Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Systematic Review Article

Antimicrobial Efficacy of Various Nanoparticles on Addition to Orthodontic Materials- A Systematic Review and Meta-Analysis

Author(s): Crystal Runa Soans, Deesha Kumari*, Shalin Shersha, Rahila Mansoor and M.S. Ravi

Volume 13, Issue 3, 2023

Published on: 22 May, 2023

Article ID: e110423215653 Pages: 12

DOI: 10.2174/2210681213666230411102645

Price: $65

Abstract

Aim: The purpose of this study is to examine the evidence for the efficiency of nanoparticles (NPs) incorporated into orthodontic materials (brackets, bonding agents, wires, acrylic resin, and elastics) in order to enhance their antimicrobial properties.

Materials and Methods: A comprehensive search strategy was conducted in electronic databases like PubMed, Cochrane, and Google scholar, books, grey literature like unpublished literature, dissertations, conference reports, etc. Finally, out of all the literature reviewed, a total of 30 articles met the inclusion criteria and were included in the qualitative analysis. For the quantitative analysis, a total of 6 articles were used.

Results: Antimicrobial agents such as silver nanoparticles, Titanium dioxide, Silver platinum alloy, zinc oxide and copper oxide, quaternary ammonium dimethacrylate (QADM), Hydroxyapatite crystals, and silver, quaternary ammonium polyethyleneimine (QPEI) particles, silica, and titanium have been incorporated in various orthodontic materials. The incorporation of these nanoparticles into orthodontic materials led to a significant increase in the antibacterial capacity when compared to controls used in the various studies.

Conclusion: It can be concluded that the incorporation of nanoparticles into orthodontic materials improves their antibacterial properties. Due to the heterogeneity observed across the studies reviewed, further research with standardized study protocols in terms of the size, concentration, and techniques of incorporation of different NPs into various orthodontic materials is pertinent.

Graphical Abstract

[1]
Gorelick, L.; Geiger, A.M.; Gwinnett, A.J. Incidence of white spot formation after bonding and banding. Am. J. Orthod., 1982, 81(2), 93-98.
[http://dx.doi.org/10.1016/0002-9416(82)90032-X] [PMID: 6758594]
[2]
Rosenbloom, R.G.; Tinanoff, N. Salivary Streptococcus mutans levels in patients before, during, and after orthodontic treatment. Am. J. Orthod. Dentofacial Orthop., 1991, 100(1), 35-37.
[http://dx.doi.org/10.1016/0889-5406(91)70046-Y] [PMID: 2069145]
[3]
Anhoury, P.; Nathanson, D.; Hughes, C.V.; Socransky, S.; Feres, M.; Chou, L.L. Microbial profile on metallic and ceramic bracket materials. Angle Orthod., 2002, 72(4), 338-343.
[PMID: 12169034]
[4]
Sukontapatipark, W.; el-Agroudi, M.A.; Selliseth, N.J.; Thunold, K.; Selvig, K.A. Bacterial colonization associated with fixed orthodontic appliances. A scanning electron microscopy study. Eur. J. Orthod., 2001, 23(5), 475-484.
[http://dx.doi.org/10.1093/ejo/23.5.475] [PMID: 11668867]
[5]
Gibbons, R.J. Bacterial adhesion to oral tissues: A model for infectious diseases. J. Dent. Res., 1989, 68(5), 750-760.
[http://dx.doi.org/10.1177/00220345890680050101] [PMID: 2654229]
[6]
Venkatachalapathy, S.; Sundararaj, D.; Tandon, A.; Pereira, A. Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J. Int. Soc. Prev. Community Dent., 2015, 5(6), 433-439.
[http://dx.doi.org/10.4103/2231-0762.167719] [PMID: 26759794]
[7]
Singh, N. Introduction to Nano-Biomaterials, Nanotechnology Biomaterials, , 1-12.
[8]
Weir, E.; Lawlor, A.; Whelan, A.; Regan, F. The use of nanoparticles in anti-microbial materials and their characterization. Analyst, 2008, 133(7), 835-845.
[http://dx.doi.org/10.1039/b715532h] [PMID: 18575632]
[9]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[10]
Baby, R.D.; Subramaniam, S.; Arumugam, I.; Padmanabhan, S. Assessment of antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of titanium oxide: An in vitro study. Am. J. Orthod. Dentofacial Orthop., 2017, 151(4), 678-684.
[http://dx.doi.org/10.1016/j.ajodo.2016.09.014] [PMID: 28364890]
[11]
Cao, S.; Wang, Y.; Cao, L.; Wang, Y.; Lin, B.; Lan, W.; Cao, B. Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films. Korean J. Orthod., 2016, 46(3), 146-154.
[http://dx.doi.org/10.4041/kjod.2016.46.3.146] [PMID: 27226960]
[12]
Chhattani, S.; Shetty, P.C.; Laxmikant, S.M.; Ramachandra, C.S. In vitro assessment of photocatalytic titanium oxide surface-modified stainless steel and nickel titanium orthodontic wires for its antiadherent and antibacterial properties against Streptococcus mutans. J. Indian Orthod. Soc., 2014, 48(2), 82-87.
[http://dx.doi.org/10.1177/0974909820140202]
[13]
Hailan, S.Y.; Al-Khatieeb, M.M. Antimicrobial efficacy of silver, zinc oxide, and titanium dioxide nanoparticles incorporated in orthodontic bonding agent. J. Baghdad College Dentist., 2019, 31(3), 10-16.
[http://dx.doi.org/10.26477/jbcd.v31i3.2693]
[14]
Liu, J.; Lou, Y.; Zhang, C.; Yin, S.; Li, H.; Sun, D.; Sun, X. Improved corrosion resistance and antibacterial properties of composite arch-wires by N-doped TiO2 coating. RSC Advances, 2017, 7(69), 43938-43949.
[http://dx.doi.org/10.1039/C7RA06960J]
[15]
Özyıldız, F.; Güden, M.; Uzel, A.; Karaboz, I.; Akil, O.; Bulut, H. Antimicrobial activity of TiO2-coated orthodontic ceramic brackets against Streptococcus mutans and Candida albicans. Biotechnol. Bioprocess Eng.; BBE, 2010, 15(4), 680-685.
[http://dx.doi.org/10.1007/s12257-009-3005-4]
[16]
Poosti, M.; Ramazanzadeh, B.; Zebarjad, M.; Javadzadeh, P.; Naderinasab, M.; Shakeri, M.T. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur. J. Orthod., 2013, 35(5), 676-679.
[http://dx.doi.org/10.1093/ejo/cjs073] [PMID: 23264617]
[17]
Shah, A.; Shetty, P.; Ramachandra, C.; Bhat, N.; Laxmikanth, S. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus. Angle Orthod., 2011, 81(6), 1028-1035.
[http://dx.doi.org/10.2319/021111-101.1]
[18]
Sodagar, A.; Akhoundi, M.S.A.; Bahador, A.; Jalali, Y.F.; Behzadi, Z.; Elhaminejad, F.; Mirhashemi, A.H. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dental Press J. Orthod., 2017, 22(5), 67-74.
[http://dx.doi.org/10.1590/2177-6709.22.5.067-074.oar] [PMID: 29160346]
[19]
Azarsina, M.; Kasraei, S.; Yousefi-Mashouf, R.; Dehghani, N.; Shirinzad, M. The antibacterial properties of composite resin containing nanosilver against Streptococcus mutans and Lactobacillus. J. Contemp. Dent. Pract., 2013, 14(6), 1014-1018.
[http://dx.doi.org/10.5005/jp-journals-10024-1442] [PMID: 24858742]
[20]
Bindu, S.H. V Kala Vani, S.; Nirisha, G.; Madhuri, N.; Sai Deepa, B.; Hemadri, S. Evaluation of antibacterial effect of silver nanoparticle coated stainless steel band material - An in vitro study. Orthodontic J. Nepal, 2019, 9(2), 13-19.
[http://dx.doi.org/10.3126/ojn.v9i2.28404]
[21]
Moreira, D.M.; Oei, J.; Rawls, H.R.; Wagner, J.; Chu, L.; Li, Y.; Zhang, W.; Whang, K. A novel antimicrobial orthodontic band cement with in situ–generated silver nanoparticles. Angle Orthod., 2015, 85(2), 175-183.
[http://dx.doi.org/10.2319/022314-127.1] [PMID: 25098188]
[22]
Degrazia, F.W.; Leitune, V.C.B.; Garcia, I.M.; Arthur, R.A.; Samuel, S.M.W.; Collares, F.M. Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. J. Appl. Oral Sci., 2016, 24(4), 404-410.
[http://dx.doi.org/10.1590/1678-775720160154] [PMID: 27556213]
[23]
Dutra-Correa, M.; Leite, A.A.B.V.; de Cara, S.P.H.M.; Diniz, I.M.A.; Marques, M.M.; Suffredini, I.B.; Fernandes, M.S.; Toma, S.H.; Araki, K.; Medeiros, I.S. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. J. Dent., 2018, 77, 66-71.
[http://dx.doi.org/10.1016/j.jdent.2018.07.010] [PMID: 30009857]
[24]
Espinosa-Cristóbal, L.F.; López-Ruiz, N.; Cabada-Tarín, D.; Reyes-López, S.Y.; Zaragoza-Contreras, A.; Constandse-Cortéz, D.; Donohué-Cornejo, A.; Tovar-Carrillo, K.; Cuevas-González, J.C.; Kobayashi, T. Antiadherence and antimicrobial properties of silver nanoparticles against Streptococcus mutans on brackets and wires used for orthodontic treatments. J. Nanomater., 2018, 20189248527
[http://dx.doi.org/10.1155/2018/9248527]
[25]
Hernández-Gómora, A.; Lara-Carrillo, E.; Robles-Navarro, J.; Scougall-Vilchis, R.; Hernández-López, S.; Medina-Solís, C.; Morales-Luckie, R. Biosynthesis of silver nanoparticles on orthodontic elastomeric modules: Evaluation of mechanical and antibacterial properties. Molecules, 2017, 22(9), 1407.
[http://dx.doi.org/10.3390/molecules22091407] [PMID: 28841178]
[26]
Mhaske, A.R.; Shetty, P.C.; Bhat, N.S.; Ramachandra, C.S.; Laxmikanth, S.M.; Nagarahalli, K.; Tekale, P.D. Antiadherent and antibacterial properties of stainless steel and NiTi orthodontic wires coated with silver against Lactobacillus acidophilus-an in vitro study. Prog. Orthod., 2015, 16(1), 40.
[http://dx.doi.org/10.1186/s40510-015-0110-0] [PMID: 26576557]
[27]
Narayanan, S.; Sabarigirinathan, C.; Saurab Goel, K. Assessment of the antibacterial activity of nano silver coated, uncoated and teflon/tooth-coloured orthodontic niti archwires against S. mutans,] E. coli, staph. Aureus, bacillus subtilis & candida species and cytotoxicity assay of uncoated and coated wires respectively. J. Pharm. Res. Int., 2019, 9(2), 84-96.
[28]
Fatani, E.J.; Almutairi, H.H.; Alharbi, A.O.; Alnakhli, Y.O.; Divakar, D.D. Muzaheed; Alkheraif, A.A.; Khan, A.A. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microb. Pathog., 2017, 112, 190-194.
[http://dx.doi.org/10.1016/j.micpath.2017.09.052] [PMID: 28966064]
[29]
Ghasemi, T.; Arash, V.; Rabiee, S.M.; Rajabnia, R.; Pourzare, A.; Rakhshan, V. Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: A preliminary study. Microsc. Res. Tech., 2017, 80(6), 599-607.
[http://dx.doi.org/10.1002/jemt.22835] [PMID: 28181353]
[30]
Ryu, H.S.; Bae, I.H.; Lee, K.G.; Hwang, H.S.; Lee, K.H.; Koh, J.T.; Cho, J.H. Antibacterial effect of silver-platinum coating for orthodontic appliances. Angle Orthod., 2012, 82(1), 151-157.
[http://dx.doi.org/10.2319/021411-111.1] [PMID: 21810004]
[31]
Ramazanzadeh, B.; Jahanbin, A.; Yaghoubi, M.; Shahtahmassbi, N.; Ghazvini, K.; Shakeri, M.; Shafaee, H. Comparison of antibacterial effects of ZnO and CuO nanoparticles coated brackets against Streptococcus Mutans. J. Dent. (Shiraz), 2015, 16(3), 200-205.
[PMID: 26331150]
[32]
Kachoei, M.; Nourian, A.; Divband, B.; Kachoei, Z.; Shirazi, S. Zinc-oxide nanocoating for improvement of the antibacterial and frictional behavior of nickel-titanium alloy. Nanomedicine, 2016, 11(19), 2511-2527.
[http://dx.doi.org/10.2217/nnm-2016-0171] [PMID: 27623286]
[33]
Cheng, L.; Zhang, K.; Weir, M.D.; Liu, H.; Zhou, X.; Xu, H.H.K. Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent. Mater., 2013, 29(4), 462-472.
[http://dx.doi.org/10.1016/j.dental.2013.01.011] [PMID: 23422420]
[34]
Sodagar, A.; Akhavan, A.; Hashemi, E.; Arab, S.; Pourhajibagher, M.; Sodagar, K.; Kharrazifard, M.J.; Bahador, A. Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles. Prog. Orthod., 2016, 17(1), 40.
[http://dx.doi.org/10.1186/s40510-016-0153-x] [PMID: 27819127]
[35]
Zaltsman, N.; Kesler Shvero, D.; Polak, D.; Weiss, E.I.; Beyth, N. Antibacterial orthodontic adhesive incorporating polyethyleneimine nanoparticles. Oral Health Prev. Dent., 2017, 15(3), 245-250.
[PMID: 28674704]
[36]
Kasraei, S.; Sami, L.; Hendi, S. AliKhani, M.Y; Rezaei-Soufi, L.; Khamverdi, Z. Antibacterial properties of composite resins incorporating silver and zinc oxide NPs on Streptococcus mutans and Lactobacillus. Restor. Dent. Endod, 2014, 39(2), 109-114.
[http://dx.doi.org/10.5395/rde.2014.39.2.109] [PMID: 24790923]
[37]
Liliana, S.V.; Rogelio, M.L.; Raul, A.; Olea-Mejía, O. An evaluation of the antibacterial properties and shear bond strength of copper NPs as a nanofiller in orthodontic adhesive. Aust. Orthod. J., 2015, 31(1), 42-48.
[PMID: 26219146]
[38]
Ahn, S.J.; Lee, S.J.; Kook, J.K.; Lim, B.S. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent. Mater., 2009, 25(2), 206-213.
[http://dx.doi.org/10.1016/j.dental.2008.06.002] [PMID: 18632145]
[39]
Bahador, A.; Sodagar, A.; Khalil, S.; Kassaee, M.Z.; Shahroudi, A.S.; Pourakbari, B. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria. J. Orthod. Sci., 2016, 5(1), 7-13.
[http://dx.doi.org/10.4103/2278-0203.176652] [PMID: 26998471]
[40]
Ferrando-Magraner, E.; Bellot-Arcís, C.; Paredes-Gallardo, V.; Almerich-Silla, J.M.; García-Sanz, V.; Fernández-Alonso, M.; Montiel-Company, J.M. antibacterial properties of nanoparticles in dental restorative materials. A systematic review and meta-analysis. Medicina, 2020, 56(2), 55.
[http://dx.doi.org/10.3390/medicina56020055] [PMID: 32013103]
[41]
Felemban, N.H.; and Ebrahim, M.I. 2017 The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: An in vitro study. BMC Oral Health, 17(1), 43.
[http://dx.doi.org/10.1186/s12903-017-0332-2]
[42]
Jangra, S.L.; Stalin, K.; Dilbaghi, N.; Kumar, S.; Tawale, J.; Singh, S.P.; Pasricha, R. Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. J. Nanosci. Nanotechnol., 2012, 12(9), 7105-7112.
[http://dx.doi.org/10.1166/jnn.2012.6574] [PMID: 23035440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy