Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Review Article

Effect-Directed Assays and Biological Detection Approaches Coupled with Thin-Layer Chromatography as an Evolving Hyphenated Technique: A Comprehensive Review

Author(s): Zoya Siddiquee, Rabea Parveen and Sayeed Ahmad*

Volume 26, Issue 15, 2023

Published on: 18 May, 2023

Page: [2679 - 2717] Pages: 39

DOI: 10.2174/1386207326666230406083555

Price: $65

conference banner
Abstract

Background: Bioautography is a technique for the detection of biological activity that combines the elements of planar chromatography. Its hyphenated variants are widely used in the screening of natural products possessing biological activity. It can be used in the activity-based screening of phytochemical ingredients by employing various enzyme processes and reactions and facilitates the rapid determination of bioactive compounds in pant samples.

Objective: To give a comprehensive overview of effect-directed assays and biological detection approaches used in conjugation with thin layer chromatography technique. The present review article attempts to throw light on the various aspects of bioautography, including its types and applications, thereby giving its concise overview and its relevance in the field of natural product screening.

Methods: Various search engines were used for the literature survey, including Google Scholar, Semantic Scholar, PubMed, ResearchGate and Scopus.

Results: Bioautography has wide-ranging uses in the screening of compounds such as antioxidants, antifungals, antimicrobials, estrogenic, antitumors, and various enzyme inhibitors compounds like α and β-glucosidase inhibitors and α-amylase inhibitors.

Conclusion: Bioautography serves to be an effective tool for the isolation of bioactive phytochemicals, thereby allowing us to scientifically validate the biological activities of various compounds, which can then be utilized for making potent medications for various diseases.

Graphical Abstract

[1]
Khan, M.A.; Srivastava, V.; Kabir, M.; Samal, M.; Insaf, A.; Ibrahim, M.; Zahiruddin, S.; Ahmad, S. Development of synergy-based combination for learning and memory using in vitro, in vivo and TLC-MS-bioautographic studies. Front. Pharmacol., 2021, 12, 678611.
[http://dx.doi.org/10.3389/fphar.2021.678611] [PMID: 34276370]
[2]
Gaurav; Zahiruddin, S.; Parveen, B.; Ibrahim, M.; Sharma, I.; Sharma, S.; Sharma, A.K.; Parveen, R.; Ahmad, S. TLC-MS bioautography-based identification of free-radical scavenging, A-amylase, and A-glucosidase inhibitor compounds of antidiabetic tablet BGR-34. ACS Omega, 2020.
[http://dx.doi.org/10.1021/acsomega.0c02995]
[3]
Parveen, R.; Khan, N.; Zahiruddin, S.; Ibrahim, M.; Anjum, V.; Parveen, B.; Khan, M.A. TLC-bioautographic evaluation for high-throughput screening and identification of free radical scavenging and antidiabetic compounds from Traditional Unani medicinal plant: Citrullus colocynthis schrad. J. AOAC Int., 2021.
[http://dx.doi.org/10.5740/jaoacint.19-0287] [PMID: 31570115]
[4]
Khan, A.; Zahiruddin, S.; Ibrahim, M.; Basist, P. Thin layer chromatography-mass spectrometry bioautographic identification of free radical scavenging compounds and metabolomic profile of Carica Papaya Linn. fruit and seeds using high-performance thin-layer chromatography, gas chromatography-mass spectro. Pharmacogn. Mag., 2021.
[http://dx.doi.org/10.4103/pm.pm_326_20]
[5]
Wang, M.; Zhang, Y.; Wang, R.; Wang, Z.; Yang, B.; Kuang, H. An evolving technology that integrates classical methods with continuous technological developments: Thin-layer chromatography bioautography. Molecules, 2021, 26(15), 4647.
[http://dx.doi.org/10.3390/molecules26154647] [PMID: 34361800]
[6]
Choma, I.; Jesionek, W. Effects-directed biological detection: Bioautography. In: Instrumental Thin-Layer Chromatography; , 2015, pp. 279-312.
[http://dx.doi.org/10.1016/B978-0-12-417223-4.00011-X]
[7]
Brack, W.; Ulrich, N.; Bataineh, M. Separation Techniques in Effect-Directed Analysis. In: The Handbook of Environmental Chemistry; Springer: Berlin, 2011.
[http://dx.doi.org/10.1007/978-3-642-18384-3_5]
[8]
Weller, M.G. A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors, 2012, 12(7), 9181-9209.
[http://dx.doi.org/10.3390/s120709181]
[9]
Ballesteros-Gómez, A.; Rubio, S. Recent advances in environmental analysis. Anal. Chem., 2011, 83(12), 4579-4613.
[http://dx.doi.org/10.1021/ac200921j] [PMID: 21495714]
[10]
Schymanski, E.L.; Bataineh, M.; Goss, K.U.; Brack, W. Integrated analytical and computer tools for structure elucidation in effect-directed analysis. Trends Analyt. Chem., 2009, 28(5), 550-561.
[http://dx.doi.org/10.1016/j.trac.2009.03.001]
[11]
Müller, M.B.; Dausend, C.; Weins, C.; Frimmel, F.H. A new bioautographic screening method for the detection of estrogenic compounds. Chromatographia, 2004, 60, 207-211.
[http://dx.doi.org/10.1365/s10337-004-0315-8]
[12]
Grzelak, E.M.; Jesionek, W.; Majer-Dziedzic, B.; Choma, I.M. Applications of novel direct bioautography tests for analysis of antimicrobials: A review. J. AOAC Int., 2013, 96(6), 1167-1174.
[http://dx.doi.org/10.5740/jaoacint.SGEGrzelak] [PMID: 24645491]
[13]
Choma, I. The use of thin-layer chromatography with direct bioautography for antimicrobial analysis. LC GC Eur., 2005.
[14]
Weins, C. Overview of bioactivity-based analysis by HPTLC. Bridging the gap between cause and effect — HPTLC detection of bioactive compounds in the environment and in food. J. Planar Chromatogr. Mod. TLC, 2008, 21(6), 405-410.
[http://dx.doi.org/10.1556/JPC.21.2008.6.2]
[15]
Botz, L.; Nagy, S.; Kocsis, B. Detection of Microbiologically Active Compounds. In: Planar chromatography a retrospective view for the third millennium; Springer: Budapest, 2001.
[16]
Morlock, G.; Schwack, W. Hyphenations in planar chromatography. J. Chromatogr. A, 2010, 1217(43), 6600-6609.
[http://dx.doi.org/10.1016/j.chroma.2010.04.058] [PMID: 20493491]
[17]
Choma, I.M.; Grzelak, E.M. Bioautography detection in thin-layer chromatography. J. Chromatogr. A, 2011, 1218(19), 2684-2691.
[http://dx.doi.org/10.1016/j.chroma.2010.12.069] [PMID: 21232747]
[18]
Marston, A. Thin-layer chromatography with biological detection in phytochemistry. J. Chromatogr. A, 2011, 1218(19), 2676-2683.
[http://dx.doi.org/10.1016/j.chroma.2010.12.068] [PMID: 21236438]
[19]
Dewanjee, S.; Gangopadhyay, M.; Bhattacharya, N.; Khanra, R.; Dua, T.K. Bioautography and its scope in the field of natural product chemistry. J. Pharm. Anal., 2015, 5(2), 75-84.
[http://dx.doi.org/10.1016/j.jpha.2014.06.002] [PMID: 29403918]
[20]
Grzelak, E.M.; Hwang, C.; Cai, G.; Nam, J.W.; Choules, M.P.; Gao, W.; Lankin, D.C.; McAlpine, J.B.; Mulugeta, S.G.; Napolitano, J.G.; Suh, J.W.; Yang, S.H.; Cheng, J.; Lee, H.; Kim, J.Y.; Cho, S.H.; Pauli, G.F.; Franzblau, S.G.; Jaki, B.U. Bioautography with TLC-MS/NMR for rapid discovery of anti-tuberculosis lead compounds from natural sources. ACS Infect. Dis., 2016, 2(4), 294-301.
[http://dx.doi.org/10.1021/acsinfecdis.5b00150] [PMID: 27478868]
[21]
Móricz, Á.M.; Häbe, T.T.; Ott, P.G.; Morlock, G.E. Comparison of high-performance thin-layer with overpressured layer chromatography combined with direct bioautography and direct analysis in real time mass spectrometry for tansy root. J. Chromatogr. A, 2019, 1603, 355-360.
[http://dx.doi.org/10.1016/j.chroma.2019.03.068] [PMID: 30975527]
[22]
Aerts, M.M.L.; Hogenboom, A.C.; Brinkman, U.A.T. Analytical strategies for the screening of veterinary drugs and their residues in edible products. J. Chromatogr., Biomed. Appl., 1995, 667(1), 1-40.
[http://dx.doi.org/10.1016/0378-4347(95)00021-A] [PMID: 7663672]
[23]
Fischer, R.; Lautner, H. On the paper chromatographic detection of penicillin preparations. Arch. Pharm., 1961, 294(1), 1-7.
[http://dx.doi.org/10.1002/ardp.19612940102] [PMID: 13699864]
[24]
Nicolaus, B.J.R.; Coronelli, C.; Binaghi, A. Microbiological determination of antibiotics by thin layer chromatograms. Farm; Ed. Prat, 1961, pp. 349-370.
[25]
Betina, V. Bioautography in paper and thin-layer chromatography and its scope in the antibiotic field. J. Chromatogr. A, 1973, 78(1), 41-51.
[http://dx.doi.org/10.1016/S0021-9673(01)99035-1] [PMID: 4196856]
[26]
Ramallo, I.A.; Salazar, M.O.; Furlan, R.L.E. Enzymatic Bioautographic Methods. In: Methods in Molecular Biology; Humana: New York, NY, 2020, pp. 179-189.
[http://dx.doi.org/10.1007/978-1-0716-0163-1_12]
[27]
Marston, A.; Maillard, M.; Hostettmann, K. A TLC bioautographic method for the detection of alpha- and beta-glucosidase inhibitors in plant extracts. Phytochem. Anal., 1990, 20(6), 511-515.
[http://dx.doi.org/10.1002/pca.1154] [PMID: 19774543]
[28]
Hostettmann, K.; Terreaux, C.; Marston, A.; Potterat, O. The role of planar chromatography in the rapid screening and isolation of bioactive compounds from medicinal plants. JPC-J PLANAR CHROMAT., 1997, 10(4), 251-257.
[29]
Zang, Y.; Cheng, Z.; Wu, T. TLC bioautography on screening of bioactive natural products: An update review. Curr. Anal. Chem., 2018.
[http://dx.doi.org/10.2174/1573411015666181224145346]
[30]
Goodall, R.R.; Levi, A.A. A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture. Nature, 1946, 158(4019), 675-676.
[http://dx.doi.org/10.1038/158675a0] [PMID: 20274358]
[31]
Cieśla, Ł.M.; Waksmundzka-Hajnos, M.; Wojtunik, K.A.; Hajnos, M. Thin-layer chromatography coupled with biological detection to screen natural mixtures for potential drug leads. Phytochem. Lett., 2015, 11, 445-454.
[http://dx.doi.org/10.1016/j.phytol.2015.02.005]
[32]
Houghton, P.J. Use of small scale bioassays in the discovery of novel drugs from natural sources. Phytother. Res., 2000, 14(6), 419-423.
[http://dx.doi.org/10.1002/1099-1573(200009)14:6<419:AID-PTR720>3.0.CO;2-2] [PMID: 10960894]
[33]
Jan, B.; Zahiruddin, S.; Basist, P.; Umar Khan, M.; Abass, S.; Prasad Dewangan, R.; Ahmad, S. Separation and identification of antioxidant and antihyperglycemic constituents from Morus Alba infusion by TLC-MS-bioautography and UPLC-MS. J. Food Nutr. Res., 2021, 9(12), 670-690.
[http://dx.doi.org/10.12691/jfnr-9-12-8]
[34]
Choma, I.; Jesionek, W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography, 2015, 2(2), 225-238.
[http://dx.doi.org/10.3390/chromatography2020225]
[35]
Krüzselyi, D.; Vetter, J.; Ott, P.G.; Móricz, Á.M. Investigation of antibacterial components of button mushroom (Agaricus bisporus) by direct bioautography and HPLC–DAD–MS. J. Liq. Chromatogr. Relat. Technol., 2016, 39(5-6), 298-302.
[http://dx.doi.org/10.1080/10826076.2016.1163469]
[36]
Wedge, D.E.; Galindo, J.C.G.; Macías, F.A. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry, 2000, 53(7), 747-757.
[http://dx.doi.org/10.1016/S0031-9422(00)00008-X] [PMID: 10783981]
[37]
Mackeen, M.M.; Ali, A.M.; Lajis, N.H.; Kawazu, K.; Kikuzaki, H.; Nakatani, N. Antifungal garcinia acid esters from the fruits of Garcinia Atroviridis. Z. Naturforsch. C J. Biosci., 2002, 57(3-4), 291-295.
[http://dx.doi.org/10.1515/znc-2002-3-416]
[38]
Komape, N.P.M.; Bagla, V.P.; Kabongo-Kayoka, P.; Masoko, P. Anti-mycobacteria potential and synergistic effects of combined crude extracts of selected medicinal plants used by Bapedi traditional healers to treat tuberculosis related symptoms in Limpopo Province, South Africa. BMC Complement. Altern. Med., 2017, 17(1), 128.
[http://dx.doi.org/10.1186/s12906-016-1521-2] [PMID: 28235402]
[39]
Suleiman, M.M.; McGaw, L.I.; Naidoo, V.; Eloff, J. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. Afr. J. Tradit. Complement. Altern. Med., 2010, 7(1)
[http://dx.doi.org/10.4314/ajtcam.v7i1.57269]
[40]
Nuthan, B.R.; Rakshith, D.; Marulasiddaswamy, K.M.; Rao, H.C.Y.; Ramesha, K.P.; Mohana, N.C.; Siddappa, S.; Darshan, D.; Kumara, K.K.S.; Satish, S. Application of optimized and validated agar overlay TLC–bioautography assay for detecting the antimicrobial metabolies of pharmaceutical interest. J. Chromatogr. Sci., 2020, 58(8), 737-746.
[http://dx.doi.org/10.1093/chromsci/bmaa045]
[41]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[42]
Agatonovic-Kustrin, S.; Kustrin, E.; Gegechkori, V.; Morton, D.W. Bioassay-guided identification of α-amylase inhibitors in herbal extracts. J. Chromatogr. A, 2020, 1620, 460970.
[http://dx.doi.org/10.1016/j.chroma.2020.460970] [PMID: 32089291]
[43]
Hubert, J.; Nuzillard, J.M.; Renault, J.H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev., 2017, 16(1), 55-95.
[http://dx.doi.org/10.1007/s11101-015-9448-7]
[44]
Taha, M.N.; Krawinkel, M.B.; Morlock, G.E. High-performance thin-layer chromatography linked with (bio)assays and mass spectrometry – A suited method for discovery and quantification of bioactive components? Exemplarily shown for turmeric and milk thistle extracts. J. Chromatogr. A, 2015, 1394, 137-147.
[http://dx.doi.org/10.1016/j.chroma.2015.03.029] [PMID: 25846263]
[45]
Study on fast detecting and tracking of antibacterial active components for endophytic fungi in Pseudolarix Kaempferi Gord with 2D-TLC bioautography. Shipin Kexue, 2008, 252-256.
[46]
Feider, C.L.; Krieger, A.; DeHoog, R.J.; Eberlin, L.S. Ambient ionization mass spectrometry: Recent developments and applications. Anal. Chem., 2019, 91(7), 4266-4290.
[http://dx.doi.org/10.1021/acs.analchem.9b00807] [PMID: 30790515]
[47]
Patra, J.K.; Gouda, S.; Sahoo, S.K.; Thatoi, H.N. Chromatography separation, 1H NMR analysis and bioautography screening of methanol extract of Excoecaria agallocha L. from Bhitarkanika, Orissa, India. Asian Pac. J. Trop. Biomed., 2012, 2(1), S50-S56.
[http://dx.doi.org/10.1016/S2221-1691(12)60129-4]
[48]
Adhami, H.R.; Scherer, U.; Kaehlig, H.; Hettich, T.; Schlotterbeck, G.; Reich, E.; Krenn, L. Combination of bioautography with HPTLC-MS/NMR: a fast identification of acetylcholinesterase inhibitors from galbanum. (†). Phytochem. Anal., 2013, 24(4), 395-400.
[http://dx.doi.org/10.1002/pca.2422] [PMID: 23427054]
[49]
Singh, S.; Roy, R. The application of absolute quantitative 1 H NMR spectroscopy in drug discovery and development. Expert Opin. Drug Discov., 2016, 11(7), 695-706.
[http://dx.doi.org/10.1080/17460441.2016.1189899] [PMID: 27187052]
[50]
Prasansuklab, A.; Theerasri, A.; Payne, M.; Ung, A.T.; Tencomnao, T. Acid-base fractions separated from Streblus asper leaf ethanolic extract exhibited antibacterial, antioxidant, anti-acetylcholinesterase, and neuroprotective activities. BMC Complement. Altern. Med., 2018, 18(1), 223.
[http://dx.doi.org/10.1186/s12906-018-2288-4] [PMID: 30041641]
[51]
Zang, Y.; Miao, Y.; Wu, T.; Cheng, Z. Development of a thin-layer chromatography bioautographic assay for neuraminidase inhibitors hyphenated with electrostatic field induced spray ionisation-mass spectrometry for identification of active Isatis indigotica root compounds. J. Chromatogr. A, 2021, 1638, 461597.
[http://dx.doi.org/10.1016/j.chroma.2020.461597] [PMID: 33250163]
[52]
Czernicka, L.; Grzegorczyk, A.; Marzec, Z.; Antosiewicz, B.; Malm, A.; Kukula-Koch, W. Antimicrobial potential of single metabolites of curcuma longa assessed in the total extract by thin-layer chromatography-based bioautography and image analysis. Int. J. Mol. Sci., 2019, 20(4), 898.
[http://dx.doi.org/10.3390/ijms20040898] [PMID: 30791406]
[53]
Kubec, R.; Cody, R.B.; Dane, A.J.; Musah, R.A.; Schraml, J.; Vattekkatte, A.; Block, E. Applications of direct analysis in real time-mass spectrometry (DART-MS) in Allium chemistry. (Z)-butanethial S-oxide and 1-butenyl thiosulfinates and their S-(E)-1-butenylcysteine S-oxide precursor from Allium siculum. J. Agric. Food Chem., 2010, 58(2), 1121-1128.
[http://dx.doi.org/10.1021/jf903733e] [PMID: 20047275]
[54]
Takáts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 2004, 306(5695)
[http://dx.doi.org/10.1126/science.1104404]
[55]
Kauppila, T.J.; Wiseman, J.M.; Ketola, R.A.; Kotiaho, T.; Cooks, R.G.; Kostiainen, R. Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites. Rapid Commun. Mass Spectrom., 2006, 20(3), 387-392.
[http://dx.doi.org/10.1002/rcm.2304] [PMID: 16381061]
[56]
Myung, S.; Wiseman, J.M.; Valentine, S.J.; Takáts, Z.; Cooks, R.G.; Clemmer, D.E. Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: Evidence for desorption of folded and denatured States. J. Phys. Chem. B, 2006, 110(10), 5045-5051.
[http://dx.doi.org/10.1021/jp052663e] [PMID: 16526747]
[57]
Nefliu, M.; Cooks, R.G.; Moore, C. Enhanced desorption ionization using oxidizing electrosprays. J. Am. Soc. Mass Spectrom., 2006, 17(8), 1091-1095.
[http://dx.doi.org/10.1016/j.jasms.2006.04.021] [PMID: 16735130]
[58]
Takáts, Z.; Wiseman, J.M.; Cooks, R.G. Ambient mass spectrometry using desorption electrospray ionization (DESI): Instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom., 2005, 40(10), 1261-1275.
[http://dx.doi.org/10.1002/jms.922] [PMID: 16237663]
[59]
Pasilis, S.P.; Kertesz, V.; Van Berkel, G.J. Unexpected analyte oxidation during desorption electrospray ionization-mass spectrometry. Anal. Chem., 2008, 80(4), 1208-1214.
[http://dx.doi.org/10.1021/ac701791w] [PMID: 18183963]
[60]
Brodsky, M.H.; Boleszczuk, P.; Entis, P. Effect of stress and resuscitation on recovery of indicator bacteria from foods using hydrophobic grid-membrane filtration. J. Food Prot., 1982, 45(14), 1326-1331.
[http://dx.doi.org/10.4315/0362-028X-45.14.1326]
[61]
Rasoamiaranjanahary, L.; Marston, A.; Guilet, D.; Schenk, K.; Randimbivololona, F.; Hostettmann, K. Antifungal diterpenes from Hypoestes serpens (Acanthaceae). Phytochemistry, 2003, 62(3), 333-337.
[http://dx.doi.org/10.1016/S0031-9422(02)00551-4] [PMID: 12620345]
[62]
Meyers, E.; Smith, D.A. Bioautography of antibiotic spread-layer chromatograms. J. Chromatogr. A, 1964, 14, 129-132.
[http://dx.doi.org/10.1016/S0021-9673(00)86603-0] [PMID: 14155332]
[63]
Hamburger, M.O.; Cordell, G.A. A direct bioautographic tlc assay for compounds possessing antibacterial activity. J. Nat. Prod., 1987, 50(1), 19-22.
[http://dx.doi.org/10.1021/np50049a003] [PMID: 3110376]
[64]
Móricz, Á.M.; Ott, P.G.; Alberti, Á.; Böszörményi, A.; Lemberkovics, É. Szőke, É.; Kéry, Á.; Mincsovics, E. Applicability of preparative overpressured layer chromatography and direct bioautography in search of antibacterial chamomile compounds. J. AOAC Int., 2013, 96(6), 1214-1221.
[http://dx.doi.org/10.5740/jaoacint.SGEMoricz] [PMID: 24645496]
[65]
Kumar, R.R.; Jadeja, V.J. Characterization and partial purification of an antibacterial agent from halophilic actinomycetes Kocuria sp. strain rsk4. Bioimpacts, 2018, 8(4), 253-261.
[http://dx.doi.org/10.15171/bi.2018.28] [PMID: 30397580]
[66]
Jesionek, W.; Majer-Dziedzic, B.; Horváth, G.; Móricz, Á.M.; Choma, I.M. Screening of antibacterial compounds in Salvia officinalis L. tincture using thin-layer chromatography—direct bioautography and liquid chromatography—tandem mass spectrometry techniques. J. Planar Chromatogr. Mod. TLC, 2017, 30(5), 357-362.
[http://dx.doi.org/10.1556/1006.2017.30.5.4]
[67]
Móricz, Á.M.; Häbe, T.T.; Böszörményi, A.; Ott, P.G.; Morlock, G.E. Tracking and identification of antibacterial components in the essential oil of Tanacetum vulgare L. by the combination of high-performance thin-layer chromatography with direct bioautography and mass spectrometry. J. Chromatogr. A, 2015, 1422, 310-317.
[http://dx.doi.org/10.1016/j.chroma.2015.10.010] [PMID: 26499972]
[68]
Móricz, Á.M.; Szeremeta, D. ;Knaś, M.; Długosz, E.; Ott, P.G.; Kowalska, T.; Sajewicz, M. Antibacterial potential of the Cistus incanus L. phenolics as studied with use of thin-layer chromatography combined with direct bioautography and in situ hydrolysis. J. Chromatogr. A, 2018, 1534, 170-178.
[http://dx.doi.org/10.1016/j.chroma.2017.12.056] [PMID: 29290397]
[69]
Aderiye, B. In vitro antibacterial activity of aqueous extracts of Cashew (Anacardium occidentale L.) fruit peels using bioautography method. European J. Med. Plants, 2014, 4(3), 284-291.
[http://dx.doi.org/10.9734/EJMP/2014/6722]
[70]
Cunico, M.M.; Auer, C.G.; de Lima, C.P.; Côcco, L.C.; Yamamoto, C.I.; Miguel, M.D.; Miguel, O.G.; Sanquetta, C.R. Bioautography to assess antibacterial activity of Ottonia Martiana Miq. (Piperaceae) on the human oral microbiota. Rev. Cienc. Farm. Basica Apl., 2012, 33(4)
[71]
Sun, Z.L.; Liu, T.; Wang, S.Y.; Ji, X.Y.; Mu, Q. TLC-bioautography directed isolation of antibacterial compounds from active fractionation of Ferula ferulioides. Nat. Prod. Res., 2019, 33(12), 1761-1764.
[http://dx.doi.org/10.1080/14786419.2018.1431640] [PMID: 29378434]
[72]
Dehghan, H.; Rezaee, P.; Aliahmadi, A. Bioassay screening of 12 Iranian plants and detection of antibacterial compounds from Heracleum persicum using a TLC bioautography method. J. Liq. Chromatogr. Relat. Technol., 2020, 43(11-12), 381-387.
[http://dx.doi.org/10.1080/10826076.2020.1725557]
[73]
Shafique, I.; Andleeb, S.; Ali, S.; Mustafa, R.G.; Naseer, A. In vitro qualitative phytochemical screening, Tlc-bioautography and spot screening of Bistorta Amplexicaulis (D.DON) greene extracts. Bangladesh J. Bot., 2021, 50(3), 613-622.
[http://dx.doi.org/10.3329/bjb.v50i3.55841]
[74]
Fernando, G.; Jonatas, C.; Dionízio, S.; Rodrigo, A.; Clarice, M. Chromatography and bioautography of endophytic fungi extracts of Uncaria tomentosa (Willd.) DC with antibacterial activity. J. Med. Plants Res., 2019, 13(17), 401-407.
[http://dx.doi.org/10.5897/JMPR2019.6805]
[75]
Narwanti, I.; Sulistyani, N. TLC-bioautography profile of ethyl acetate extract of 5 bacteria isolated from Ficus Carica L rhizosphere. Int. J. Public Heal. Sci., 2015, 4(2), 2620-4126.
[http://dx.doi.org/10.11591/ijphs.v4i2.4716]
[76]
Ponnamma, S.U.; Manjunath, K. TLC-bioautography guided screening for compounds inhibitory to Klebsiella Pneumoniae from Justicia Wynaadensis (Nees) T. Anders. Indian J. Appl. Res., 2015, 629-630.
[77]
Teanpaisan, R.; Kawsud, P.; Pahumunto, N.; Puripattanavong, J. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. J. Tradit. Complement. Med., 2017, 7(2), 172-177.
[http://dx.doi.org/10.1016/j.jtcme.2016.06.007] [PMID: 28417087]
[78]
Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Altern. Med., 2017, 17(1), 133.
[http://dx.doi.org/10.1186/s12906-017-1645-z] [PMID: 28241818]
[79]
Kumaran, T.; Citarasu, T. Phytochemical screening, bioautography and antibacterial evaluation of the methanolic extract of glycine max; Soybean, 2015.
[80]
Jesionek, W.; Móricz, Á.M.; Alberti, Á.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-direct bioautography as a bioassay guided method for investigation of antibacterial compounds in Hypericum perforatum L. J. AOAC Int., 2015, 98(4), 1013-1020.
[http://dx.doi.org/10.5740/jaoacint.14-233] [PMID: 26268984]
[81]
Soberón, J.R.; Sgariglia, M.A.; Sampietro, D.A.; Quiroga, E.N.; Vattuone, M.A. Antibacterial activity of plant extracts from northwestern Argentina. J. Appl. Microbiol., 2007, 102(6), 1450-1461.
[http://dx.doi.org/10.1111/j.1365-2672.2006.03229.x] [PMID: 17578409]
[82]
Hosu, A.; Cimpoiu, C. Evaluation of various biological activities of natural compounds by TLC/HPTLC. J. Liq. Chromatogr. Relat. Technol., 2020, 43(9-10), 305-318.
[http://dx.doi.org/10.1080/10826076.2020.1725548]
[83]
Al-snafi, A.E. Constituents and pharmacology of Narcissus Tazetta. IOSR J. Pharm., 2020.
[84]
Bag, A.; Bhattacharyya, S.K.; Pal, N.K.; Chattopadhyay, R.R. In vitro antibacterial potential of Eugenia jambolana seed extracts against multidrug-resistant human bacterial pathogens. Microbiol. Res., 2012, 167(6), 352-357.
[http://dx.doi.org/10.1016/j.micres.2012.02.005] [PMID: 22444436]
[85]
Favre-Godal, Q.; Queiroz, E.F.; Wolfender, J.L. Latest developments in assessing antifungal activity using TLC-bioautography: A review. J. AOAC Int., 2013, 96(6), 1175-1188.
[http://dx.doi.org/10.5740/jaoacint.SGEFavre-Godal] [PMID: 24645492]
[86]
Sobhani, M.; Abbas-Mohammadi, M.; Ebrahimi, S.N.; Aliahmadi, A. Tracking leading anti-Candida compounds in plant samples; Plumbago europaea. Iran. J. Microbiol., 2018, 10(3), 187-193.
[PMID: 30112157]
[87]
Rahalison, L.; Hamburger, M.; Hostettmann, K.; Monod, M.; Frenk, E. A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem. Anal., 1991, 2(5), 199-203.
[http://dx.doi.org/10.1002/pca.2800020503]
[88]
Meela, M.M.; Mdee, L.K.; Masoko, P.; Eloff, J.N. Acetone leaf extracts of seven invasive weeds have promising activity against eight important plant fungal pathogens. S. Afr. J. Bot., 2019, 121, 442-446.
[http://dx.doi.org/10.1016/j.sajb.2018.12.007]
[89]
Runyoro, D.K.B.; Matee, M.I.N.; Ngassapa, O.D.; Joseph, C.C.; Mbwambo, Z.H. Screening of Tanzanian medicinal plants for anti-Candida activity. BMC Complement. Altern. Med., 2006, 6(1), 11.
[http://dx.doi.org/10.1186/1472-6882-6-11] [PMID: 16571139]
[90]
Nassir, Z.S.; Khadem, E.J. Phytochemical investigations of Iraqi abrus precatorius linn. Plant. Iraqi J. Pharm Sci., 2018, 27(1), 30-38.
[http://dx.doi.org/10.31351/vol27iss1pp30-38]
[91]
Abdulhamid, A.; Awad, T.A.; Ahmed, A.E.; Koua, F.H.M.; Ismail, A.M. Acetyleugenol from Acacia nilotica (L.) exhibits a strong antibacterial activity and its phenyl and indole analogues show a promising anti-TB potential targeting PknE/B protein kinases. Microbiol. Res. (Pavia), 2021, 12(1), 1-15.
[http://dx.doi.org/10.3390/microbiolres12010001]
[92]
Anjum, V.; Ansari, S.H.; Naquvi, K.J.; Arora, P. Physico-chemical and phytochemical evaluation of carica papaya linn. unripe fruits. Int. Res. J. Pharm., 2013, 4(8), 101-106.
[http://dx.doi.org/10.7897/2230-8407.04817]
[93]
Opiyo, S.A. Insecticidal activity of Ocimum Suave Willd extracts and compounds against Sitophilus Zeamais Motschulsky. Basic Sci. Med., 2020, 9(2), 32-37.
[http://dx.doi.org/10.5923/j.medicine.20200902.03]
[94]
Abdullahi, M. S.; Musa, M. A.; Abdullahi, I. M.; Sani, M. Y.; Hassan, S. H.; Ya’u, J. A new biflavonoid glycoside from the leaves of Ziziphus Mucronata Willd. (Rhamnaceae). Trop. J. Nat. Prod. Res., 2018.
[http://dx.doi.org/10.26538/tjnpr/v2i4.3]
[95]
Abou Elela, M.E.; Orabi, A. Phytochemical screening and HPTLC studies of Ceiba Pentandra (L.) Gaertn. variety pentandra cultivated in Egypt. J. Pharmacogn. Phytochem., 2015, 4(1), 10-17.
[96]
Kumar, K.A.; Shetty, S.R.; Narasu, L. HPTLC method development and validation for determination of rutin in flavanoidal fraction of Hibiscus micranthus Linn. E-J. Chem., 2011, 8(3), 1444-1450.
[http://dx.doi.org/10.1155/2011/902106]
[97]
Olila, D. Screening extracts of Zanthoxylum Chalybeum and Warburgia Ugandensis for activity against measles virus (Swartz and Edmonston Strains) in vitro. Afr. Health Sci., 2002, 2(1), 2-10.
[98]
Aswatha Ram, H.N.; Shreedhara, C.S.; Gajera Falguni, P.; Zanwar Sachin, B. Phamacognostical evaluation of Phyllanthus Reticulatus Poir. Pharmacogn. Mag., 2009, 4(18), 176-182.
[99]
He, W.; Van Puyvelde, L.; Bosselaers, J.; De Kimpe, N.; Van der Flaas, M.; Roymans, A.; Mathenge, S.G.; Mudida, F.P.; Chalo Mutiso, P.B. Activity of 6-pentadecylsalicylic acid from ozoroa insignis against marine crustaceans. Pharm. Biol., 2002, 40(1), 74-76.
[http://dx.doi.org/10.1076/phbi.40.1.74.5862]
[100]
Ogbuanu, C. C.; Amujiogu, S. N.; Agboeze, E. Secondary metabolites investigation and TLC analysis of leaves, stem back and rootextracts of Uvaria Chamae (UDAGU). J. Nat. Sci. Res., 2020, 34- 39.
[101]
Tian, D.M.; Cheng, H.Y.; Jiang, M.M.; Shen, W.Z.; Tang, J.S.; Yao, X.S. Cardiac glycosides from the seeds of Thevetia peruviana. J. Nat. Prod., 2016, 79(1), 38-50.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00611] [PMID: 26714048]
[102]
Hanka, L.J.; Barnett, M.S. Microbiological assays and bioautography of maytansine and its homologues. Antimicrob. Agents Chemother., 1974, 6(5), 651-652.
[http://dx.doi.org/10.1128/AAC.6.5.651] [PMID: 15825322]
[103]
Pourramezan, Z.; Oloomi, M.; Kasra-Kermanshahi, R. Antioxidant and anticancer activities of Lactobacillus Hilgardii strain AG12a. Int. J. Prev. Med., 2020, 11(1), 132.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_307_19] [PMID: 33088460]
[104]
Patil, A.; Patil, S.; Mahure, S.; Kale, A.U.V. FTIR, HPLC confirmation of camptothecin an anticancer metabolite from bark extract of Nothapodytes nimmoniana; J. Graham, 2014.
[105]
Tang, W.; Hemm, I.; Bertram, B. Recent development of antitumor agents from chinese herbal medicines; part I. Low molecular compounds. Planta Med., 2003, 69(2), 97-108.
[http://dx.doi.org/10.1055/s-2003-37718] [PMID: 12624812]
[106]
Oriola, A.O.; Aladesanmi, A.J.; Idowu, T.O.; Arthur, G. Acuminatoside: A new anticancer compound from the maiden breast plant. Niger. J. Nat. Prod. Med., 2017, 20, 116.
[http://dx.doi.org/10.4314/njnpm.v20i0.19]
[107]
Patra, J.K.; Thatoi, H. Anticancer activity and chromatography characterization of methanol extract of Heritiera fomes Buch. Ham., a mangrove plant from Bhitarkanika, India. Orient. Pharm. Exp. Med., 2013, 13(2), 133-142.
[http://dx.doi.org/10.1007/s13596-013-0113-7]
[108]
Dias, A.L.B.; Batista, H.R.F.; Estevam, E.B.B.; Alves, C.C.F.; Forim, M.R.; Nicolella, H.D.; Furtado, R.A.; Tavares, D.C.; Silva, T.S.; Martins, C.H.G.; Miranda, M.L.D. Chemical composition and in vitro antibacterial and antiproliferative activities of the essential oil from the leaves of Psidium myrtoides O. Berg (Myrtaceae). Nat. Prod. Res., 2019, 33(17), 2566-2570.
[http://dx.doi.org/10.1080/14786419.2018.1457664] [PMID: 29611435]
[109]
Pinto, N. de C.C. Cytotoxic and antioxidant activity of Pereskia aculeata miller. Pharmacologyonline, 2013, 3, 63-69.
[110]
Glavind, J.; Holmer, G. Thin-layer chromatographic determination of antioxidants by the stable free radical α Α′-diphenyl-β-picrylhydrazyl. J. Am. Oil Chem. Soc., 1967, 44(9), 539-542.
[http://dx.doi.org/10.1007/BF02679243]
[111]
Olech, M. Komsta, Ł.; Nowak, R.; Cieśla, Ł.; Waksmundzka-Hajnos, M. Investigation of antiradical activity of plant material by thin-layer chromatography with image processing. Food Chem., 2012, 132(1), 549-553.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.067] [PMID: 26434330]
[112]
Rossi, D.; Guerrini, A.; Maietti, S.; Bruni, R.; Paganetto, G.; Poli, F.; Scalvenzi, L.; Radice, M.; Saro, K.; Sacchetti, G. Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Müll. Arg. (Euphorbiaceae) stem bark essential oil: A new functional food ingredient? Food Chem., 2011, 126(3), 837-848.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.042]
[113]
Gu, L.; Wu, T.; Wang, Z. TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. Lebensm. Wiss. Technol., 2009, 42(1), 131-136.
[http://dx.doi.org/10.1016/j.lwt.2008.04.006]
[114]
Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radic. Res., 1997, 26(3), 195-199.
[http://dx.doi.org/10.3109/10715769709097799] [PMID: 9161842]
[115]
Takao, T.; Kitatani, F.; Watanabe, N.; Yagi, A.; Sakata, K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotechnol. Biochem., 1994, 58(10), 1780-1783.
[http://dx.doi.org/10.1271/bbb.58.1780]
[116]
Nickavar, B.; Adeli, A.; Nickavar, A. TLC-bioautography and GC-MS analyses for detection and identification of antioxidant constituents of Trachyspermum copticum essential oil. Iran. J. Pharm. Res., 2014, 13(1), 127-133.
[PMID: 24734063]
[117]
Corsino, J.; Siqueira Silva, D.H.; Boldrin Zanoni, M.V.; Da Silva Bolzani, V.; Castro França, S.; Pereira, A.M.S.; Furlan, M. Antioxidant flavan-3-Ols and flavonol glycosides from Maytenus Aquifolium; Phyther. Res, 2003.
[http://dx.doi.org/10.1002/ptr.1249]
[118]
Céspedes, C.L.; Uchoa, A.; Salazar, J.R.; Perich, F.; Pardo, F. Plant growth inhibitory activity of p-hydroxyacetophenones and tremetones from Chilean endemic Baccharis species and some analogous: a comparative study. J. Agric. Food Chem., 2002, 50(8), 2283-2292.
[http://dx.doi.org/10.1021/jf011108g] [PMID: 11929285]
[119]
Torres, P.; Guillermo Avila, J.; Romo de Vivar, A.; García, A.M.; Marín, J.C.; Aranda, E.; Céspedes, C.L. Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry, 2003, 64(2), 463-473.
[http://dx.doi.org/10.1016/S0031-9422(03)00348-0] [PMID: 12943764]
[120]
Salazar, M.O.; Furlan, R.L.E. A rapid TLC autographic method for the detection of glucosidase inhibitors. Phytochem. Anal., 2007, 18(3), 209-212.
[http://dx.doi.org/10.1002/pca.971] [PMID: 17500363]
[121]
Pratt, D.E.; Miller, E.E. A flavonoid antioxidant in Spanish peanuts (Arachia hypogoea). J. Am. Oil Chem. Soc., 1984, 61(6), 1064-1067.
[http://dx.doi.org/10.1007/BF02636221]
[122]
Nemudzivhadi, V.; Masoko, P. Antioxidant and antibacterial properties of Ziziphus Mucronata and Ricinus communis leaves extracts. Afr. J. Tradit. Complement. Altern. Med., 2015, 12(1), 81.
[http://dx.doi.org/10.4314/ajtcam.v12i1.12]
[123]
Mahlo, S.M.; Chauke, H.R.; McGaw, L.; Eloff, J. Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 216-222.
[http://dx.doi.org/10.21010/ajtcam.v13i4.28] [PMID: 28852739]
[124]
Oluwatoyin, B.; Oladimeji, A.O.; Jacob, O.B. Investigation of phenolic contents and TLC-direct bioautography screening of four nigeria plant extracts for antioxidant activities. ChemSearch J., 2016, 11, 83-88.
[125]
Annegowda, H.V.; Tan, P.Y.; Mordi, M.N.; Ramanathan, S.; Hamdan, M.R.; Sulaiman, M.H.; Mansor, S.M. TLC-bioautography-guided isolation, HPTLC and GC-MS-assisted analysis of bioactives of piper betle leaf extract obtained from various extraction techniques: In vitro evaluation of phenolic content, antioxidant and antimicrobial activities. Food Anal. Methods, 2013, 6, 715-726.
[http://dx.doi.org/10.1007/s12161-012-9470-y]
[126]
Chester, K.; Zahiruddin, S.; Ahmad, A.; Khan, W.; Paliwal, S.; Ahmad, S. Bioautography-based identification of antioxidant metabolites of Solanum Nigrum L. and exploration its hepatoprotective potential against D-galactosamine-induced hepatic fibrosis in rats. Pharmacogn. Mag., 2017.
[http://dx.doi.org/10.4103/pm.pm]
[127]
Darwish, R.S.; Shawky, E.; Hammoda, H.M.; Harraz, F.M. Peroxidase inhibitory and antioxidant constituents from Juniperus L. species guided by HPTLC-bioautography and molecular docking studies. Nat. Prod. Res., 2021, 35(22), 4653-4657.
[http://dx.doi.org/10.1080/14786419.2019.1700249] [PMID: 31815557]
[128]
Fahim, M.; Ibrahim, M.; Zahiruddin, S.; Parveen, R.; Khan, W.; Ahmad, S.; Shrivastava, B.; Shrivastava, A.K. TLC-bioautography identification and GC-MS analysis of antimicrobial and antioxidant active compounds in Musa × paradisiaca L. fruit pulp essential oil. Phytochem. Anal., 2019, 30(3), 332-345.
[http://dx.doi.org/10.1002/pca.2816] [PMID: 30609101]
[129]
Fabri, R.L.; Nogueira, M.S.; Moreira, J.R.; Bouzada, M.L.M.; Scio, E. Identification of antioxidant and antimicrobial compounds of Lippia species by bioautography. J. Med. Food, 2011, 14(7-8), 840-846.
[http://dx.doi.org/10.1089/jmf.2010.0141] [PMID: 21476886]
[130]
a) Samrot, A.; Rohan, B.; Geethika, R.; Samrot, A.V.; Rohan, B.D.; Kumar, D.M.; Geethika, R.G. TLC Bioautography Guided Identification of Antioxidant and Antibacterial Activity of Various Extracts of Punica Granatum. J Chem. Pharm. Res., 2016, 8(5), 815-820. www.jocpr.com 2016;
b) Bashir, S.; Khan, B.M.; Babar, M.; Andleeb, S.; Hafeez, M.; Ali, S.; Khan, M.F. Assessment of bioautography and spot screening of TLC of Green Tea (Camellia) plant extracts as antibacterial and antioxidant agents. Indian J. Pharm. Sci., 2014, 76(4), 364-370.
[PMID: 25284935]
[131]
Tasdemir, D.; Dönmez, A. Çalıs, I.; Rüedi, P. Evaluation of Biological Activity of Turkish Plants. Rapid screening for the antimicrobial, antioxidant, and acetylcholinesterase inhibitory potential by TLC bioautographic methods. Pharm. Biol., 2004, 42(4-5), 374-383.
[http://dx.doi.org/10.1080/13880200490519695]
[132]
Huang, Q.; Xu, L.; Qu, W.S.; Ye, Z.H.; Huang, W.Y.; Liu, L.Y.; Lin, J.F.; Li, S.; Ma, H.Y. TLC bioautography-guided isolation of antioxidant activity components of extracts from Sophora flavescens Ait. Eur. Food Res. Technol., 2017, 243(7), 1127-1136.
[http://dx.doi.org/10.1007/s00217-016-2820-z]
[133]
Agatonovic-Kustrin, S.; Morton, D.W. HPTLC – Bioautographic methods for selective detection of the antioxidant and a-amylase inhibitory activity in plant extracts. MethodsX, 2018, 5, 797-802.
[http://dx.doi.org/10.1016/j.mex.2018.07.013] [PMID: 30101083]
[134]
Gemed, Negero G; Urga, Kelbessa; Getachew, Messay; Muddie, Kissi; Teka, Frehiwot; Tadele, Ashenif Antibacterial activity of extracts from myrtus communis L.(ADES) and dodoneae angustifolia L.F. (KITKITA) using bioautography method. Ethiop. J. Biosci., 2011, 10, 57-72.
[135]
Bañuelos-Hernández, A.E.; Azadniya, E.; Ramírez Moreno, E.; Morlock, G.E. Bioprofiling of Mexican Plectranthus amboinicus (Lour.) essential oil via planar chromatography-effect-directed analysis combined with direct analysis in real time high-resolution mass spectrometry. J. Liq. Chromatogr. Relat. Technol., 2020, 43(9-10), 344-350.
[http://dx.doi.org/10.1080/10826076.2020.1737542]
[136]
Sonkamble, V.V.; Wagh, N.S.; Kamble, L.H. Inhibition of α-amylase and α-glucosidase by (6RS)-22-hydroxy-23,24,25,26,27-pentanor-vitamin-D3-6,19-sulfur dioxide-adduct, manoalide and 5β-cholestane-3α7α12α24,25,26-hexol isolated from acetone extract of Helianthus annuus L. Seeds. Int. J. Pharm. Pharm. Sci., 2018, 10(5), 39.
[http://dx.doi.org/10.22159/ijpps.2018v10i5.25309]
[137]
Osman, W. In silico assessment of potential leads identified from Bauhinia Rufescens Lam. as α-glucosidase and α-amylase inhibitors. J. Recept. Signal Transduct., 2021, 41(2), 159-169.
[http://dx.doi.org/10.1080/10799893.2020.1800734]
[138]
Kirisanth, A.; Nafas, M.N.M.; Dissanayake, R.K.; Wijayabandara, J. Antimicrobial and alpha-amylase inhibitory activities of organic extracts of selected Sri Lankan bryophytes. Evidence-based Complement. Altern. Med., 2020, 2020, 3479851.
[http://dx.doi.org/10.1155/2020/3479851]
[139]
Agatonovic-Kustrin, S.; Ramenskaya, G.; Kustrin, E.; Morton, D.W. Characterisation of α-amylase inhibitors in marigold plants via bioassay-guided high-performance thin-layer chromatography and attenuated total reflectance–fourier transform infrared spectroscopy. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2021, 1173, 122676.
[http://dx.doi.org/10.1016/j.jchromb.2021.122676]
[140]
Nickavar, B.; Abolhasani, L. Bioactivity-guided separation of an α-amylase inhibitor flavonoid from Salvia virgata. Iran. J. Pharm. Res., 2013, 12(1), 57-61.
[PMID: 24250572]
[141]
Standl, E.; Schnell, O. Alpha-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation. Diab. Vasc. Dis. Res., 2012, 9(3), 163-169.
[http://dx.doi.org/10.1177/1479164112441524]
[142]
Cheng, Z.; Wu, T. TLC bioautography: high throughput technique for screening of bioactive natural products. Comb. Chem. High Throughput Screen., 2013, 16(7), 531-549.
[http://dx.doi.org/10.2174/1386207311316070004] [PMID: 23597249]
[143]
Yang, Y.; Gu, L.; Xiao, Y.; Liu, Q.; Hu, H.; Wang, Z.; Chen, K. Rapid identification of α-glucosidase inhibitors from Phlomis tuberosa by Sepbox chromatography and thin-layer chromatography bioautography. PLoS One, 2015, 10(2), e0116922.
[http://dx.doi.org/10.1371/journal.pone.0116922] [PMID: 25658100]
[144]
Theiler, B.A.; Istvanits, S.; Zehl, M.; Marcourt, L.; Urban, E.; Caisa, L.O.E.; Glasl, S. HPTLC bioautography guided isolation of α-glucosidase inhibiting compounds from Justicia Secunda Vahl (Acanthaceae). Phytochemical Analysis, 2017, 28(2), 87-92.
[http://dx.doi.org/10.1002/pca.2651]
[145]
Syafni, N.; Arifa, N.; Ismed, F. Preliminary study: Bioautography screening on edible local plants with α-glucosidase inhibitor. Adv. Heal. Sci. Res., 2021, 40, 295-301.
[146]
Abbas, G.; Al Harrasi, A.; Hussain, H.; Hamaed, A.; Supuran, C.T. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg. Chem., 2019, 86, 305-315.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.009] [PMID: 30738330]
[147]
Yüce, I.; Agnaniet, H.; Morlock, G.E. New antidiabetic and free-radical scavenging potential of strictosamide in Sarcocephalus pobeguinii ground bark extract via effect-directed analysis. ACS Omega, 2019, 4(3), 5038-5043.
[http://dx.doi.org/10.1021/acsomega.8b02462]
[148]
Sánchez-Medina, A.; García-Sosa, K.; May-Pat, F.; Peña-Rodríguez, L.M. Evaluation of biological activity of crude extracts from plants used in Yucatecan Traditional Medicine Part I. Antioxidant, antimicrobial and β-glucosidase inhibition activities. Phytomedicine, 2001, 8(2), 144-151.
[http://dx.doi.org/10.1078/0944-7113-00020] [PMID: 11315758]
[149]
Putri, N. P.; Nursyamsi, K. S.; Prayogo, Y. H.; Sari, D. R.; Budiarti, E.; Batubara, I. Exploration of Mango Fruits (Mangifera Indica) as α-Glucosidase Inhibitors. Biosaintifika J. Biol. Biol. Educ., 2017, 9(3)
[http://dx.doi.org/10.15294/biosaintifika.v9i3.10516]
[150]
Liu, Y.; Dong, J.Y.; Ren, B. A New flavanone from seeds of Psoralea corylifolia with α-glucosidase inhibitory activity. Nat. Prod. Commun., 2018, 13(7), 1934578X1801300.
[http://dx.doi.org/10.1177/1934578X1801300713]
[151]
Ojerinde, O.S.; Gwatau, D.D.; Falang, K.D.; Odumosu, P.O.; Kolawole, J.A. Nutritional composition, antioxidant assay and α-glucosidase inhibitory flavonoids from the fruits of Carissa edulis Vahl (Apocynaceae). J. Pharm. Bioresour., 2021, 18(2), 122-132.
[http://dx.doi.org/10.4314/jpb.v18i2.5]
[152]
Aisen, P.S.; Davis, K.L. The search for disease-modifying treatment for Alzheimer’s disease. Neurology, 1997, 48(5)(Supplement 6), 35S-41S.
[http://dx.doi.org/10.1212/WNL.48.5_Suppl_6.35S] [PMID: 9153159]
[153]
Hebert, L.E.; Beckett, L.A.; Evans, D.A.; Scherr, P.A.; Albert, M.S.; Pilgrim, D.M.; Chown, M.J.; Harris Funkenstein, H. Age-specific incidence of alzheimer’s disease in a community population. JAMA J. Am. Med. Assoc., 1995, 273(17), 1354-1359.
[http://dx.doi.org/10.1001/jama.1995.03520410048025]
[154]
Zhang, Y.B.; Dai, M.M.; Song, Q.; Guo, Y. Detection of acetylcholinesterase inhibitors from lobster sauce using TLC-bioautography assay. Food Ind., 2010, 89-92.
[155]
Yang, Z.D.; Song, Z.W.; Ren, J.; Yang, M.J.; Li, S. Improved thin-layer chromatography bioautographic assay for the detection of actylcholinesterase inhibitors in plants. Phytochem. Anal., 2011, 22(6), 509-515.
[http://dx.doi.org/10.1002/pca.1310] [PMID: 21433160]
[156]
Marston, A.; Kissling, J.; Hostettmann, K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal., 2002, 13(1), 51-54.
[http://dx.doi.org/10.1002/pca.623] [PMID: 11899607]
[157]
Mroczek, T.; Mazurek, J. Pressurized liquid extraction and anticholinesterase activity-based thin-layer chromatography with bioautography of Amaryllidaceae alkaloids. Anal. Chim. Acta, 2009, 633(2), 188-196.
[http://dx.doi.org/10.1016/j.aca.2008.11.053] [PMID: 19166722]
[158]
Zheng, X.; Zhang, Z.; Chou, G.; Wu, T.; Cheng, X.; Wang, C.; Wang, Z. Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum nigellastrum Bunge by an in vitro TLC- bioautographic assay. Arch. Pharm. Res., 2009, 32(9), 1245-1251.
[http://dx.doi.org/10.1007/s12272-009-1910-x] [PMID: 19784581]
[159]
Berkov, S.; Bastida, J.; Nikolova, M.; Viladomat, F.; Codina, C. Rapid TLC/GC-MS identification of acetylcholinesterase inhibitors in alkaloid extracts. Phytochem. Anal., 2008, 19(5), 411-419.
[http://dx.doi.org/10.1002/pca.1066] [PMID: 18446766]
[160]
Czernicka, L.; Ludwiczuk, A.; Rój, E.; Marzec, Z.; Jarzab, A.; Kukula-Koch, W. Acetylcholinesterase inhibitors among Zingiber officinale terpenes-extraction conditions and thin layer chromatography-based bioautography studies. Molecules, 2020, 25(7), 1643.
[http://dx.doi.org/10.3390/molecules25071643] [PMID: 32260053]
[161]
Wangthong, S.; Tonsiripakdee, I.; Monhaphol, T.; Nonthabenjawan, R.; Wanichwecharungruang, S.P. Post TLC developing technique for tyrosinase inhibitor detection. Biomed. Chromatogr., 2007, 21(1), 94-100.
[http://dx.doi.org/10.1002/bmc.727] [PMID: 17120304]
[162]
Zhou, J.; Tang, Q.; Wu, T.; Cheng, Z. Improved TLC bioautographic assay for qualitative and quantitative estimation of tyrosinase inhibitors in natural products. Phytochem. Anal., 2017, 28(2), 115-124.
[http://dx.doi.org/10.1002/pca.2666]
[163]
García, P.; Ramallo, I.A.; Furlan, R.L.E. Reverse phase compatible tlc-bioautography for detection of tyrosinase inhibitors. Phytochem. Anal., 2017, 28(2), 101-105.
[http://dx.doi.org/10.1002/pca.2655]
[164]
Legerská, B.; Chmelová, D. Ondrejovič, M.; Miertuš, S. The TLC-bioautography as a tool for rapid enzyme inhibitors detection - A review. Crit. Rev. Anal. Chem., 2022, 52(2), 275-293.
[http://dx.doi.org/10.1080/10408347.2020.1797467] [PMID: 32744081]
[165]
Akin, M.; Saki, N. Antimicrobial, DPPH scavenging and tyrosinase inhibitory activities of Thymus vulgaris, Helichrysum arenarium and Rosa damascena mill. ethanol extracts by using TLC bioautography and chemical screening methods. J. Liq. Chromatogr. Relat. Technol., 2019, 42(7-8), 204-216.
[http://dx.doi.org/10.1080/10826076.2019.1591977]
[166]
Nikolaichuk, H.; Typek, R.; Gnat, S. Studziński, M.; Choma, I.M. Effect-directed analysis as a method for quality and authenticity estimation of Rhodiola rosea L. preparations. J. Chromatogr. A, 2021, 1649, 462217.
[http://dx.doi.org/10.1016/j.chroma.2021.462217] [PMID: 34034112]
[167]
Hassan, A.M.S. TLC bioautographic method for detecting lipase inhibitors. Phytochem. Anal., 2012, 23(4), 405-407.
[http://dx.doi.org/10.1002/pca.1372] [PMID: 22095552]
[168]
Bayineni, V.K.; Suresh, S.; Singh, G.; Kadeppagari, R.K. Development of a bioautographic method for the detection of lipase inhibitors. Biochem. Biophys. Res. Commun., 2014, 453(4), 784-786.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.030] [PMID: 25445589]
[169]
Tang, J.; Zhou, J.; Tang, Q.; Wu, T.; Cheng, Z. A new TLC bioautographic assay for qualitative and quantitative estimation of lipase inhibitors. Phytochem. Anal., 2016, 27(1), 5-12.
[http://dx.doi.org/10.1002/pca.2581] [PMID: 26219532]
[170]
Zhang, L.; Shi, J.; Tang, J.; Cheng, Z.; Lu, X.; Kong, Y.; Wu, T. Direct coupling of thin-layer chromatography-bioautography with electrostatic field induced spray ionization-mass spectrometry for separation and identification of lipase inhibitors in lotus leaves. Anal. Chim. Acta, 2017, 967, 52-58.
[http://dx.doi.org/10.1016/j.aca.2017.03.008] [PMID: 28390485]
[171]
Zhang, P.; Zhang, L.; Shi, J.; Zhang, N.; Li, Y.; Wu, T.; Cheng, Z. TLC-electrostatic field induced spray ionization-MS analysis of diverse structural skeletons and its coupling with TLC bioautography for characterization of lipase inhibitory components in American ginseng. J. Pharm. Biomed. Anal., 2019, 174, 486-494.
[http://dx.doi.org/10.1016/j.jpba.2019.06.019] [PMID: 31229845]
[172]
Yang, F.; Gu, L.; Han, Z.; Wang, Z. Rapid screening for natural lipase inhibitors from alisma orientale combining high-performance thin-layer chromatography-bioautography with mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2021, 1170, 122599.
[http://dx.doi.org/10.1016/j.jchromb.2021.122599]
[173]
Bayineni, V.K.; Kadeppagari, R.K. Evaluation of P-nitrophenyl butyrate based bioautographic method for the identification of lipase inhibitors from the unexplored plant sources. J. Plant Biochem. Biotechnol., 2022, 31, 435-439.
[http://dx.doi.org/10.1007/s13562-021-00686-w]
[174]
Thomas, T. Monoamine oxidase-b inhibitors in the treatment of alzheimers disease. Neurobiol. Aging, 2000, 21(2), 343-348.
[http://dx.doi.org/10.1016/S0197-4580(00)00100-7]
[175]
Curry, A.S.; Mercier, M. Detection and identification of monoamine oxidase inhibitors in biological samples. Nature, 1970, 228(5268), 281-282.
[http://dx.doi.org/10.1038/228281a0] [PMID: 5479525]
[176]
Liang, J.B.; Yang, Z.D.; Shu, Z.M.; Yu, C.C. A rapid thin-layer chromatography bioautographic method for detecting the monoamine oxidase inhibitors in plants. Nat. Prod. Res., 2014, 28(17), 1318-1321.
[http://dx.doi.org/10.1080/14786419.2014.901322] [PMID: 24673426]
[177]
Rodríguez, M.; Bastidas, E.; Rodríguez, M.; Lucena, E.; Castillo, A.; Hasegawa, M. Aporphine Alkaloids from Guatteria stenopetala (Annonaceae). Nat. Prod. Commun., 2008, 3(4), 1934578X0800300.
[http://dx.doi.org/10.1177/1934578X0800300408]
[178]
Herraiz, T.; Guillén, H. Monoamine Oxidase-A inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions. BioMed Res. Int., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/4810394] [PMID: 29568754]
[179]
Plazas, E.; Hagenow, S.; Avila Murillo, M.; Stark, H.; Cuca, L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722.
[http://dx.doi.org/10.1016/j.bioorg.2020.103722] [PMID: 32155491]
[180]
Moon, U.R.; Sircar, D.; Barthwal, R.; Sen, S.K.; Beuerle, T.; Beerhues, L.; Mitra, A. Shoot cultures of Hoppea fastigiata (Griseb.) C.B. Clarke as potential source of neuroprotective xanthones. J. Nat. Med., 2015, 69(3), 375-386.
[http://dx.doi.org/10.1007/s11418-015-0904-x] [PMID: 25900046]
[181]
Andrade, J.M.; Biegelmeyer, R.; Dresch, R.; Maurmann, N.; Pranke, P.; Henriques, A. In vitro antioxidant and enzymatic approaches to evaluate neuroprotector potential of Blechnum extracts without cytotoxicity to human stem cells. Pharmacogn. Mag., 2016, 12(47), 171-177.
[http://dx.doi.org/10.4103/0973-1296.186349] [PMID: 27601845]
[182]
Mentlein, R.; Gallwitz, B.; Schmidt, W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem., 1993, 214(3), 829-835.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17986.x]
[183]
Idris, I.; Donnelly, R. Dipeptidyl peptidase-IV inhibitors: A major new class of oral antidiabetic drug. Diabetes Obes. Metab., 2007, 9(2), 153-165.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00705.x] [PMID: 17300591]
[184]
Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as α-Amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Med. Chem., 2010, 10(4), 315-331.
[http://dx.doi.org/10.2174/138955710791331007] [PMID: 20470247]
[185]
Gu, L.H.; Liao, L.P.; Hu, H.J.; Annie Bligh, S.W.; Wang, C.H.; Chou, G.X.; Wang, Z.T. A thin-layer chromatography-bioautographic method for detecting dipeptidyl peptidase IV inhibitors in plants. J. Chromatogr. A, 2015, 1411, 116-122.
[http://dx.doi.org/10.1016/j.chroma.2015.07.123] [PMID: 26283532]
[186]
Zheng, X.; Zhang, L.; Cheng, X.; Zhang, Z.; Wang, C.; Wang, Z. Identification of acetylcholinesterase inhibitors from seeds of plants of genus Peganum by thin-layer chromatography-bioautography. J. Planar Chromatogr. Mod. TLC, 2011, 24(6), 470-474.
[http://dx.doi.org/10.1556/JPC.24.2011.6.3]
[187]
Gu, L.; Tian, T.; Xia, L.; Chou, G.; Wang, Z. Rapid isolation of a dipeptidyl peptidase IV inhibitor from Fritillaria cirrhosa by thin-layer chromatography–bioautography and mass spectrometry-directed autopurification system. J. Planar Chromatogr. Mod. TLC, 2019, 32(6), 447-451.
[http://dx.doi.org/10.1556/1006.2019.32.6.1]
[188]
Quek, A. Kassim, N.K.; Lim, P.C.; Tan, D.C.; Mohammad Latif, M.A.; Ismail, A.; Shaari, K.; Awang, K. α-Amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory effects of Melicope latifolia bark extracts and identification of bioactive constituents using in vitro and in silico approaches. Pharm. Biol., 2021, 59(1), 962-971.
[http://dx.doi.org/10.1080/13880209.2021.1948065] [PMID: 34347568]
[189]
Lü, J.M.; Yao, Q.; Chen, C. 3,4-Dihydroxy-5-nitrobenzaldehyde (DHNB) is a potent inhibitor of xanthine oxidase: A potential therapeutic agent for treatment of hyperuricemia and gout. Biochem. Pharmacol., 2013, 86(9), 1328-1337.
[http://dx.doi.org/10.1016/j.bcp.2013.08.011] [PMID: 23994369]
[190]
Ramallo, I.A.; Zacchino, S.A.; Furlan, R.L.E. A rapid TLC autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochem. Anal., 2006, 17(1), 15-19.
[http://dx.doi.org/10.1002/pca.874] [PMID: 16454471]
[191]
Kong, Y.; Li, X.; Zhang, N.; Miao, Y.; Feng, H.; Wu, T.; Cheng, Z. Improved bioautographic assay on TLC layers for qualitative and quantitative estimation of xanthine oxidase inhibitors and superoxide scavengers. J. Pharm. Biomed. Anal., 2018, 150, 87-94.
[http://dx.doi.org/10.1016/j.jpba.2017.11.077] [PMID: 29216590]
[192]
Pernow, J.; Jung, C. The emerging role of arginase in endothelial dysfunction in diabetes. Curr. Vasc. Pharmacol., 2016, 14(2), 155-162.
[http://dx.doi.org/10.2174/1570161114666151202205617] [PMID: 26638796]
[193]
Munder, M. Role of arginase in asthma: Potential clinical applications. Expert Rev. Clin. Pharmacol., 2010, 3(1), 17-23.
[http://dx.doi.org/10.1586/ecp.09.53] [PMID: 22111529]
[194]
Zalsabela, L.T.; Elya, B.; Noviani, A. Arginase inhibition activity of stem bark extract of Caesalpinia pulcherrima. J. Young Pharm., 2018, 10(2s), S111-S113.
[http://dx.doi.org/10.5530/jyp.2018.2s.22]
[195]
Wulansari, A.; Elya, B.; Noviani, A. Arginase inhibitory and antioxidant activities of Caesalpinia coriaria (Jacq.) Willd. bark extract. Pharmacogn. J., 2018, 10(6), 1174-1179.
[http://dx.doi.org/10.5530/pj.2018.6.201]
[196]
Attia, R.; Zedet, A.; Bourjot, M.; Skhiri, E.; Messaoud, C.; Girard, C. Thin-layer chromatography-bioautographic method for the detection of arginase inhibitors. J. Sep. Sci., 2020, 43(12), 2477-2486.
[http://dx.doi.org/10.1002/jssc.201901210] [PMID: 32233066]
[197]
Routledge, E.J.; Sumpter, J.P. Structural features of alkylphenolic chemicals associated with estrogenic activity. J. Biol. Chem., 1997, 272(6), 3280-3288.
[http://dx.doi.org/10.1074/jbc.272.6.3280] [PMID: 9013566]
[198]
Patil, A.S.; Paikrao, H.M.; Kale, A.S.; Manik, S.R. A TLC-direct bioautography method for detection of antiurolithiatic metabolites. J. Chromatogr. Sci., 2017, 55(5), 578-585.
[http://dx.doi.org/10.1093/chromsci/bmx002] [PMID: 28203809]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy