Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

Immunological Facet and Inception after Post-COVID-19 Vaccination

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 23, Issue 5, 2023

Published on: 28 April, 2023

Article ID: e060423215496 Pages: 7

DOI: 10.2174/1871526523666230406100146

Price: $65

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced coronavirus disease 2019 (COVID-19) pandemic has produced an unparalleled setback for the world's economy and health. One of the best therapies to significantly lower severe illness and mortality from SARS-CoV-2 infection is vaccination. Worldwide vaccination campaigns are being implemented. New-onset autoimmune problems, such as immune thrombotic thrombocytopenia, autoimmune liver disorders, IgA nephropathy, Guillain-Barré syndrome, systemic lupus erythematosus, and rheumatoid arthritis, have recently been described more frequently after receiving COVID-19 vaccine. The creation of specific autoantibodies, molecular mimicry, and the function of specific vaccine adjuvants all emerge to play a significant role in autoimmunity. The post-acute sequelae of SARS-CoV-2, usually known as Long Covid Syndrome, are beginning to be better understood in terms of the disparities in immune responses seen in individuals with and without the condition. We anticipate that the knowledge gleaned from several COVID-19 investigations will be put to use in research on the inflammatory mechanisms implicated in serious and protracted illnesses, which is still a key unmet need.

[1]
Ray SK, Mukherjee S. Understanding the role of corona virus based on current scientific evidence-a review with emerging importance in pandemic. Recent Patents Anti-Infect Drug Disc 2020; 15(2): 89-103.
[http://dx.doi.org/10.2174/1574891X15999200918144833] [PMID: 32957894]
[2]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[3]
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[4]
Zhang Q, Wang Z, Lv Y, et al. Clinical features and prognostic factors of patients with COVID-19 in Henan Province, China. Hum Cell 2021; 34(2): 419-35.
[http://dx.doi.org/10.1007/s13577-021-00499-y] [PMID: 33586121]
[5]
Huang Q, Wu X, Zheng X, Luo S, Xu S, Weng J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol Res 2020; 159: 105051.
[http://dx.doi.org/10.1016/j.phrs.2020.105051] [PMID: 32603772]
[6]
Mukherjee S, Ray SK. Third wave of the COVID-19 pandemic: Prominence of initial public health interference. Infect Disord Drug Targets 2022; 22(4): e080222200919.
[http://dx.doi.org/10.2174/1871526522666220208115101] [PMID: 35135456]
[7]
Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen 2020; 40(1): 37.
[http://dx.doi.org/10.1186/s41232-020-00146-3] [PMID: 33014208]
[8]
Chen R, Lan Z, Ye J, et al. Cytokine storm: The primary determinant for the pathophysiological evolution of COVID-19 deterioration. Front Immunol 2021; 12: 589095.
[http://dx.doi.org/10.3389/fimmu.2021.589095] [PMID: 33995341]
[9]
Mukherjee S, Ray SK. The emergence of Omicron SARS-CoV-2 variant (B.1.1.529)-the latest episode in the COVID-19 pandemic with a global riposte. Infect Disord Drug Targets 2022; 22(7): e220422203941.
[http://dx.doi.org/10.2174/1871526522666220422110415] [PMID: 35466885]
[10]
Mukherjee S, Ray SK. A new wave of COVID-19 in 2021 with unique genetic characters-present global scenario and beholding onwards. Infect Disord Drug Targets 2022; 22(6): e010422202932.
[http://dx.doi.org/10.2174/1871526522666220401101818] [PMID: 35366784]
[11]
Hause AM, Gee J, Baggs J, et al. COVID-19 vaccine safety in adolescents aged 12–17 years-United States, December 14, 2020-July 16, 2021. MMWR Morb Mortal Wkly Rep 2021; 70(31): 1053-8.
[http://dx.doi.org/10.15585/mmwr.mm7031e1] [PMID: 34351881]
[12]
Rosenblum HG, Hadler SC, Moulia D, et al. Use of COVID-19 vaccines after reports of adverse events among adult recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna): Update from the advisory committee on immunization practices-United States, July 2021. MMWR Morb Mortal Wkly Rep 2021; 70(32): 1094-9.
[http://dx.doi.org/10.15585/mmwr.mm7032e4] [PMID: 34383735]
[13]
McMahon DE, Amerson E, Rosenbach M, et al. Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: A registry-based study of 414 cases. J Am Acad Dermatol 2021; 85(1): 46-55.
[http://dx.doi.org/10.1016/j.jaad.2021.03.092] [PMID: 33838206]
[14]
Chen Y, Xu Z, Wang P, et al. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2022; 165(4): 386-401.
[http://dx.doi.org/10.1111/imm.13443] [PMID: 34957554]
[15]
Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science 2022; 375(6585): 1122-7.
[http://dx.doi.org/10.1126/science.abm8108] [PMID: 35271343]
[16]
Kasuga Y, Zhu B, Jang KJ, Yoo JS. Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 2021; 53(5): 723-36.
[http://dx.doi.org/10.1038/s12276-021-00602-1] [PMID: 33953325]
[17]
Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[18]
Galani IE, Rovina N, Lampropoulou V, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol 2021; 22(1): 32-40.
[http://dx.doi.org/10.1038/s41590-020-00840-x] [PMID: 33277638]
[19]
Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020; 369(6504): 718-24.
[http://dx.doi.org/10.1126/science.abc6027] [PMID: 32661059]
[20]
Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584(7821): 463-9.
[http://dx.doi.org/10.1038/s41586-020-2588-y] [PMID: 32717743]
[21]
Lee JS, Park S, Jeong HW, et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci Immunol 2020; 5(49): eabd1554.
[http://dx.doi.org/10.1126/sciimmunol.abd1554]
[22]
Israelow B, Song E, Mao T, et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J Exp Med 2020; 217(12): e20201241.
[http://dx.doi.org/10.1084/jem.20201241] [PMID: 32750141]
[23]
Sanchez-Cerrillo I, Landete P, Aldave B, et al. Differential Redistribution of activated monocyte and dendritic cell subsets to the lung associates with severity of COVID-19. medRxiv 2020; 2020; 20100925.
[http://dx.doi.org/10.1101/2020.05.13.20100925]
[24]
Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020; 26(6): 842-4.
[http://dx.doi.org/10.1038/s41591-020-0901-9] [PMID: 32398875]
[25]
Delorey TM, Ziegler CGK, Heimberg G, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021; 595(7865): 107-13.
[http://dx.doi.org/10.1038/s41586-021-03570-8] [PMID: 33915569]
[26]
Earle KA, Ambrosino DM, Fiore-Gartland A, et al. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021; 39(32): 4423-8.
[http://dx.doi.org/10.1016/j.vaccine.2021.05.063] [PMID: 34210573]
[27]
Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med 2021; 27(7): 1205-11.
[http://dx.doi.org/10.1038/s41591-021-01377-8] [PMID: 34002089]
[28]
Corti D, Purcell LA, Snell G, Veesler D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021; 184(12): 3086-108.
[http://dx.doi.org/10.1016/j.cell.2021.05.005] [PMID: 34087172]
[29]
Zohar T, Alter G. Dissecting antibody-mediated protection against SARS-CoV-2. Nat Rev Immunol 2020; 20(7): 392-4.
[http://dx.doi.org/10.1038/s41577-020-0359-5] [PMID: 32514035]
[30]
Cameroni E, Bowen JE, Rosen LE, et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2022; 602(7898): 664-70.
[http://dx.doi.org/10.1038/s41586-021-04386-2] [PMID: 35016195]
[31]
van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater 2020; 19(8): 810-2.
[http://dx.doi.org/10.1038/s41563-020-0746-0] [PMID: 32704139]
[32]
Chen Y, Li L. SARS-CoV-2: Virus dynamics and host response. Lancet Infect Dis 2020; 20(5): 515-6.
[http://dx.doi.org/10.1016/S1473-3099(20)30235-8] [PMID: 32213336]
[33]
Ndwandwe D, Wiysonge CS. COVID-19 vaccines. Curr Opin Immunol 2021; 71: 111-6.
[http://dx.doi.org/10.1016/j.coi.2021.07.003] [PMID: 34330017]
[34]
Rehman SU, Rehman SU, Yoo HH. COVID-19 challenges and its therapeutics. Biomed Pharmacother 2021; 142: 112015.
[http://dx.doi.org/10.1016/j.biopha.2021.112015] [PMID: 34388532]
[35]
McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 2021; 371(6534): 1139-42.
[http://dx.doi.org/10.1126/science.abf6950] [PMID: 33536258]
[36]
Cabanillas B, Novak N. Allergy to COVID-19 vaccines: A current update. Allergol Int 2021; 70(3): 313-8.
[http://dx.doi.org/10.1016/j.alit.2021.04.003] [PMID: 33962863]
[37]
Cabanillas B, Akdis CA, Novak N. COVID-19 vaccine anaphylaxis: IgE, complement or what else? A reply to: “COVID-19 vaccine anaphylaxis: PEG or not?”. Allergy 2021; 76(6): 1938-40.
[http://dx.doi.org/10.1111/all.14725] [PMID: 34128561]
[38]
Klimek L, Novak N, Cabanillas B, Jutel M, Bousquet J, Akdis CA. Allergenic components of the mRNA-1273 vaccine for COVID-19: Possible involvement of polyethylene glycol and IgG-mediated complement activation. Allergy 2021; 76(11): 3307-13.
[http://dx.doi.org/10.1111/all.14794] [PMID: 33657648]
[39]
Ntouros PA, Vlachogiannis NI, Pappa M, et al. Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol 2021; 229: 108765.
[http://dx.doi.org/10.1016/j.clim.2021.108765] [PMID: 34089859]
[40]
Welsh KJ, Baumblatt J, Chege W, Goud R, Nair N. Thrombocytopenia including immune thrombocytopenia after receipt of mRNA COVID-19 vaccines reported to the Vaccine Adverse Event Reporting System (VAERS). Vaccine 2021; 39(25): 3329-32.
[http://dx.doi.org/10.1016/j.vaccine.2021.04.054] [PMID: 34006408]
[41]
King ER, Towner E. A case of immune thrombocytopenia after BNT162b2 mRNA COVID-19 vaccination. Am J Case Rep 2021; 22: e931478.
[http://dx.doi.org/10.12659/AJCR.931478] [PMID: 34285180]
[42]
See I, Su JR, Lale A, et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2.S vaccination, March 2 to April 21, 2021. JAMA 2021; 325(24): 2448-56.
[http://dx.doi.org/10.1001/jama.2021.7517] [PMID: 33929487]
[43]
Scully M, Singh D, Lown R, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV19 vaccination. N Engl J Med 2021; 384(23): 2202-11.
[http://dx.doi.org/10.1056/NEJMoa2105385] [PMID: 33861525]
[44]
Bayas A, Menacher M, Christ M, Behrens L, Rank A, Naumann M. Bilateral superior ophthalmic vein thrombosis, ischaemic stroke, and immune thrombocytopenia after ChAdOx1 nCoV-19 vaccination. Lancet 2021; 397(10285): e11.
[http://dx.doi.org/10.1016/S0140-6736(21)00872-2] [PMID: 33864750]
[45]
Candelli M, Rossi E, Valletta F, De Stefano V, Franceschi F. Immune thrombocytopenic purpura after SARS-CoV-2 vaccine. Br J Haematol 2021; 194(3): 547-9.
[http://dx.doi.org/10.1111/bjh.17508] [PMID: 33934330]
[46]
Julian JA, Mathern DR, Fernando D. Idiopathic thrombocytopenic purpura and the Moderna COVID-19 vaccine. Ann Emerg Med 2021; 77(6): 654-6.
[http://dx.doi.org/10.1016/j.annemergmed.2021.02.011] [PMID: 34030782]
[47]
Hines A, Shen JG, Olazagasti C, Shams S. Immune thrombocytopenic purpura and acute liver injury after COVID-19 vaccine. BMJ Case Rep 2021; 14(7): e242678.
[http://dx.doi.org/10.1136/bcr-2021-242678] [PMID: 34330722]
[48]
Jasaraj RB, Shrestha DB, Gaire S, Kassem M. Immune thrombocytopenic purpura following Pfizer-BioNTech COVID-19 vaccine in an elderly female. Cureus 2021; 13(8): e16871.
[http://dx.doi.org/10.7759/cureus.16871] [PMID: 34513446]
[49]
Huang C, Xing X, Xiang X, et al. MicroRNAs in autoimmune liver diseases: from diagnosis to potential therapeutic targets. Biomed Pharmacother 2020; 130: 110558.
[http://dx.doi.org/10.1016/j.biopha.2020.110558] [PMID: 32781357]
[50]
Liaskou E, Hirschfield GM, Gershwin ME. Mechanisms of tissue injury in autoimmune liver diseases. Semin Immunopathol 2014; 36(5): 553-68.
[http://dx.doi.org/10.1007/s00281-014-0439-3] [PMID: 25082647]
[51]
Berry PA, Smith-Laing G. Hepatitis A vaccine associated with autoimmune hepatitis. World J Gastroenterol 2007; 13(15): 2238-9.
[http://dx.doi.org/10.3748/wjg.v13.i15.2238] [PMID: 17465509]
[52]
Sasaki T, Suzuki Y, Ishida K, et al. Autoimmune hepatitis following influenza virus vaccination. Medicine 2018; 97(30): e11621.
[http://dx.doi.org/10.1097/MD.0000000000011621] [PMID: 30045302]
[53]
Bril F, Al Diffalha S, Dean M, Fettig DM. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty? J Hepatol 2021; 75(1): 222-4.
[http://dx.doi.org/10.1016/j.jhep.2021.04.003] [PMID: 33862041]
[54]
Vuille-Lessard É, Montani M, Bosch J, Semmo N. Autoimmune hepatitis triggered by SARS-CoV-2 vaccination. J Autoimmun 2021; 123: 102710.
[http://dx.doi.org/10.1016/j.jaut.2021.102710] [PMID: 34332438]
[55]
Leonhard SE, Mandarakas MR, Gondim FAA, et al. Diagnosis and management of Guillain–Barré syndrome in ten steps. Nat Rev Neurol 2019; 15(11): 671-83.
[http://dx.doi.org/10.1038/s41582-019-0250-9] [PMID: 31541214]
[56]
McKean N, Chircop C. Guillain-Barré syndrome after COVID-19 vaccination. BMJ Case Rep 2021; 14(7): e244125.
[http://dx.doi.org/10.1136/bcr-2021-244125] [PMID: 34330729]
[57]
Hasan T, Khan M, Khan F, Hamza G. Case of Guillain-Barré syndrome following COVID-19 vaccine. BMJ Case Rep 2021; 14(6): e243629.
[http://dx.doi.org/10.1136/bcr-2021-243629] [PMID: 34187803]
[58]
Patel SU, Khurram R, Lakhani A, Quirk B. Guillain-Barre syndrome following the first dose of the chimpanzee adenovirus-vectored COVID-19 vaccine, ChAdOx1. BMJ Case Rep 2021; 14(4): e242956.
[http://dx.doi.org/10.1136/bcr-2021-242956] [PMID: 33888484]
[59]
Allen CM, Ramsamy S, Tarr AW, et al. Guillain–Barré syndrome variant occurring after SARS‐CoV‐2 vaccination. Ann Neurol 2021; 90(2): 315-8.
[http://dx.doi.org/10.1002/ana.26144] [PMID: 34114256]
[60]
Maramattom BV, Krishnan P, Paul R, et al. GuillainBarre syndrome following ChAdOx1-S/nCoV-19 vaccine. Ann Neurol 2021; 90(2): 312-4.
[http://dx.doi.org/10.1002/ana.26143] [PMID: 34114256]
[61]
Woo EJ, Mba-Jonas A, Dimova RB, Alimchandani M, Zinderman CE, Nair N. Association of receipt of the Ad26. COV2.S COVID-19 vaccine with presumptive Guillain-Barré syndrome, February-July 2021. JAMA 2021; 326(16): 1606-13.
[http://dx.doi.org/10.1001/jama.2021.16496] [PMID: 34617967]
[62]
Lunn MP, Cornblath DR, Jacobs BC, et al. COVID-19 vaccine and Guillain-Barré syndrome: let’s not leap to associations. Brain 2021; 144(2): 357-60.
[http://dx.doi.org/10.1093/brain/awaa444] [PMID: 33313690]
[63]
Babamahmoodi F, Saeedi M, Alizadeh-Navaei R, et al. Side effects and immunogenicity following administration of the Sputnik V COVID-19 vaccine in health care workers in Iran. Sci Rep 2021; 11(1): 21464.
[http://dx.doi.org/10.1038/s41598-021-00963-7] [PMID: 34728696]
[64]
Cherian S, Paul A, Ahmed S, et al. Safety of the ChAdOx1 nCoV-19 and the BBV152 vaccines in 724 patients with rheumatic diseases: A post-vaccination cross-sectional survey. Rheumatol Int 2021; 41(8): 1441-5.
[http://dx.doi.org/10.1007/s00296-021-04917-0] [PMID: 34142203]
[65]
An Q, Qin D, Pei J. Reactive arthritis after COVID-19 vaccination. Hum Vaccin Immunother 2021; 17(9): 2954-6.
[http://dx.doi.org/10.1080/21645515.2021.1920274] [PMID: 34033732]
[66]
Baimukhamedov C, Makhmudov S, Botabekova A. Seropositive rheumatoid arthritis after vaccination against SARS-CoV-2 infection. Int J Rheum Dis 2021; 24(11): 1440-1.
[http://dx.doi.org/10.1111/1756-185X.14220] [PMID: 34585843]
[67]
Patil S, Patil A. Systemic lupus erythematosus after COVID-19 vaccination: A case report. J Cosmet Dermatol 2021; 20(10): 3103-4.
[http://dx.doi.org/10.1111/jocd.14386] [PMID: 34418261]
[68]
Zavala-Miranda MF, González-Ibarra SG, Pérez-Arias AA, Uribe-Uribe NO, Mejia-Vilet JM. New-onset systemic lupus erythematosus beginning as class V lupus nephritis after COVID-19 vaccination. Kidney Int 2021; 100(6): 1340-1.
[http://dx.doi.org/10.1016/j.kint.2021.09.009] [PMID: 34560139]
[69]
Kreuter A, Burmann SN, Burkert B, Oellig F, Michalowitz AL. Transition of cutaneous into systemic lupus erythematosus following adenoviral vector-based SARS-CoV-2 vaccination. J Eur Acad Dermatol Venereol 2021; 35(11): e733-5.
[http://dx.doi.org/10.1111/jdv.17514] [PMID: 34243220]
[70]
Vera-Lastra O, Ordinola Navarro A, Cruz Domiguez MP, Medina G, Sánchez Valadez TI, Jara LJ. Two cases of graves’ disease following SARS-CoV-2 vaccination: An autoimmune/inflammatory syndrome induced by adjuvants. Thyroid 2021; 31(9): 1436-9.
[http://dx.doi.org/10.1089/thy.2021.0142] [PMID: 33858208]
[71]
Patrizio A, Ferrari SM, Antonelli A, Fallahi P. A case of Graves’ disease and type 1 diabetes mellitus following SARS-CoV-2 vaccination. J Autoimmun 2021; 125: 102738.
[http://dx.doi.org/10.1016/j.jaut.2021.102738] [PMID: 34653776]
[72]
Magro C, Crowson AN, Franks L, Schaffer PR, Whelan P, Nuovo G. The histologic and molecular correlates of COVID-19 vaccine-induced changes in the skin. Clin Dermatol 2021; 39(6): 966-84.
[http://dx.doi.org/10.1016/j.clindermatol.2021.07.011] [PMID: 34920834]
[73]
Renn M, Bartok E, Zillinger T, Hartmann G, Behrendt R. Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions. Pharmacol Ther 2021; 228: 107931.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107931] [PMID: 34171328]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy