx.doi.org/10.1002/jhet.2586]
[77]
Camarasa, M.; Barnils, C.; Puig de la, B.R.; Teixidó, J.; Borrell, J.I. A new and practical method for the synthesis of 6-aryl-5,6-dihydropyrido[2,3-d
]pyrimidine-4,7(3H
,8H
)-diones Mol. Divers., 2013, 17(3), 525-536.
[http://dx.doi.org/10.1007/s11030-013-9450-1] [PMID: 23709350]
[http://dx.doi.org/10.1007/s11030-013-9450-1] [PMID: 23709350]
[78]
Barghi-Lish, A.; Farzaneh, S.; Mamaghani, M. One-pot, three-component, catalyst-free synthesis of novel derivatives of pyrido-[2,3- d]pyrimidines under ultrasonic irradiations. Synth. Commun., 2016, 46(14), 1209-1214.
[http://dx.doi.org/10.1080/00397911.2016.1193756]
[http://dx.doi.org/10.1080/00397911.2016.1193756]
[79]
Tu, S.; Cao, L.; Zhang, Y.; Shao, Q.; Zhou, D.; Li, C. An efficient synthesis of pyrido[2,3-d]pyrimidine derivatives and related compounds under ultrasound irradiation without catalyst. Ultrason. Sonochem., 2008, 15(3), 217-221.
[http://dx.doi.org/10.1016/j.ultsonch.2007.03.002] [PMID: 17466564]
[http://dx.doi.org/10.1016/j.ultsonch.2007.03.002] [PMID: 17466564]
[80]
Biggs, J.; Sykes, P. 367. Two isomeric homologues of thiamine. J. Chem. Soc., 1959, 1849-1855.
[http://dx.doi.org/10.1039/jr9590001849]
[http://dx.doi.org/10.1039/jr9590001849]
[81]
Baker, B.R.; Almaula, P.I. Analogs of tetrahydrofolic acid. XIX. On the mode of binding of the pyrimidyl moiety of N-(2-Amino-4-hydroxy-6- methyl-5-pyrimidy1 propiony1 1-p-aminobenzoy1-L-g1utamic Acid to 5,l0- Methylenetetrahydrofolate Dehydrogenase (1,2). J. Heterocyclic Chem., 1964, 263-270.
[82]
Hullar, T.L.; French, W.C. Pyridoxal phosphate. III. Pyrimidine analogs. 3-(Substituted 5-pyrimidyl)propionic acids as potential inhibitory analogs of pyridoxal phosphate. J. Med. Chem., 1969, 12(3), 424-426.
[http://dx.doi.org/10.1021/jm00303a019] [PMID: 5788158]
[http://dx.doi.org/10.1021/jm00303a019] [PMID: 5788158]
[83]
El-Sayed, H.A.; Morsy, H.A. A facile synthesis of highly fluorescent pyrido[2,3-d]pyrimidines and 1,8-naphthyridines via oxazine transformation and enaminic addition reactions. J. Indian Chem. Soc., 2019, 16(4), 723-732.
[http://dx.doi.org/10.1007/s13738-018-1548-z]
[http://dx.doi.org/10.1007/s13738-018-1548-z]
[84]
Saglam, D.; Turgut, Z. One-pot synthesis of pyrido[2,3-<i>d</i>]pyrimidines catalyzed by bismuth(III). Triflate. Int. J. Org. Chem., 2022, 12(1), 11-27.
[http://dx.doi.org/10.4236/ijoc.2022.121002]
[http://dx.doi.org/10.4236/ijoc.2022.121002]
[85]
Elsaedany, S.K. AbdEllatif Zein, M.; AbedelRehim, E.M.; Keshk, R.M. Synthesis, anti-microbial, and cytotoxic activities evaluation of some new Pyrido [2,3- d ]. Pyrimidines. J. Heterocycl. Chem., 2016, 53(5), 1534-1543.
[http://dx.doi.org/10.1002/jhet.2460]
[http://dx.doi.org/10.1002/jhet.2460]
[86]
Elsaedany, S.K. AbdEllatif zein, M.; AbdElRehim, E.M.; Keshk, R.M. Synthesis and biological activity studies of novel pyrido[2,3-d]pyrimidines and Pyrido[2,3-d]triazines. Russ. J. Bioorganic Chem., 2021, 47(2), 552-560.
[http://dx.doi.org/10.1134/S1068162021020114]
[http://dx.doi.org/10.1134/S1068162021020114]
[87]
Veeraswamy, B.; Madhu, D.; Jitender, D.G.; Poornachandra, Y.; Shravan, K.G.; Ganesh, K.C.; Narsaiah, B. Studies on synthesis of novel pyrido[2,3-d]pyrimidine derivatives, evaluation of their antimicrobial activity and molecular docking. Bioorg. Med. Chem. Lett., 2018, 28(9), 1670-1675.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.022] [PMID: 29602683]
[http://dx.doi.org/10.1016/j.bmcl.2018.03.022] [PMID: 29602683]
[88]
Banda, V.; Gaddameedi, J.D.; Gautham, S.K.; Pillalamarri, S.R.; Chavva, K.; Rajesh, P.; Janapala, V.R.; Banda, N. Studies on synthesis of novel pyrido[2,3- d] pyrimidine derivatives and their anticancer activity. J. Heterocycl. Chem., 2018, 55(11), 2538-2544.
[http://dx.doi.org/10.1002/jhet.3307]
[http://dx.doi.org/10.1002/jhet.3307]
[89]
Kumar, M.S.; Aanandhi, M.V. Design, molecular docking, synthesis, and biological evaluation of pyrido pyrimidine and pyrazolo pyrimidines for cytotoxic activity. Drug Discov. Today, 2020, 14, 95-102.
[90]
Ibrahim, H.M.; Behbehani, H.; Elnagdi, M.H. Approaches towards the synthesis of a novel class of 2-amino-5-arylazonicotinate, pyridazinone and pyrido[2,3-d]pyrimidine derivatives as potent antimicrobial agents. Chem. Cent. J., 2013, 7(1), 123-139.
[http://dx.doi.org/10.1186/1752-153X-7-123] [PMID: 23867062]
[http://dx.doi.org/10.1186/1752-153X-7-123] [PMID: 23867062]
[91]
Krapf, M.K.; Gallus, J.; Vahdati, S.; Wiese, M. New inhibitors of breast cancer resistance protein (ABCG2) containing a 2,4-disubstituted pyridopyrimidine scaffold. J. Med. Chem., 2018, 61(8), 3389-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01012] [PMID: 29547272]
[http://dx.doi.org/10.1021/acs.jmedchem.7b01012] [PMID: 29547272]
[92]
Naresh Kumar, R.; Jitender Dev, G.; Ravikumar, N.; Krishna Swaroop, D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Nishant Jain, S.; Gangagni, R.A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3- d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2927-2930.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.038] [PMID: 27130357]
[http://dx.doi.org/10.1016/j.bmcl.2016.04.038] [PMID: 27130357]
[93]
Sun, Y.Q.; Zong, C.Y.; Ji, J.Y.; Han, Q. Efficient and library-friendly synthesis of 4-N-substituted 6-bromopyrido[2,3-d]pyrimidines under microwave irradiation. Chem. Pap., 2018, 72(12), 2965-2972.
[http://dx.doi.org/10.1007/s11696-018-0498-3]
[http://dx.doi.org/10.1007/s11696-018-0498-3]
[94]
Hou, J.; Wan, S.; Wang, G.; Zhang, T.; Li, Z.; Tian, Y.; Yu, Y.; Wu, X.; Zhang, J. Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido[2,3-d]pyrimidine derivatives targeting epidermal growth factor receptor. Eur. J. Med. Chem., 2016, 118, 276-289.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.026] [PMID: 27132165]
[http://dx.doi.org/10.1016/j.ejmech.2016.04.026] [PMID: 27132165]
[95]
Gong, H.; Qi, H.; Sun, W.; Zhang, Y.; Jiang, D.; Xiao, J.; Yang, X.; Wang, Y.; Li, S. Design and synthesis of a series of pyrido[2,3-d]pyrimidine derivatives as CCR4 antagonists. Molecules, 2012, 17(8), 9961-9970.
[http://dx.doi.org/10.3390/molecules17089961] [PMID: 22907157]
[http://dx.doi.org/10.3390/molecules17089961] [PMID: 22907157]
[96]
Chandrasekaran, B.; Deb, P.K.; Kachler, S.; Akkinepalli, R.R.; Mailavaram, R.; Klotz, K.N. Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido[2,3-d]pyrimidines and quinazolines. Med. Chem. Res., 2018, 27(3), 756-767.
[http://dx.doi.org/10.1007/s00044-017-2099-z]
[http://dx.doi.org/10.1007/s00044-017-2099-z]
[97]
Hanafy, F.I. Synthesis and antifungal activity of some new pyrido[2,3-d]pyrimidines. Eur. J. Chem., 2011, 2(1), 65-69.
[http://dx.doi.org/10.5155/eurjchem.2.1.65-69.303]
[http://dx.doi.org/10.5155/eurjchem.2.1.65-69.303]
[98]
Galve, I.; Puig de la Bellacasa, R.; Sánchez-García, D.; Batllori, X.; Teixidó, J.; Borrell, J.I. Synthesis of 2-arylamino substituted 5,6-dihydropyrido[2,3-d]pyrimidine-7(8H)-ones from arylguanidines. Mol. Divers., 2012, 16(4), 639-649.
[http://dx.doi.org/10.1007/s11030-012-9398-6] [PMID: 23054532]
[http://dx.doi.org/10.1007/s11030-012-9398-6] [PMID: 23054532]
[99]
Debenham, J.S.; Madsen-Duggan, C.B.; Wang, J.; Tong, X.; Lao, J.; Fong, T.M.; Schaeffer, M.T.; Xiao, J.C.; Huang, C.C.R.R.; Shen, C.P.; Sloan Stribling, D.; Shearman, L.P.; Strack, A.M.; Euan MacIntyre, D.; Hale, J.J.; Walsh, T.F. Pyridopyrimidine based cannabinoid-1 receptor inverse agonists: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2009, 19(9), 2591-2594.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.005] [PMID: 19328684]
[http://dx.doi.org/10.1016/j.bmcl.2009.03.005] [PMID: 19328684]
[100]
Ryabova, O.B.; Makarov, V.A.; Alekseeva, L.M.; Shashkov, A.S.; Chernyshev, V.V.; Granik, V.G. Transformations of ortho-methoxyaryl(hetaryl)carboxamides into quinazolin-4-one and pyrido[2,3-d]pyrimidin-4-one derivatives. Russ. Chem. Bull., 2005, 54(8), 1907-1914.
[http://dx.doi.org/10.1007/s11172-006-0057-x]
[http://dx.doi.org/10.1007/s11172-006-0057-x]
[101]
Afrough, T.; Bakavoli, M.; Eshghi, H. A new multicomponent synthetic route to hexahydropyrido[2,3- d]pyrimidine derivatives. J. Heterocycl. Chem., 2019, 56(2), 636-641.
[http://dx.doi.org/10.1002/jhet.3441]
[http://dx.doi.org/10.1002/jhet.3441]
[102]
Hussein, B.R.M.; Moustafa, A.H. A regioselective and convenient one-pot multicomponent synthesis of polyfunctionalized 4-aryl-2-cyanoimino-3,4-dihydro-1 H -pyrido[2,3- d]pyrimidines. Synth. Commun., 2019, 49(18), 2401-2410.
[http://dx.doi.org/10.1080/00397911.2019.1626892]
[http://dx.doi.org/10.1080/00397911.2019.1626892]
[103]
Galve, I.; Ondoño, R.; de Rocafiguera, C. Puig de la, B.R.; Batllori, X.; Puigjaner, C.; Font-Bardia, M.; Vallcorba, O.; Teixidó, J.; Borrell, J.I. A captured room temperature stable Wheland intermediate as a key structure for the orthogonal decoration of 4-amino-pyrido[2,3- d]pyrimidin-7(8 H)-ones. Org. Biomol. Chem., 2020, 18(48), 9810-9815.
[http://dx.doi.org/10.1039/D0OB01785J] [PMID: 33000855]
[http://dx.doi.org/10.1039/D0OB01785J] [PMID: 33000855]
[104]
Bhargava, S.; Rajwanshi, L.K. Synthesis and antimicrobial evaluation of some novel pyrido[2,3- d] pyrimidine derivatives and their ribofuranosides. J. Heterocycl. Chem., 2018, 55(8), 1874-1879.
[http://dx.doi.org/10.1002/jhet.3203]
[http://dx.doi.org/10.1002/jhet.3203]
[105]
El-Shahat, M.; Elhefny, E.A.; El-Sayed, A.A.; Salama, M.A.M. A novel fused pyridopyrimidine derivatives: Synthesis and characterization. Int. J. Pharm., 2015, 5(1), 53-58.
[PMID: 25448567]
[PMID: 25448567]
[106]
Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside syntheses, XXII 1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber., 1981, 114(4), 1234-1255.
[http://dx.doi.org/10.1002/cber.19811140404]
[http://dx.doi.org/10.1002/cber.19811140404]
[107]
Mohamed, M.A.M.; Abdel-Hafez, S.H.; Gobouri, A.A. Nucleosides 11: Synthesis of new derivatives of pyrido[2,3-d]pyrimidines and their nucleosides. Nucleosides Nucleotides Nucleic Acids, 2021, 40(2), 222-232.
[PMID: 33380257]
[PMID: 33380257]
[108]
Majumdar, P.; Pattnaikc, S.; Dasha, D.; Parimita, P.M.; Behera, A.K. Installation of biologically active pyrimidine moiety into pyridopyrimidine framework and evaluation of their antibacterial activities. Indian J. Chem., 2017, 56B, 120-126.
[109]
Van Tinh, D.; Stadlbauer, W. Ring closure reactions of pyrido[2,3- d]pyrimidines to pyrano[2′,3′:4,5]- and oxazolo[5′,4′:4,5]pyrido[2,3- d]pyrimidines. J. Heterocycl. Chem., 2008, 45(5), 1359-1364.
[http://dx.doi.org/10.1002/jhet.5570450517]
[http://dx.doi.org/10.1002/jhet.5570450517]
[110]
Van Tinh, D.; Stadlbauer, W. Synthesis of 5-mono- and 5,7-diamino-pyrido[2,3- d]-pyrimidinediones with potential biological activity by regioselective amination. J. Heterocycl. Chem., 2008, 45(3), 821-829. [1
[http://dx.doi.org/10.1002/jhet.5570450329]
[http://dx.doi.org/10.1002/jhet.5570450329]
[111]
Tande, H.T.; Pate, S.K. Efficient procedure with new fused pyrido[2,3-d]pyrimidine derivatives as potent antimicrobial agents. Indian J. Chem., 2020, 59B, 502-508.
[112]
Abdallah, M.A.; Gomha, S.M.; Morad, M.A.; Elaasser, M.M. Synthesis of pyridotriazolopyrimidines as antitumor agents. J. Heterocycl. Chem., 2017, 54(2), 1242-1251.
[http://dx.doi.org/10.1002/jhet.2699]
[http://dx.doi.org/10.1002/jhet.2699]
[113]
Chris Krueger, A.; Madigan, D.L.; Beno, D.W.; Betebenner, D.A.; Carrick, R.; Green, B.E.; He, W.; Liu, D.; Maring, C.J.; McDaniel, K.F.; Mo, H.; Molla, A.; Motter, C.E.; Pilot-Matias, T.J.; Tufano, M.D.; Kempf, D.J. Novel Hepatitis C virus replicon inhibitors: Synthesis and structure–activity relationships of fused pyrimidine derivatives. Bioorg. Med. Chem. Lett., 2012, 22(6), 2212-2215.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.096] [PMID: 22342631]
[http://dx.doi.org/10.1016/j.bmcl.2012.01.096] [PMID: 22342631]
[114]
Farghaly, T.A.; Abbas, I.M.; Abdalla, M.M.; Mahgoub, R.O.A. Synthesis of new pentaheterocyclic ring system as antiandrogene, anti HCV and anti H1N1 agents. ARKIVOC, 2012, 2012(6), 57-70.
[http://dx.doi.org/10.3998/ark.5550190.0013.606]
[http://dx.doi.org/10.3998/ark.5550190.0013.606]
[115]
Abu-Zied, K.M.; El-Gazzar, A.B.A.; Hassan, N.A. Synthesis and reactions of some novel triazolo-, Azolo-, tetrazolo-pyridopyrimidine and their nucleoside derivatives. J. Chin. Chem. Soc., 2008, 55(1), 209-216.
[http://dx.doi.org/10.1002/jccs.200800031]
[http://dx.doi.org/10.1002/jccs.200800031]
[116]
Abu-Zied, K.M.; Mohamed, T.K.; Al-Duiaj, O.K.; Zaki, M.E.A. A simple approach to fused pyrido[2,3- d]pyrimidines incorporating khellinone and trimethoxyphenyl moieties as new scaffolds for antibacterial and antifungal agents. Heterocycl. Commun., 2014, 20(2), 93-102.
[http://dx.doi.org/10.1515/hc-2013-0199]
[http://dx.doi.org/10.1515/hc-2013-0199]
[117]
Hegab, M.I.; Hassan, N.A.; Abdel-Megeid, F.M.E. Three-component reaction of cycloheptanone, 6-Amino-1,3-Dimethyluracil and aromatic aldehydes; X-Ray structure, and anti-inflammatory evaluation of the products. Z. Naturforsch. B. J. Chem. Sci., 2008, 63(9), 1117-1126.
[http://dx.doi.org/10.1515/znb-2008-0917]
[http://dx.doi.org/10.1515/znb-2008-0917]
[118]
Hassan, N.A.; Hegab, M.I.; Abdel-Motti, F.M.; Hebah, S.H.A.; Abdel-Megeid, F.M.E.; Hashem, A.I. Three-component, one-pot synthesis of pyrimido[4,5- b]-quinoline and pyrido[2,3- d]pyrimidine derivatives. J. Heterocycl. Chem., 2007, 44(4), 775-782.
[http://dx.doi.org/10.1002/jhet.5570440404]
[http://dx.doi.org/10.1002/jhet.5570440404]