Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Computer-aided Diagnosis and Analysis of Skin Cancer from Dermoscopic Images in India

Author(s): Khushmeen Kaur Brar* and O. Jeba Shiney

Volume 20, 2024

Published on: 26 May, 2023

Article ID: e100423215589 Pages: 14

DOI: 10.2174/1573405620666230410092618

Price: $65

Abstract

Background: Researchers have made several advancements in this field, including automatic segmentation techniques, computer-aided diagnosis, mobile-based technology, deep learning methods, hybrid methods etc. All these techniques are beneficial in diagnosing melanoma or segregating skin lesions into different categories.

Aim: This paper aims to define different types of skin cancers, diagnosis procedures and statistics. This paper presents skin cancer statistics over a period of time in India. The increment in the number of skin carcinoma and melanoma cases from 1990 to 2020 as well as the mortality rates, has been presented in this paper. Also, this paper provides a review of different technologies used by researchers in detecting melanoma.

Conclusion: The rise in the number of cases by 2040 and mortality rates are compared. The statistics that are used in this paper are as per hospital-based cancer registries (HBCR) 2021 prepared by the Indian Council of Medical Research - National Centre for Disease Informatics and Research, Bengaluru (ICMR-NCDIR) and from World Health Organization (WHO).

[1]
Orthaber K, Pristovnik MD, Skok K. Skin cancer and its treatment: Novel treatment approaches with emphasis on nanotechnology. J Nanomater 2017; 2017(2): 1-20.
[2]
Ramamoorthy T, Leburu S, Kulothungan V, Mathur P. Regional estimates of noncommunicable diseases associated risk factors among adults in India: results from National Noncommunicable Disease Monitoring Survey. BMC Public Health 2022; 22(1): 1069.
[http://dx.doi.org/10.1186/s12889-022-13466-5] [PMID: 35637501]
[3]
Dubai P, Bhatt S, Joglekar C, Patii S. Skin cancer detection and classification. Proc 2017 6th Int Conf Electr Eng Informatics Sustain Soc Through Digit Innov ICEEI 2018; 2017: 1-6.
[4]
Azmi NFM, Sarkan HM, Yahya Y, Chuprat S. ABCD rules segmentation on malignant tumor and Benign skin lesion images 2016 3rd Int Conf Comput Inf Sci ICCOINS 2016 - Proc 2016; 66-70.
[http://dx.doi.org/10.1109/ICCOINS.2016.7783190]
[5]
Nachbar F, Stolz W, Merkle T, et al. The ABCD rule of dermatoscopy. J Am Acad Dermatol 1994; 30(4): 551-9.
[http://dx.doi.org/10.1016/S0190-9622(94)70061-3] [PMID: 8157780]
[6]
Moussa R, Gerges F, Salem C, Akiki R, Falou O, Azar D. Computer-aided detection of Melanoma using geometric features 2016 3rd Middle East Conference on Biomedical Engineering (MECBME). 2016; 2016: pp. 125-8.
[http://dx.doi.org/10.1109/MECBME.2016.7745423]
[7]
Khushmeen Brar A, Samant P. Review of an automated clinical decision support system for skin abrasion recognition and classification IJRAR 2019; 6(1): 511-17.
[8]
Abraham A, Sobhanakumari K, Mohan A. Artificial intelligence in dermatology. J Ski Sex Transm Dis 2021; 3(1): 99-102.
[9]
Corona R, Sera F, Binder M, Cerroni L. Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the internet. J Am Acad Dermatol 2003; 48(5): 679-93.
[10]
Maglogiannis I, Doukas CN. Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans Inf Technol Biomed 2009; 13(5): 721-33.
[http://dx.doi.org/10.1109/TITB.2009.2017529] [PMID: 19304487]
[11]
Pickert A. Basic Dermoscopy for the Resident CUTIS CUTIS 2012; 89: 1-6.
[12]
Lee T, Ng V, Gallagher R, Coldman A, McLean D. Dullrazor®: A software approach to hair removal from images. Comput Biol Med 1997; 27(6): 533-43.
[http://dx.doi.org/10.1016/S0010-4825(97)00020-6] [PMID: 9437554]
[13]
Mendonca T, Pedro MF, Jorge SM, Andr´e RS, Jorge R. PH2 - A dermoscopic image database for research and benchmarking. 35th Annual International Conference of the IEEE EMBS Osaka, Japan. 1967; pp. 1967; 14(4): 677-82.
[14]
Chowdhury S. Universal health coverage - There is more to it than meets the eye. J Family Med Prim Care 2017; 6(2): 169-70.
[PMID: 29026777]
[15]
Goyal P K, Jain M K. Computer-aided diagnosis of melanoma skin cancer: A review Advances in Data and Information Sciences. 2018; pp. 63-73.
[http://dx.doi.org/10.1007/978-981-10-8360-0_6]
[16]
Mehta P, Shah B. Review on techniques and steps of computer aided skin cancer diagnosis. Procedia Comput Sci 2016; 85: 309-16.
[http://dx.doi.org/10.1016/j.procs.2016.05.238]
[17]
Gutman D, et al. Skin lesion analysis toward melanoma detection : A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC) 2016.
[18]
Noel CF, Gutman D, Emre Celebi M, Helba B, Marchetti MA, Dusza SW. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2017; 1-5.
[19]
Codella NR, Tschand NV, Celebi P, Dusza ME, Gutman S. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC). Preprint 2018; 1-12.
[20]
Tschandl P, Rosendahl C, Kittler H. Data Descriptor : The HAM 10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Nat Publ Gr 2018; 5: 1-9.
[21]
Hoshyar AN, Al-Jumaily A, Hoshyar AN. The beneficial techniques in preprocessing step of skin cancer detection system comparing. Procedia Comput Sci 2014; 42(C): 25-31.
[http://dx.doi.org/10.1016/j.procs.2014.11.029]
[22]
Singh N, Kaur P. Comprehensive review of techniques used to detect skin lesion 2017 2nd International Conference for Convergence in Technology (I2CT) 2017.
[http://dx.doi.org/10.1109/I2CT.2017.8226102]
[23]
Petrellis N. Using Color Signatures for the Classification of Skin Disorders 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST) 2018.
[http://dx.doi.org/10.1109/MOCAST.2018.8376573]
[24]
Abuzaghleh O, Barkana BD, Faezipour M. Automated skin lesion analysis based on color and shape geometry feature set for melanoma early detection and prevention. IEEE Long Isl Syst Appl Technol Conf LISAT 2014; 2014: 1-6.
[http://dx.doi.org/10.1109/LISAT.2014.6845199]
[25]
Adjed F, Safdar Gardezi SJ, Ababsa F, Faye I, Chandra Dass S. Fusion of structural and textural features for melanoma recognition. IET Comput Vis 2018; 12(2): 185-95.
[http://dx.doi.org/10.1049/iet-cvi.2017.0193]
[26]
Barata C, Ruela M, Francisco M, Mendonca T, Marques JS. Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J 2014; 8(3): 965-79.
[http://dx.doi.org/10.1109/JSYST.2013.2271540]
[27]
Rajesh A. Classification of malignant melanoma and Benign Skin Lesion by using back propagation neural network and ABCD rule. Cluster Comput 2018; 1-8.
[28]
Ganesan P, Vadivel M, Sivakumar VG, Vasanth K. Hill climbing optimization and fuzzy C-means clustering for melanoma skin cancer identification and segmentation 6th Int Conf Adv Comput Commun Syst 357-61.2020;
[http://dx.doi.org/10.1109/ICACCS48705.2020.9074333]
[29]
Sankaran S, Sethumadhavan G. Quantifications of asymmetries on the spectral bands of malignant melanoma using six sigma threshold as preprocessor 3rd International Conference on Computational Intelligence and Information Technology vol. 2013: 80-6.2013;
[http://dx.doi.org/10.1049/cp.2013.2575]
[30]
Tabassum T, Munia K, Alam N, Neubert J, Fazel-rezai R, Member S. Automatic diagnosis of melanoma using linear and nonlinear features from digital image. Annu Int Conf IEEE Eng Med Biol Soc. 2017; 2017: pp. 4281-4.
[31]
Punal D. Computer vision for diagnosis of malignant melanoma by pixel intensity matrix parameters. 10th International Conference on Intelligent Systems and Control Coimbatore, India. 2016; pp. 2016; 7: 2-5.
[32]
Dhinagar NJ, Celenk M. Noninvasive screening and discrimination of skin images for early melanoma detection. Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on 2011; 1-4.
[http://dx.doi.org/10.1109/icbbe.2011.5780198]
[33]
Rasul F, Dey NK, Hashem MMA. A comparative study of neural network architectures for lesion segmentation and melanoma detection Undergraduate Thesis: A Study on Computer-Aided Pneumonia Diagnosis in Chest X-Rays 2020; 572-75.
[http://dx.doi.org/10.1109/TENSYMP50017.2020.9230969]
[34]
Dildar M. Skin Cancer Detection: A review using deep learning techniques. Int J Environ Res Public Health 2021; 18(10): 5479.
[http://dx.doi.org/10.3390/ijerph18105479]
[35]
Adegun AA, Viriri S. Deep learning-based system for automatic melanoma detection. IEEE Access 2020; 8: 7160-72.
[http://dx.doi.org/10.1109/ACCESS.2019.2962812]
[36]
Yu Z, Jiang X, Member S, Zhou F, Qin J, Ni D. Melanoma recognition in dermoscopy images via aggregated deep convolutional features. IEEE Trans Biomed Eng 2018; 1.
[37]
Afza F, Sharif M, Mittal M, Attique M, Hemanth D J. A hierarchical three-step superpixels and deep learning framework for skin lesion classification. Methods 2022; 202: 88-102.
[38]
Ali S, Miah S, Haque J, Rahman M. Machine Learning with Applications An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach Learn with Appl 2021; 5(April): 100036.
[39]
Kumar EP, Sharma EP. Artificial neural networks-a study 2014; 2(2): 143-8.
[40]
Arasi MA, Salem AM. Malignant Melanoma Detection and Diagnosis. 2017; pp. 55-61.
[41]
Tumpa PP, Kabir A. An Artificial Neural Network Based Detection and Classification of Melanoma Skin Cancer Using Hybrid Texture Features. Sensors Int 2021; p. 100128.
[42]
Khan MA, Zhang Y, Sharif M, Akram T. Pixels to Classes: Intelligent learning framework for multiclass skin lesion localization and classification. Comput Electr Eng 2021; 90: 106956.
[43]
Czajkowska J, Badura P, Korzekwa S, Anna P. Deep learning approach to skin layers segmentation in inflammatory dermatoses. Ultrasonics 2021; 114: 106412.
[http://dx.doi.org/10.1016/j.ultras.2021.106412]
[44]
Hekler A. Superior skin cancer classification by the combination of human and artificial intelligence. Eur J Cancer 2019; Vol. 120: 114-21.
[45]
Hasan MK, Roy S, Mondal C, et al. Dermo-DOCTOR: A framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders. Biomed Signal Process Control 2021; 68(April): 102661.
[http://dx.doi.org/10.1016/j.bspc.2021.102661]
[46]
Piramanayagam S, Saber E, Schwartzkopf W, Koehler FW. Supervised classification of multisensor remotely sensed images using a deep learning framework. Computer Science, Environmental Science 2018; 1-25.
[47]
Wu X, Shi Z. Utilizing multilevel features for cloud detection on satellite imagery. Remote Sens 2018; 10(11): 1-23.
[http://dx.doi.org/10.1109/TGRS.2018.2832193]
[48]
Nasr-Esfahani E, Rafiei S, Jafari MH, et al. Dense pooling layers in fully convolutional network for skin lesion segmentation. Comput Med Imaging Graph 2019; 78: 101658.
[http://dx.doi.org/10.1016/j.compmedimag.2019.101658] [PMID: 31634739]
[49]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation International Conference on Medical Image Computing and Computer-Assisted Intervention 2015.
[http://dx.doi.org/10.1007/978-3-319-24574-4_28]
[50]
Ding Y, Chen F, Zhao Y, Wu Z, Zhang C, Wu D. A stacked multi-connection simple reducing net for brain tumor segmentation. IEEE Access 2019; 7: 104011-24.
[http://dx.doi.org/10.1109/ACCESS.2019.2926448]
[51]
Wibowo A, Purnama SR, Wirawan PW, Rasyidi H. Lightweight encoder-decoder model for automatic skin lesion segmentation. Inform Med Unlocked 2021; 25: 100640.
[http://dx.doi.org/10.1016/j.imu.2021.100640]
[52]
Sanjar K, Bekhzod O, Kim J, Kim J, Paul A, Kim J. Improved U-Net: Fully convolutional network model for skin-lesion segmentation. Appl Sci 2020; 10(10): 3658.
[53]
Koylu C, Zhao C, Shao W. Deep Neural networks and kernel density estimation for detecting human activity patterns from geo-tagged images: A case study of birdwatching on flickr. ISPRS Int J Geo-Inf 2019; 8(1): 45.
[http://dx.doi.org/10.3390/ijgi8010045]
[54]
Weijun P, Yingjie D, Qiang Z, Jiahao T, Jun Z. Deep Learning for Aircraft Wake Vortex Identification IOP Conference Series Materials Science and Engineering 2019; 685(1): 012015.
[http://dx.doi.org/10.1088/1757-899X/685/1/012015]
[55]
Albahli S. Melanoma Lesion Detection and Segmentation Using YOLOv4-DarkNet and Active Contour. IEEE Access 2020; Vol. 8: 198403-14.
[56]
Banerjee S, Singh SK, Chakraborty A, Das A, Bag R. Melanoma diagnosis using deep learning and fuzzy logic. Diagnostics 2020; 10(8): 577.
[http://dx.doi.org/10.3390/diagnostics10080577]
[57]
Xiao F, Wu Q. Visual saliency based global–local feature representation for skin cancer classification. IET Image Process 2020; 14(10): 2140-8.
[http://dx.doi.org/10.1049/iet-ipr.2019.1018]
[58]
Hagerty J R. Deep learning and handcrafted method fusion: higher diagnostic accuracy for melanoma dermoscopy images. IEEE J Biomed Health Inform 2019; 23(4): 1385-91.
[http://dx.doi.org/10.1109/JBHI.2019.2891049]
[59]
Roman CM, Schlager JG, Haggenmu¨ller S, von Kalle C, Utikal JS, Meier F. A benchmark for neural network robustness in skin cancer classification. 2021; 155: 191-9.
[60]
Rahman Z, Hossain S, Islam R, Hasan M. Informatics in Medicine Unlocked An approach for multiclass skin lesion classification based on ensemble learning. 2021; Vol. 25.
[61]
Toğaçar M, Cömert Z, Ergen B. Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks. Chaos Solitons Fractals 2021; 144: 110714.
[http://dx.doi.org/10.1016/j.chaos.2021.110714]
[62]
Moradi N, Mahdavi-amiri N. Biomedical signal processing and control multi-class segmentation of skin lesions via joint dictionary learning. Biomed Signal Process Control 2021; 68: 102787.
[63]
Tang P, Yan X, Liang Q, Zhang D. AFLN-DGCL: Adaptive Feature Learning Network with Difficulty-Guided Curriculum Learning for skin lesion segmentation. Appl Soft Comput 2021; 110: 107656.
[http://dx.doi.org/10.1016/j.asoc.2021.107656]
[64]
Zhou Q, Shi Y A N, Xu Z, Qu R, Xu G. Classifying melanoma skin lesions using convolutional spiking neural networks with unsupervised STDP learning rule. IEEE Access 2020; PP(99)): 1-1.
[http://dx.doi.org/10.1109/ACCESS.2020.2998098]
[65]
Ikuma Y. Production of the grounds for melanoma clasification using adaptive fuzzy inference neural network IEEE International Conference on Systems, Man, and Cybernetics Manchester, UK. 2013; pp. vol. 13: 2570-5.2013;
[66]
Mahdiraji SA, Baleghi Y, Sakhaei SM. BIBS, a new descriptor for melanoma/non-melanoma Discrimination Iranian Conference on Electrical Engineering (ICEE) Mashhad,Iran. 2018; pp. vol. 18: 1397-402.2018;
[http://dx.doi.org/10.1109/ICEE.2018.8472701]
[67]
Waheed Z. An efficient machine learning approach for the detection of melanoma using dermoscopic images. International Conference on Communication, Computing and Digital Systems (C-CODE). Islamabad, Pakistan 2017; pp. 316-19.
[http://dx.doi.org/10.1109/C-CODE.2017.7918949]
[68]
Soumya RS, Neethu S, Aneesh RP. Advanced earlier melanoma detection algorithm using colour correlogram International Conference onCommunication Systems and Networks Thiruvananthapuram, India. 2016; pp. vol. 16: 190-4.2016;
[http://dx.doi.org/10.1109/CSN.2016.7824012]
[69]
Reshma M, Shan BP. Two methodologies for identification of stages and different types of melanoma detection. IEEE Conference on Emerging Devices And Smart Systems Mallasamudram, India. 2017; pp. 17: 257-9.2017;
[http://dx.doi.org/10.1109/ICEDSS.2017.8073689]
[70]
Hoshyar AN, Al-Jumaily A, Sulaiman R. Review on automatic early skin cancer detection 2011 International Conference on Computer Science and Service System (CSSS). Nanjing, China 2011; pp. 4036-39.
[71]
Takruri M. Bayesian Decision Fusion for Enhancing Melanoma Recognition Accuracy International Conference on Electrical and Computing Technologies and Applications Ras Al Khaimah, UAE. 2017; pp. vol. 17: 7-10.2017;
[http://dx.doi.org/10.1109/ICECTA.2017.8252063]
[72]
Garnavi R, Aldeen M, Member S, Bailey J. Computer-aided diagnosis of melanoma using border- and wavelet-based texture analysis IEEE Transaction on Information Technology in Bio Medicine. 2012; 16: pp. (6)1239-52.
[http://dx.doi.org/10.1109/TITB.2012.2212282]
[73]
Chatterjee S. Mathematical morphology aided shape. Texture and Colour Feature Extraction from Skin Lesion for Identification of Malignant Melanoma 2015; pp. 200-3.
[74]
Nezhadian FK. Melanoma skin cancer detection using color and new texture features.2017 Artificial Intelligence and Signal Processing Conference (AISP). Shiraz, Iran 2017; pp. 1-5.
[http://dx.doi.org/10.1109/AISP.2017.8324108]
[75]
Bi D, Zhu D, Sheykhahmad FR, Qiao M. Computer-aided skin cancer diagnosis based on a New meta-heuristic algorithm combined with support vector method. Biomed Signal Process Control 2021; 68(4655): 102631.
[http://dx.doi.org/10.1016/j.bspc.2021.102631]
[76]
Bagheri F, Tarokh MJ, Ziaratban M. Skin lesion segmentation from dermoscopic images by using Mask R-CNN, Retina-Deeplab, and graph-based methods. Biomed Signal Process Control 2021; 67: 102533.
[http://dx.doi.org/10.1016/j.bspc.2021.102533]
[77]
Yasmin JHJ, Sathik MM, Beevi SZ. Robust Segmentation Algorithm using LOG Edge Detector for Effective Border Detection of Noisy Skin Lesions.2011 International Conference on Computer, Communication and Electrical Technology (ICCCET). Tirunelveli, India 2011; pp. 60-5.
[78]
Abuzaghleh O, Barkana BD, Faezipour M. SKINcure: A real time image analysis system to aid in the malignant melanoma prevention and early detection2014 Southwest Symposium on Image Analysis and Interpretation. San Diego, CA, USA 2014; pp. 85-8.
[79]
Firmansyah HR. Detection melanoma cancer using ABCD rule based on mobile device. International Electronics Symposium on Knowledge Creation and Intelligent Computing vol. 2017: 127-31.2017;
[http://dx.doi.org/10.1109/KCIC.2017.8228575]
[80]
Goceri E. Diagnosis of skin diseases in the era of deep learning and mobile technology. Comput Biol Med 2021; 134(April): 104458.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104458]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy