Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

Application and Progress of Machine Learning in Pesticide Hazard and Risk Assessment

Author(s): Yunfeng Yang, Junjie Zhong, Songyu Shen, Jiajun Huang, Yihan Hong, Xiaosheng Qu*, Qin Chen* and Bing Niu*

Volume 20, Issue 1, 2024

Published on: 10 May, 2023

Page: [2 - 16] Pages: 15

DOI: 10.2174/1573406419666230406091759

Price: $65

Abstract

Long-term exposure to pesticides is associated with the incidence of cancer. With the exponential increase in the number of new pesticides being synthesized, it becomes more and more important to evaluate the toxicity of pesticides by means of simulated calculations. Based on existing data, machine learning methods can train and model the predictions of the effects of novel pesticides, which have limited available data. Combined with other technologies, this can aid the synthesis of new pesticides with specific active structures, detect pesticide residues, and identify their tolerable exposure levels. This article mainly discusses support vector machines, linear discriminant analysis, decision trees, partial least squares, and algorithms based on feedforward neural networks in machine learning. It is envisaged that this article will provide scientists and users with a better understanding of machine learning and its application prospects in pesticide toxicity assessment.

Graphical Abstract

[1]
Masís-Mora, M.; Beita-Sandí, W.; Rodríguez-Yáñez, J.; Rodríguez-Rodríguez, C.E. Validation of a methodology by LC-MS/MS for the determination of triazine, triazole and organophosphate pesticide residues in biopurification systems. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1156, 122296.
[http://dx.doi.org/10.1016/j.jchromb.2020.122296] [PMID: 32829131]
[2]
Li, C.; Zhu, H.; Li, C.; Qian, H.; Yao, W.; Guo, Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem., 2021, 354, 129552.
[http://dx.doi.org/10.1016/j.foodchem.2021.129552] [PMID: 33756332]
[3]
Torović, L.; Vuković, G.; Dimitrov, N. Pesticide residues in fruit juice in Serbia: Occurrence and health risk estimates. J. Food Compos. Anal., 2021, 99, 103889.
[http://dx.doi.org/10.1016/j.jfca.2021.103889]
[4]
Jacobson, M.H.; Wu, Y.; Liu, M.; Kannan, K.; Li, A.J.; Robinson, M.; Warady, B.A.; Furth, S.; Trachtman, H.; Trasande, L. Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study. Environ. Int., 2021, 155, 106597.
[http://dx.doi.org/10.1016/j.envint.2021.106597] [PMID: 33951537]
[5]
Mostafalou, S.J.N.; Wiley, ; Hoboken, Concerns of environmental persistence of pesticides and human chronic diseases. Clin. Exp. Pharmacol., 2012, S5.
[http://dx.doi.org/10.4172/2161-1459]
[6]
de Souza, A.; Medeiros, Ados. R.; de Souza, A.C.; Wink, M.; Siqueira, I.R.; Ferreira, M.B.; Fernandes, L.; Loayza H.M.P.; Torres, I.L. Evaluation of the impact of exposure to pesticides on the health of the rural population: Vale do Taquari, State of Rio Grande do Sul (Brazil). Cien. Saude Colet., 2011, 16(8), 3519-3528.
[PMID: 21860952]
[7]
Moura, L.T.R.; Bedor, C.N.G.; Lopez, R.V.M.; Santana, V.S.; Rocha, T.M.B.D.S.D.; Wünsch Filho, V.; Curado, M.P. Occupational exposure to organophosphate pesticides and hematologic neoplasms: A systematic review. Rev. Bras. Epidemiol., 2020, 23, e200022.
[http://dx.doi.org/10.1590/1980-549720200022] [PMID: 32401913]
[8]
Swartz, S.J.; Morimoto, L.M.; Whitehead, T.P.; DeRouen, M.C.; Ma, X.; Wang, R.; Wiemels, J.L.; McGlynn, K.A.; Gunier, R.; Metayer, C. Proximity to endocrine-disrupting pesticides and risk of testicular germ cell tumors (TGCT) among adolescents: A population-based case-control study in California. Int. J. Hyg. Environ. Health, 2022, 239, 113881.
[http://dx.doi.org/10.1016/j.ijheh.2021.113881] [PMID: 34839102]
[9]
Piel, C; Pouchieu, C; Migault, L; Béziat, B; Boulanger, M; Bureau, M O2A.3 Increased risk of central nervous system tumors with carbamate insecticide use in the prospective cohort agrican. Occup. Environ. Med., 2019, 76(S1), A13-A4.
[http://dx.doi.org/10.1136/OEM-2019-EPI.35]
[10]
Zhang, N.; Zhu, L.; Zhang, R.; Zhang, C.; Cheng, J.; Tao, L.; Zhang, Y.; Xu, W. Evaluation of toxicological effects of organophosphorus pesticide metabolites on human HepG2 cells. Environ. Toxicol. Pharmacol., 2021, 88, 103741.
[http://dx.doi.org/10.1016/j.etap.2021.103741] [PMID: 34517121]
[11]
Korkmaz, V.; Güngördü, A.; Ozmen, M. Comparative evaluation of toxicological effects and recovery patterns in zebrafish (Danio rerio) after exposure to phosalone-based and cypermethrin-based pesticides. Ecotoxicol. Environ. Saf., 2018, 160, 265-272.
[http://dx.doi.org/10.1016/j.ecoenv.2018.05.055] [PMID: 29852429]
[12]
Deng, Y.; Zhang, Y.; Lu, Y.; Zhao, Y.; Ren, H. Hepatotoxicity and nephrotoxicity induced by the chlorpyrifos and chlorpyrifos-methyl metabolite, 3,5,6-trichloro-2-pyridinol, in orally exposed mice. Sci. Total Environ., 2016, 544, 507-514.
[http://dx.doi.org/10.1016/j.scitotenv.2015.11.162] [PMID: 26674679]
[13]
Achema, K.O.; Okuonghae, D.; Tongo, I. Dual-level toxicity assessment of biodegradable pesticides to aquatic species. Ecol. Complex., 2021, 45, 100911.
[http://dx.doi.org/10.1016/j.ecocom.2021.100911]
[14]
Zou, J.; Huss, M.; Abid, A.; Mohammadi, P.; Torkamani, A.; Telenti, A. A primer on deep learning in genomics. Nat. Genet., 2019, 51(1), 12-18.
[http://dx.doi.org/10.1038/s41588-018-0295-5] [PMID: 30478442]
[15]
Chartres, N.; Bero, L.A.; Norris, S.L. A review of methods used for hazard identification and risk assessment of environmental hazards. Environ. Int., 2019, 123, 231-239.
[http://dx.doi.org/10.1016/j.envint.2018.11.060] [PMID: 30537638]
[16]
Scholkopf, B.; Smola, A.J. A short introduction to learning with kernels. Advanced Lectures on Machine Learning; Springer: Berlin, 2002, pp. 41-64.
[http://dx.doi.org/10.1007/3-540-36434-X_2]
[17]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[18]
Almasi, O.N.; Rouhani, M. A geometric-based data reduction approach for large low dimensional datasets: Delaunay triangulation in SVM algorithms. Mach. Learn. Appl., 2021, 4, 100025.
[http://dx.doi.org/10.1016/j.mlwa.2021.100025]
[19]
Wang, K.; Wu, J.X.; Zhang, H.Y. Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotoxicol. Environ. Saf., 2012, 86, 111-115.
[http://dx.doi.org/10.1016/j.ecoenv.2012.08.026] [PMID: 23062559]
[20]
Reuveni, M.; Sheglov, D. Effects of azoxystrobin, difenoconazole, polyoxin B (polar) and trifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious apple fruit. Crop Prot., 2002, 21(10), 951-955.
[http://dx.doi.org/10.1016/S0261-2194(02)00073-X]
[21]
el-Medany, A.H.; Hagar, H.H. Effect of fluconazole on the fertility of male rabbits. Arzneimittelforschung, 2002, 52(8), 636-640.
[PMID: 12236053]
[22]
Yang, J-D; Liu, S-H; Liao, M-H; Chen, R-M; Liu, P-Y; Ueng, T-H Effects of tebuconazole on cytochrome P450 enzymes, oxidative stress, and endocrine disruption in male rats. 2018, 33(8), 899-907.
[http://dx.doi.org/10.1002/tox.22575]
[23]
Goetz, A.K.; Ren, H.; Schmid, J.E.; Blystone, C.R.; Thillainadarajah, I.; Best, D.S.; Nichols, H.P.; Strader, L.F.; Wolf, D.C.; Narotsky, M.G.; Rockett, J.C.; Dix, D.J. Disruption of testosterone homeostasis as a mode of action for the reproductive toxicity of triazole fungicides in the male rat. Toxicol. Sci., 2007, 95(1), 227-239.
[http://dx.doi.org/10.1093/toxsci/kfl124] [PMID: 17018648]
[24]
Pereira, V.R.; Pereira, D.R.; de Melo Tavares Vieira, K.C.; Ribas, V.P.; Constantino, C.J.L.; Antunes, P.A.; Favareto, A.P.A. Sperm quality of rats exposed to difenoconazole using classical parameters and surface-enhanced Raman scattering: Classification performance by machine learning methods. Environ. Sci. Pollut. Res. Int., 2019, 26(34), 35253-35265.
[http://dx.doi.org/10.1007/s11356-019-06407-0] [PMID: 31701422]
[25]
Wang, J.; Yang, Y.; Huang, Y.; Zhang, X.; Huang, Y.; Qin, W.C.; Wen, Y.; Zhao, Y.H. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues. Ecotoxicol. Environ. Saf., 2020, 203, 111046.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111046] [PMID: 32888614]
[26]
Sucahyo, D.; van Straalen, N.M.; Krave, A.; van Gestel, C.A.M. Acute toxicity of pesticides to the tropical freshwater shrimp Caridina laevis. Ecotoxicol. Environ. Saf., 2008, 69(3), 421-427.
[http://dx.doi.org/10.1016/j.ecoenv.2007.06.003] [PMID: 17629559]
[27]
Bunzel, K.; Liess, M.; Kattwinkel, M. Landscape parameters driving aquatic pesticide exposure and effects. Environ. Pollut., 2014, 186, 90-97.
[http://dx.doi.org/10.1016/j.envpol.2013.11.021] [PMID: 24365537]
[28]
Wang, J.; Wang, J.; Liu, J.; Li, J.; Zhou, L.; Zhang, H.; Sun, J.; Zhuang, S. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms. Environ. Pollut., 2018, 240, 396-402.
[http://dx.doi.org/10.1016/j.envpol.2018.04.117] [PMID: 29753247]
[29]
Lin, K.; Liu, W.; Li, L.; Gan, J. Single and joint acute toxicity of isocarbophos enantiomers to Daphnia magna. J. Agric. Food Chem., 2008, 56(11), 4273-4277.
[http://dx.doi.org/10.1021/jf073535l] [PMID: 18489111]
[30]
Liu, H.; Ye, W.; Zhan, X.; Liu, W. A comparative study of rac- and S-metolachlor toxicity to Daphnia magna. Ecotoxicol. Environ. Saf., 2006, 63(3), 451-455.
[http://dx.doi.org/10.1016/j.ecoenv.2005.02.002] [PMID: 16406594]
[31]
Sakai, M. Chronic toxicity tests with Daphnia magna for examination of river water quality. J. Environ. Sci. Health B, 2001, 36(1), 67-74.
[http://dx.doi.org/10.1081/PFC-100000917] [PMID: 11281256]
[32]
He, L.; Xiao, K.; Zhou, C.; Li, G.; Yang, H.; Li, Z.; Cheng, J. Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna. Ecotoxicol. Environ. Saf., 2019, 173, 285-292.
[http://dx.doi.org/10.1016/j.ecoenv.2019.02.014] [PMID: 30776561]
[33]
Zhende, C.; Mingxiang, F.; Yuwei, Y.; Yuanlin, C.; Zhixin, L. Research on residue dynamics laden in some commonly used pesticides in spinach. J. Health Saf. Environ., 2007, 7(3), 1-4.
[34]
Xuesheng, L.I.; Zhixin, L.U.; Mingzhen, L.I.N.; Huiye, H. Degradation dynamics of triazophos residues in lichee and soil. Southest Chnia J. Agri. Sci., 2005, 18(6), 758-763.
[35]
Xueyan, Z.; Xuefang, D.A.I. Detection and degradation of triazophos in apple. Southest China J. Agricul. Sci., 2007, 20(4), 654-658.
[36]
Mao, X.; Xiao, W.; Wan, Y.; Li, Z.; Luo, D.; Yang, H. Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: Improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables. Food Chem., 2021, 345, 128807.
[http://dx.doi.org/10.1016/j.foodchem.2020.128807] [PMID: 33310261]
[37]
Sun, J.; Zhou, X.; Mao, H.; Wu, X.; Zhang, X.; Li, Q. Discrimination of pesticide residues in lettuce based on chemical molecular structure coupled with wavelet transform and near infrared hyperspectra. J. Food Process Eng., 2017, 40(4), e12509.
[http://dx.doi.org/10.1111/jfpe.12509]
[38]
Sun, J.; Cong, S.; Mao, H.; Wu, X.; Yang, N. Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique. J. Food Process Eng., 2018, 41(2), e12654.
[http://dx.doi.org/10.1111/jfpe.12654]
[39]
Sun, J.; Jin, X.; Mao, H.; Wu, X. Identification of lettuce storage time based on spectral preprocessing technology and PCA plus SVM. J. Pure Appl. Microbiol., 2013, 7, 747-752.
[40]
Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786), 504-507.
[http://dx.doi.org/10.1126/science.1127647] [PMID: 16873662]
[41]
Liu, N.; Kan, J. Plant leaf identification based on the multi-feature fusion and deep belief networks method. J. Beijing For. Univ., 2016, 38(3), 110-119.
[42]
Sarikaya, R.; Hinton, G.E.; Ramabhadran, B. Deep belief nets for natural language call-routing. International Conference on Acoustics Speech and Signal Processing ICASSP; IEEE: New York, 2011, pp. 5680-5683.
[43]
Zhou, Z.; He, D.; Zhang, H.; Lei, Y.; Su, D.; Chen, K. Non-destructive detection of moldy core in apple fruit based on deep belief network. Shipin Kexue, 2017, 38(14), 297-303.
[44]
Dedinec, A.; Filiposka, S.; Dedinec, A.; Kocarev, L. Deep belief network based electricity load forecasting: An analysis of Macedonian case. Energy, 2016, 115, 1688-1700.
[http://dx.doi.org/10.1016/j.energy.2016.07.090]
[45]
Wu, M.; Sun, J.; Lu, B.; Ge, X.; Zhou, X.; Zou, M. Application of deep brief network in transmission spectroscopy detection of pesticide residues in lettuce leaves. J. Food Process Eng., 2019, 42(3), e13005.
[http://dx.doi.org/10.1111/jfpe.13005]
[46]
Aw, T.G.; Wengert, S.; Rose, J.B. Metagenomic analysis of viruses associated with field-grown and retail lettuce identifies human and animal viruses. Int. J. Food Microbiol., 2016, 223, 50-56.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.02.008] [PMID: 26894328]
[47]
Chadwick, M.; Gawthrop, F.; Michelmore, R.W.; Wagstaff, C.; Methven, L. Perception of bitterness, sweetness and liking of different genotypes of lettuce. Food Chem., 2016, 197(Pt A), 66-74.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.105] [PMID: 26616925]
[48]
Nachman, R.J.; Holman, G.M.; Haddon, W.F. Leads for insect neuropeptide mimetic development. Arch. Insect Biochem. Physiol., 1993, 22(1-2), 181-197.
[http://dx.doi.org/10.1002/arch.940220115] [PMID: 8431596]
[49]
Schoofs, L.; Broeck, J.V.; De Loof, A. The myotropic peptides of Locusta migratoria: Structures, distribution, functions and receptors. Insect Biochem. Mol. Biol., 1993, 23(8), 859-881.
[http://dx.doi.org/10.1016/0965-1748(93)90104-Z] [PMID: 8220386]
[50]
Raina, A.K.; Klun, J.A. Brain factor control of sex pheromone production in the female corn earworm moth. Science, 1984, 225(4661), 531-533.
[http://dx.doi.org/10.1126/science.225.4661.531] [PMID: 17750856]
[51]
Agrawal, P.; Kumar, S.; Singh, A.; Raghava, G.P.S.; Singh, I.K. NeuroPIpred: a tool to predict, design and scan insect neuropeptides. Sci. Rep., 2019, 9(1), 5129.
[http://dx.doi.org/10.1038/s41598-019-41538-x] [PMID: 30914676]
[52]
Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev., 2021, 40, 100378.
[http://dx.doi.org/10.1016/j.cosrev.2021.100378]
[53]
Zhan-qi, R.E.N.; Zhen-hong, R.A.O.; Hai-yan, J.I. Identification of different concentrations pesticide residues of dimethoate on spinach leaves by hyperspectral image technology. IFAC-PapersOnLine, 2018, 51(17), 758-763.
[http://dx.doi.org/10.1016/j.ifacol.2018.08.104]
[54]
Benigni, R.; Richard, A.M. QSARS of mutagens and carcinogens: Two case studies illustrating problems in the construction of models for noncongeneric chemicals. Mutat. Res. Genet. Toxicol. Test., 1996, 371(1-2), 29-46.
[http://dx.doi.org/10.1016/S0165-1218(96)90092-0] [PMID: 8950348]
[55]
Cronin, M.T.D.; Schultz, T.W. Structure-toxicity relationships for phenols to Tetrahymena pyriformis. Chemosphere, 1996, 32(8), 1453-1468.
[http://dx.doi.org/10.1016/0045-6535(96)00054-9] [PMID: 8653384]
[56]
Mekenyan, O.G.; Veith, G.D. Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity. SAR QSAR Environ. Res., 1993, 1(4), 335-344.
[http://dx.doi.org/10.1080/10629369308029895] [PMID: 8790637]
[57]
Martin, T.M.; Young, D.M.; Lilavois, C.R.; Barron, M.G. Comparison of global and mode of action-based models for aquatic toxicity. SAR QSAR Environ. Res., 2015, 26(3), 245-262.
[http://dx.doi.org/10.1080/1062936X.2015.1018939] [PMID: 25783870]
[58]
Engelman, C.A.; Grant, W.E.; Mora, M.A.; Woodin, M. Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study. Ecol. Modell., 2012, 224(1), 90-102.
[http://dx.doi.org/10.1016/j.ecolmodel.2011.10.017]
[59]
Humann-Guilleminot, S.; Tassin de Montaigu, C.; Sire, J.; Grünig, S.; Gning, O.; Glauser, G.; Vallat, A.; Helfenstein, F. A sublethal dose of the neonicotinoid insecticide acetamiprid reduces sperm density in a songbird. Environ. Res., 2019, 177, 108589.
[http://dx.doi.org/10.1016/j.envres.2019.108589] [PMID: 31330492]
[60]
Banjare, P.; Singh, J.; Roy, P.P. Predictive classification-based QSTR models for toxicity study of diverse pesticides on multiple avian species. Environ. Sci. Pollut. Res. Int., 2021, 28(14), 17992-18003.
[http://dx.doi.org/10.1007/s11356-020-11713-z] [PMID: 33410022]
[61]
Weng, S.; Qiu, M.; Dong, R.; Wang, F.; Huang, L.; Zhang, D.; Zhao, J. Fast detection of fenthion on fruit and vegetable peel using dynamic surface-enhanced Raman spectroscopy and random forests with variable selection. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 200, 20-25.
[http://dx.doi.org/10.1016/j.saa.2018.04.012] [PMID: 29660678]
[62]
Blair, A; Ritz, B; Wesseling, C; Beane F.L. Pesticides and human health. Occup. Environ. Med., 2015, 72(2), 81-82.
[http://dx.doi.org/10.1136/oemed-2014-102454]
[63]
Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Plant, Soil and Microbes; Springer: Berlin, 2016, pp. 253-269.
[http://dx.doi.org/10.1007/978-3-319-27455-3_13]
[64]
Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur., 2017, 6(2), 48-60.
[http://dx.doi.org/10.1002/fes3.108]
[65]
Vaz, W.F.; D’Oliveira, G.D.C.; Perez, C.N.; Neves, B.J.; Napolitano, H.B. Machine learning prediction of the potential pesticide applicability of three dihydroquinoline derivatives: Syntheses, crystal structures and physical properties. J. Mol. Struct., 2020, 1206, 127732.
[http://dx.doi.org/10.1016/j.molstruc.2020.127732]
[66]
Weyer, P.J.; Cerhan, J.R.; Kross, B.C.; Hallberg, G.R.; Kantamneni, J.; Breuer, G.; Jones, M.P.; Zheng, W.; Lynch, C.F. Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women’s Health Study. Epidemiology, 2001, 12(3), 327-338.
[http://dx.doi.org/10.1097/00001648-200105000-00013] [PMID: 11338313]
[67]
Adelana, SMA Nitrate Health Effects. Water Encyclopedia; Wiley: New Jersey, USA, 2005, pp. 30-42.
[http://dx.doi.org/10.1002/047147844X.dw21]
[68]
Schullehner, J; Hansen, B; Thygesen, M; Pedersen, CB; Sigsgaard, T. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study. Int. J. Cancer, 2018, 143(1), 73-79.
[http://dx.doi.org/10.1002/ijc.31306]
[69]
Centers for Disease Control and Prevention (CDC). Spontaneous abortions possibly related to ingestion of nitrate-contaminated well water--LaGrange County, Indiana, 1991-1994. MMWR Morb. Mortal. Wkly. Rep., 1996, 45(26), 569-572.
[PMID: 9132576]
[70]
Bedi, S.; Samal, A.; Ray, C.; Snow, D. Comparative evaluation of machine learning models for groundwater quality assessment. Environ. Monit. Assess., 2020, 192(12), 776.
[http://dx.doi.org/10.1007/s10661-020-08695-3] [PMID: 33219864]
[71]
Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; San Francisco, California, USA , 2016, pp. 785-94.
[http://dx.doi.org/10.1145/2939672.2939785]
[72]
Amsaraj, R.; Mutturi, S. Real-coded GA coupled to PLS for rapid detection and quantification of tartrazine in tea using FT-IR spectroscopy. Lebensm. Wiss. Technol., 2021, 139, 110583.
[http://dx.doi.org/10.1016/j.lwt.2020.110583]
[73]
Luo, N.; Han, P.; Wang, S.; Wang, D.; Zhao, C. Near-infrared spectroscopy analytical model using ensemble partial least squares regression. Anal. Lett., 2019, 52(11), 1732-1756.
[http://dx.doi.org/10.1080/00032719.2019.1568447]
[74]
Todeschini, R; Consonni, V; Mauri, A DRAGON-Software for the calculation of molecular descriptors. Math. Commun. Comput. Chem., 2006, 56, 237-248.
[75]
Khan, K.; Khan, P.M.; Lavado, G.; Valsecchi, C.; Pasqualini, J.; Baderna, D.; Marzo, M.; Lombardo, A.; Roy, K.; Benfenati, E. QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors. Chemosphere, 2019, 229, 8-17.
[http://dx.doi.org/10.1016/j.chemosphere.2019.04.204] [PMID: 31063877]
[76]
Soares Rodrigues, G.C.; Maia, M.S.; Silva Cavalcanti, A.B.; Costa Barros, R.P.; Scotti, L.; Cespedes-Acuña, C.L.; Muratov, E.N.; Scotti, M.T. Computer-assisted discovery of compounds with insecticidal activity against Musca domestica and Mythimna separata. Food Chem. Toxicol., 2021, 147, 111899.
[http://dx.doi.org/10.1016/j.fct.2020.111899] [PMID: 33279675]
[77]
Wang, M.; Li, X.; Chen, M.; Wu, X.; Mi, Y.; Kai, Z.; Yang, X. 3D-QSAR based optimization of insect neuropeptide allatostatin analogs. Bioorg. Med. Chem. Lett., 2019, 29(7), 890-895.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.001] [PMID: 30765188]
[78]
Mahajna, M.; Quistad, G.B.; Casida, J.E. Acephate insecticide toxicity: Safety conferred by inhibition of the bioactivating carboxyamidase by the metabolite methamidophos. Chem. Res. Toxicol., 1997, 10(1), 64-69.
[http://dx.doi.org/10.1021/tx9601420] [PMID: 9074804]
[79]
Temerowski, M.; Vanderstaay, F. Absence of long-term behavioral effects after sub-chronic administration of low doses of methamidophos in male and female rats. Neurotoxicol. Teratol., 2005, 27(2), 279-297.
[http://dx.doi.org/10.1016/j.ntt.2004.12.004] [PMID: 15734279]
[80]
Song, S.; Huang, H.; Chen, Z.; Wei, J.; Deng, C.; Tan, H.; Li, X. Representative commodity for six leafy vegetables based on the determination of six pesticide residues by gas chromatography. Acta Chromatogr., 2019, 31(1), 49-56.
[http://dx.doi.org/10.1556/1326.2017.00345]
[81]
Pagliano, E.; Mester, Z. Determination of elevated levels of nitrate in vegetable powders by high-precision isotope dilution GC–MS. Food Chem., 2019, 286, 710-714.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.048] [PMID: 30827668]
[82]
Mrzlikar, M; Heath, D; Heath, E; Markelj, J; Borovšak, AK; Prosen, HJL Investigation of neonicotinoid pesticides in Slovenian honey by LC-MS/MS. LWT, 2019, 104, 45-52.
[http://dx.doi.org/10.1016/j.lwt.2019.01.017]
[83]
Rascón, A.J.; Azzouz, A.; Ballesteros, E. Trace level determination of polycyclic aromatic hydrocarbons in raw and processed meat and fish products from European markets by GC-MS. Food Control, 2019, 101, 198-208.
[http://dx.doi.org/10.1016/j.foodcont.2019.02.037]
[84]
Akkaya, E.; Bozyiğit, G.D.; Bakirdere, S. Simultaneous determination of 4-tert-octylphenol, chlorpyrifos-ethyl and penconazole by GC–MS after sensitive and selective preconcentration with stearic acid coated magnetic nanoparticles. Microchem. J., 2019, 146, 1190-1194.
[http://dx.doi.org/10.1016/j.microc.2019.01.077]
[85]
Weng, S.; Zhu, W.; Li, P.; Yuan, H.; Zhang, X.; Zheng, L.; Zhao, J.; Huang, L.; Han, P. Dynamic surface-enhanced Raman spectroscopy for the detection of acephate residue in rice by using gold nanorods modified with cysteamine and multivariant methods. Food Chem., 2020, 310, 125855.
[http://dx.doi.org/10.1016/j.foodchem.2019.125855] [PMID: 31735463]
[86]
Weng, S.; Wang, F.; Dong, R.; Qiu, M.; Zhao, J.; Huang, L.; Zhang, D. Fast and quantitative analysis of ediphenphos residue in rice using surface-enhanced raman spectroscopy. J. Food Sci., 2018, 83(4), 1179-1185.
[http://dx.doi.org/10.1111/1750-3841.14103] [PMID: 29538797]
[87]
Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3), 489-501.
[http://dx.doi.org/10.1016/j.neucom.2005.12.126]
[88]
Chen, H.; Tan, C.; Lin, Z. Ensemble of extreme learning machines for multivariate calibration of near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229, 117982.
[http://dx.doi.org/10.1016/j.saa.2019.117982] [PMID: 31935651]
[89]
Golden, R.M. Neural networks: A comprehensive foundation - Haykin, S. J. Math. Psychol., 1997, 41(3), 287-292.
[http://dx.doi.org/10.1006/jmps.1997.1164]
[90]
Hassan, M.M.; Li, H.; Ahmad, W.; Zareef, M.; Wang, J.; Xie, S.; Wang, P.; Ouyang, Q.; Wang, S.; Chen, Q. Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. Lebensm. Wiss. Technol., 2019, 105, 290-297.
[http://dx.doi.org/10.1016/j.lwt.2019.02.016]
[91]
Zhu, J.; Sharma, A.S.; Xu, J.; Xu, Y.; Jiao, T.; Ouyang, Q.; Li, H.; Chen, Q. Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 246, 118994.
[http://dx.doi.org/10.1016/j.saa.2020.118994] [PMID: 33038862]
[92]
Mekonnen, M.L.; Chen, C.H.; Osada, M.; Su, W.N.; Hwang, B.J. Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 225, 117484.
[http://dx.doi.org/10.1016/j.saa.2019.117484] [PMID: 31521003]
[93]
Oliveira, M.J.S.; Rubira, R.J.G.; Furini, L.N.; Batagin-Neto, A.; Constantino, C.J.L. Detection of thiabendazole fungicide/parasiticide by SERS: Quantitative analysis and adsorption mechanism. Appl. Surf. Sci., 2020, 517, 145786.
[http://dx.doi.org/10.1016/j.apsusc.2020.145786]
[94]
Li, H.; Mehedi Hassan, M.; Wang, J.; Wei, W.; Zou, M.; Ouyang, Q.; Chen, Q. Investigation of nonlinear relationship of surface enhanced Raman scattering signal for robust prediction of thiabendazole in apple. Food Chem., 2021, 339, 127843.
[http://dx.doi.org/10.1016/j.foodchem.2020.127843] [PMID: 32889134]
[95]
Gawarammana, I.; Buckley, N.A.; Mohamed, F.; Naser, K.; Jeganathan, K.; Ariyananada, P.L.; Wunnapuk, K.; Dobbins, T.A.; Tomenson, J.A.; Wilks, M.F.; Eddleston, M.; Dawson, A.H. High-dose immunosuppression to prevent death after paraquat self-poisoning – a randomised controlled trial. Clin. Toxicol., 2018, 56(7), 633-639.
[http://dx.doi.org/10.1080/15563650.2017.1394465] [PMID: 29098875]
[96]
Zhang, Z.D.; Yang, Y.J.; Liu, X.W.; Qin, Z.; Li, S.H.; Li, J.Y. Aspirin eugenol ester ameliorates paraquat-induced oxidative damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway. Toxicology, 2021, 453, 152721.
[http://dx.doi.org/10.1016/j.tox.2021.152721] [PMID: 33592258]
[97]
Wen, C.; Lin, F.; Huang, B.; Zhang, Z.; Wang, X.; Ma, J.; Lin, G.; Chen, H.; Hu, L. Metabolomics analysis in acute paraquat poisoning patients based on UPLC-Q-TOF-MS and machine learning approach. Chem. Res. Toxicol., 2019, 32(4), 629-637.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00328] [PMID: 30807114]
[98]
Elliott, M.; Farnham, A.W.; Janes, N.F.; Needham, P.H.; Pulman, D.A. Synthetic insecticide with a new order of activity. Nature, 1974, 248(5450), 710-711.
[http://dx.doi.org/10.1038/248710a0] [PMID: 4833277]
[99]
Sayyed, AH; Attique, MNR; Khaliq, A; Wright, DJ Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Pest. Manag. Sci., 2005, 61(7), 636-642.
[http://dx.doi.org/10.1002/ps.1031] [PMID: 15712350]
[100]
Li, Q.; Huang, Y.; Zhang, J.; Min, S. A fast determination of insecticide deltamethrin by spectral data fusion of UV–vis and NIR based on extreme learning machine. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 247, 119119.
[http://dx.doi.org/10.1016/j.saa.2020.119119] [PMID: 33157400]
[101]
Fang, G.; Yang, Y.; Zhu, H.; Qi, Y.; Liu, J.; Liu, H.; Wang, S. Development and application of molecularly imprinted quartz crystal microbalance sensor for rapid detection of metolcarb in foods. Sens. Actuators B Chem., 2017, 251, 720-728.
[http://dx.doi.org/10.1016/j.snb.2017.05.094]
[102]
Mickova, B.; Zrostlikova, J.; Hajslova, J.; Rauch, P.; Moreno, M.J.; Abad, A.; Montoya, A. Correlation study of enzyme-linked immunosorbent assay and high-performance liquid chromatography/tandem mass spectrometry for the determination of N-methylcarbamate insecticides in baby food. Anal. Chim. Acta, 2003, 495(1-2), 123-132.
[http://dx.doi.org/10.1016/j.aca.2003.08.022]
[103]
Bazrafshan, A.A.; Ghaedi, M.; Rafiee, Z.; Hajati, S.; Ostovan, A. Nano-sized molecularly imprinted polymer for selective ultrasound-assisted microextraction of pesticide Carbaryl from water samples: Spectrophotometric determination. J. Colloid Interface Sci., 2017, 498, 313-322.
[http://dx.doi.org/10.1016/j.jcis.2017.03.076] [PMID: 28343129]
[104]
Derbalah, A.; Sunday, M.; Kato, R.; Takeda, K.; Sakugawa, H. Photoformation of reactive oxygen species and their potential to degrade highly toxic carbaryl and methomyl in river water. Chemosphere, 2020, 244, 125464.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125464] [PMID: 31790988]
[105]
Wang, J.; Wang, S.; Liu, N.; Shang, F. A detection method of two carbamate pesticides residues on tomatoes utilizing excitation-emission matrix fluorescence technique. Microchem. J., 2021, 164, 105920.
[http://dx.doi.org/10.1016/j.microc.2021.105920]
[106]
Bian, H.; Yao, H.; Lin, G.; Yu, Y.; Chen, R.; Wang, X.; Ji, R.; Yang, X.; Zhu, T.; Ju, Y. Multiple kinds of pesticides detection based on back-propagation neural network analysis of fluorescence spectra. IEEE Photonics J., 2020, 12(2), 1-9.
[http://dx.doi.org/10.1109/JPHOT.2020.2973653]
[107]
Hua, C.; Xia, S.; Biyao, X.; Baozhang, L.; Hong, L. Rapid quantitative risk assessment of major pathogenic bacteria in food sold in Shanghai. Mod. Prev. Med., 2019, 46(10), 1757-1760.
[108]
Ajona, M.; Vasanthi, P.; Vijayan, D.S. Application of multiple linear and polynomial regression in the sustainable biodegradation process of crude oil. Sustain. Energy Technol. Assess., 2022, 54, 102797.
[http://dx.doi.org/10.1016/j.seta.2022.102797]
[109]
Gosmann, L.; Geitner, C.; Wieler, N. Data-driven forward osmosis model development using multiple linear regression and artificial neural networks. Comput. Chem. Eng., 2022, 165, 107933.
[http://dx.doi.org/10.1016/j.compchemeng.2022.107933]
[110]
Galimberti, F.; Moretto, A.; Papa, E. Application of chemometric methods and QSAR models to support pesticide risk assessment starting from ecotoxicological datasets. Water Res., 2020, 174, 115583.
[http://dx.doi.org/10.1016/j.watres.2020.115583] [PMID: 32092543]
[111]
Pandey, S.K.; Ojha, P.K.; Roy, K. Exploring QSAR models for assessment of acute fish toxicity of environmental transformation products of pesticides (ETPPs). Chemosphere, 2020, 252, 126508.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126508] [PMID: 32240857]
[112]
Sigurnjak Bureš, M.; Ukić, Š.; Cvetnić, M.; Prevarić, V.; Markić, M.; Rogošić, M.; Kušić, H.; Bolanča, T. Toxicity of binary mixtures of pesticides and pharmaceuticals toward Vibrio fischeri: Assessment by quantitative structure-activity relationships. Environ. Pollut., 2021, 275, 115885.
[http://dx.doi.org/10.1016/j.envpol.2020.115885] [PMID: 33581639]
[113]
Qin, L.T.; Chen, Y.H.; Zhang, X.; Mo, L.Y.; Zeng, H.H.; Liang, Y.P. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere, 2018, 198, 122-129.
[http://dx.doi.org/10.1016/j.chemosphere.2018.01.142] [PMID: 29421720]
[114]
Rojas, C.; Aranda, J.F.; Pacheco Jaramillo, E.; Losilla, I.; Tripaldi, P.; Duchowicz, P.R.; Castro, E.A. Foodinformatic prediction of the retention time of pesticide residues detected in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Food Chem., 2021, 342, 128354.
[http://dx.doi.org/10.1016/j.foodchem.2020.128354] [PMID: 33268165]
[115]
Sangion, A.; Gramatica, P. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity. Environ. Int., 2016, 95, 131-143.
[http://dx.doi.org/10.1016/j.envint.2016.08.008] [PMID: 27568576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy