Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Metabolomics Study of the Hepatoprotective Effects and Mechanism of Aqueous Extract of Dendrobium nobile Lindl. on Alcoholic Liver Injury in Rats

Author(s): Qiyi Wang, Bingbing Shan, Weina Cheng, Tianmu He, Kuan Chen, Jianyong Zhang* and Cancan Duan*

Volume 26, Issue 15, 2023

Published on: 15 May, 2023

Page: [2718 - 2729] Pages: 12

DOI: 10.2174/1386207326666230330150211

Price: $65

Abstract

Background: Dendrobium nobile Lindl. (DNL) is effective for the treatment of alcoholic liver disease (ALD), but the underly mechanism is still unclear.

Objectives: This research aimed to investigate the effects and mechanism of the aqueous extract of Dendrobium nobile Lindl (AEDNL) in ALD rats based on a metabolomics approach.

Materials and Methods: In this study, 18 Sprague-Dawley male rats were randomly divided into control, model, and AEDNL groups (n=six). Rats in the AEDNL group were given AEDNL (152 mg/kg) intragastric administration from the first day for 30 consecutive days. From day 15 to day 30, model and AEDNL groups were given 30% ethanol (10 ml/kg) after 4 h of daily administration. Then, serum and liver samples were collected for biochemical analysis, histopathological examination, and Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-TOF/MS) determination for metabolomic analysis.

Results: Compared with the model group, the liver/body weight index and serum levels of TC, LDL-C, and TBIL in the AEDNL group were significantly decreased. Hepatocyte cord arrangement, hepatocyte balloon, and fat vacuolization were significantly improved in the AEDNL group. Metabolism profiles were changed in the model and AEDNL groups. Seven and two common differential metabolites (Guanosine3',5'-cyclic monophosphate, and Glutaric acid) were found in serum and liver, respectively. In addition, the hepatoprotective effect of AEDNL on ALD was related to steroid hormone biosynthesis, riboflavin metabolism, and glycerophospholipid metabolism.

Conclusion: The research could provide novel evidence of the protective effects of AEDNL on ALD.

Graphical Abstract

[1]
Teschke, R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines, 2018, 6(4), 106.
[http://dx.doi.org/10.3390/biomedicines6040106] [PMID: 30424581]
[2]
Marroni, C.A.; Jr, A.M.F.; Fernandes, S.A.; Galant, L.H.; Mucenic, M.; Meine, M.H.M.; Mariante-Neto, G.; Brandão, A.B.M. Liver transplantation and alcoholic liver disease: History, controversies, and considerations. World J. Gastroenterol., 2018, 24(26), 2785-2805.
[http://dx.doi.org/10.3748/wjg.v24.i26.2785] [PMID: 30018475]
[3]
Paik, J.M.; Golabi, P.; Younossi, Y.; Mishra, A.; Younossi, Z.M. Changes in the global burden of chronic liver diseases from 2012 to 2017: The growing impact of NAFLD. Hepatology, 2020, 72(5), 1605-1616.
[http://dx.doi.org/10.1002/hep.31173] [PMID: 32043613]
[4]
Ki, S.H.; Park, O.; Zheng, M.; Morales-Ibanez, O.; Kolls, J.K.; Bataller, R.; Gao, B. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: Role of signal transducer and activator of transcription 3. Hepatology, 2010, 52(4), 1291-1300.
[http://dx.doi.org/10.1002/hep.23837] [PMID: 20842630]
[5]
Qiao, J.Y.; Li, H.W.; Liu, F.G.; Li, Y.C.; Tian, S.; Cao, L.H.; Hu, K.; Wu, X.X.; Miao, M.S. Effects of Portulaca Oleracea extract on acute alcoholic liver injury of rats. Molecules, 2019, 24(16), 2887.
[http://dx.doi.org/10.3390/molecules24162887] [PMID: 31398934]
[6]
Kim, M.S.; Ong, M.; Qu, X. Optimal management for alcoholic liver disease: Conventional medications, natural therapy or combination? World J. Gastroenterol., 2016, 22(1), 8-23.
[http://dx.doi.org/10.3748/wjg.v22.i1.8] [PMID: 26755857]
[7]
Yan, J.; Nie, Y.; Luo, M.; Chen, Z.; He, B. Natural compounds: A potential treatment for alcoholic liver disease? Front. Pharmacol., 2021, 12, 694475.
[http://dx.doi.org/10.3389/fphar.2021.694475] [PMID: 34290612]
[8]
Kim, S.J.; Lee, S.M. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition. Toxicol. Appl. Pharmacol., 2012, 258(1), 43-50.
[http://dx.doi.org/10.1016/j.taap.2011.10.005] [PMID: 22019745]
[9]
Zhao, Z.W.; Chang, H.C.; Ching, H.; Lien, J.C.; Huang, H.C.; Wu, C.R. Antioxidant effects and phytochemical properties of seven taiwanese Cirsium species extracts. Molecules, 2021, 26(13), 3935.
[http://dx.doi.org/10.3390/molecules26133935] [PMID: 34203213]
[10]
Ferreira, L.P.; da Cunha, B.P.; Kuster, R.M.; Pinto, J.C.; Souza, M.N.; de Souza, F.G. Synthesis and chemical modification of poly(butylene succinate) with rutin useful to the release of silybin. Ind. Crops Prod., 2017, 97, 599-611.
[http://dx.doi.org/10.1016/j.indcrop.2016.12.064]
[11]
Bai, T.C.; Yan, G.B.; Hu, J.; Zhang, H.L.; Huang, C.G. Solubility of silybin in aqueous poly(ethylene glycol) solution. Int. J. Pharm., 2006, 308(1-2), 100-106.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.032] [PMID: 16321487]
[12]
Xing, J.; Chen, X.; Zhong, D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci., 2005, 78(2), 140-146.
[http://dx.doi.org/10.1016/j.lfs.2005.04.072] [PMID: 16107266]
[13]
Gong, X.; Jiang, S.; Tian, H.; Xiang, D.; Zhang, J. Polyphenols in the fermentation liquid of dendrobium candidum relieve intestinal inflammation in zebrafish through the intestinal microbiome-mediated immune response. Front. Immunol., 2020, 11, 1542.
[http://dx.doi.org/10.3389/fimmu.2020.01542] [PMID: 32765533]
[14]
Zhang, X.; Zhao, R.; Zheng, S.; Chun, Z.; Hu, Y. Dendrobium liquor eliminates free radicals and suppresses cellular proteins expression disorder to protect cells from oxidant damage. J. Food Biochem., 2020, 44(12), e13509.
[http://dx.doi.org/10.1111/jfbc.13509] [PMID: 33025642]
[15]
Zhao, M.; Fan, J.; Liu, Q.; Luo, H.; Tang, Q.; Li, C.; Zhao, J.; Zhang, X. Phytochemical profiles of edible flowers of medicinal plants of Dendrobium officinale and Dendrobium devonianum. Food Sci. Nutr., 2021, 9(12), 6575-6586.
[http://dx.doi.org/10.1002/fsn3.2602] [PMID: 34925787]
[16]
Li, Z.; Xiang, J.; Hu, D.; Song, B. Naturally potential antiviral agent polysaccharide from Dendrobium nobile Lindl. Pestic. Biochem. Physiol., 2020, 167, 104598.
[http://dx.doi.org/10.1016/j.pestbp.2020.104598] [PMID: 32527430]
[17]
Wang, Y.H. Traditional uses, chemical constituents, pharmacological activities, and toxicological effects of Dendrobium leaves: A review. J. Ethnopharmacol., 2021, 270, 113851.
[http://dx.doi.org/10.1016/j.jep.2021.113851] [PMID: 33485987]
[18]
Ramautar, R.; Berger, R.; van der Greef, J.; Hankemeier, T. Human metabolomics: Strategies to understand biology. Curr. Opin. Chem. Biol., 2013, 17(5), 841-846.
[http://dx.doi.org/10.1016/j.cbpa.2013.06.015] [PMID: 23849548]
[19]
Wang, L.; Ye, H.; Sun, D.; Meng, T.; Cao, L.; Wu, M.; Zhao, M.; Wang, Y.; Chen, B.; Xu, X.; Wang, G.; Hao, H. Metabolic pathway extension approach for metabolomic biomarker identification. Anal. Chem., 2017, 89(2), 1229-1237.
[http://dx.doi.org/10.1021/acs.analchem.6b03757] [PMID: 27983783]
[20]
Liu, F.; Wang, M.; Wang, Y.; Cao, Y.; Sun, Z.; Chen, M.; Tian, X.; Wan, J.; Huang, C. Metabonomics study on the hepatoprotective effect of panax notoginseng leaf saponins using UPLC/Q-TOF-MS analysis. Am. J. Chin. Med., 2019, 47(3), 559-575.
[http://dx.doi.org/10.1142/S0192415X19500290] [PMID: 31012326]
[21]
DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28(3), 350-356.
[http://dx.doi.org/10.1021/ac60111a017]
[22]
Zhang, J.; Chen, Q.; Wang, L.; Chen, K.; Mu, W.; Duan, C.; Li, X. Study on the mechanism of cantharidin-induced hepatotoxicity in rat using serum and liver metabolomics combined with conventional pathology methods. J. Appl. Toxicol., 2020, 40(9), 1259-1271.
[http://dx.doi.org/10.1002/jat.3983] [PMID: 32468647]
[23]
Worley, B.; Powers, R. PCA as a practical indicator of OPLS-DA model reliability. Curr. Metabolomics, 2016, 4(2), 97-103.
[http://dx.doi.org/10.2174/2213235X04666160613122429] [PMID: 27547730]
[24]
Rahmani, V.; Sheardown, H. Protein-alginate complexes as pH-/ion-sensitive carriers of proteins. Int. J. Pharm., 2018, 535(1-2), 452-461.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.039] [PMID: 29170114]
[25]
Guan, M.J.; Zhao, N.; Xie, K.Q.; Zeng, T. Hepatoprotective effects of garlic against ethanol-induced liver injury: A mini-review. Food Chem. Toxicol., 2018, 111, 467-473.
[http://dx.doi.org/10.1016/j.fct.2017.11.059] [PMID: 29208504]
[26]
Thau, L.; Gandhi, J.; Sharma, S. Physiology, Cortisol.StatPearls; StatPearls Publishing Copyright: Treasure Island, FL, 2022.
[27]
Mathurin, P.; O’Grady, J.; Carithers, R.L.; Phillips, M.; Louvet, A.; Mendenhall, C.L.; Ramond, M.J.; Naveau, S.; Maddrey, W.C.; Morgan, T.R. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: Meta-analysis of individual patient data. Gut, 2011, 60(2), 255-260.
[http://dx.doi.org/10.1136/gut.2010.224097] [PMID: 20940288]
[28]
Zhang, B.; Jiang, M.; Zhao, J.; Song, Y.; Du, W.; Shi, J. The mechanism underlying the influence of indole-3-propionic acid: A relevance to metabolic disorders. Front. Endocrinol., 2022, 13, 841703.
[http://dx.doi.org/10.3389/fendo.2022.841703] [PMID: 35370963]
[29]
Lapin, I.P.; Politi, V. Antiethanol effects of indol-3-ylpyruvic acid in mice. Alcohol Alcohol., 1994, 29(3), 265-268.
[PMID: 7945567]
[30]
Lamas-Paz, A.; Hao, F.; Nelson, L.J.; Vázquez, M.T.; Canals, S.; Moral, M.G.; Martínez-Naves, E.; Nevzorova, Y.A.; Cubero, F.J. Alcoholic liver disease: Utility of animal models. World J. Gastroenterol., 2018, 24(45), 5063-5075.
[http://dx.doi.org/10.3748/wjg.v24.i45.5063] [PMID: 30568384]
[31]
Karbownik, M.; Reiter, R.J.; Garcia, J.J.; Cabrera, J.; Burkhardt, S.; Osuna, C. Lewiński, A. Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: Relevance to cancer reduction. J. Cell. Biochem., 2001, 81(3), 507-513.
[http://dx.doi.org/10.1002/1097-4644(20010601)81:3<507:AID-JCB1064>3.0.CO;2-M] [PMID: 11255233]
[32]
Alhouayek, M.; Muccioli, G.G. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov. Today, 2014, 19(10), 1632-1639.
[http://dx.doi.org/10.1016/j.drudis.2014.06.007] [PMID: 24952959]
[33]
Dunn, W.; Shah, V.H. Pathogenesis of alcoholic liver disease. Clin. Liver Dis., 2016, 20(3), 445-456.
[http://dx.doi.org/10.1016/j.cld.2016.02.004] [PMID: 27373608]
[34]
Costa, B.; Conti, S.; Giagnoni, G.; Colleoni, M. Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: Inhibition of nitric oxide and cyclo-oxygenase systems. Br. J. Pharmacol., 2002, 137(4), 413-420.
[http://dx.doi.org/10.1038/sj.bjp.0704900] [PMID: 12359622]
[35]
Gorid’ko, T.M.; Hula, N.M.; Marhitych, V.M.; Hovseieva, N.M. Klimashevs’kyĭ, V.M.; Shahidulin, M.Iu. Influence of N-palmitoylethanolamine on the phospholipid and fatty acid composition of rat liver in ischemia. Ukr. Biokhim. Zh., 2001, 73(1), 82-87.
[PMID: 11599433]
[36]
Hofmann, F. The cGMP system: Components and function. Biol. Chem., 2020, 401(4), 447-469.
[http://dx.doi.org/10.1515/hsz-2019-0386] [PMID: 31747372]
[37]
Ong, S.H.; Whitley, T.H.; Stowe, N.W.; Steiner, A.L. Immunohistochemical localization of 3′: 5′-cyclic AMP and 3′: 5′-cyclic GMP in rat liver, intestine, and testis. Proc. Natl. Acad. Sci., 1975, 72(6), 2022-2026.
[http://dx.doi.org/10.1073/pnas.72.6.2022] [PMID: 166376]
[38]
Wen, R.T.; Zhang, F.F.; Zhang, H.T. Cyclic nucleotide phosphodiesterases: Potential therapeutic targets for alcohol use disorder. Psychopharmacology, 2018, 235(6), 1793-1805.
[http://dx.doi.org/10.1007/s00213-018-4895-7] [PMID: 29663017]
[39]
Biagosch, C.; Ediga, R.D.; Hensler, S.V.; Faerberboeck, M.; Kuehn, R.; Wurst, W.; Meitinger, T.; Kölker, S.; Sauer, S.; Prokisch, H. Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(9), 2220-2228.
[http://dx.doi.org/10.1016/j.bbadis.2017.05.018] [PMID: 28545977]
[40]
Latini, A.; Ferreira, G.C.; Scussiato, K.; Schuck, P.F.; Solano, A.F.; Dutra-Filho, C.S.; Vargas, C.R.; Wajner, M. Induction of oxidative stress by chronic and acute glutaric acid administration to rats. Cell. Mol. Neurobiol., 2007, 27(4), 423-438.
[http://dx.doi.org/10.1007/s10571-006-9134-9] [PMID: 17235690]
[41]
Chu, J.; Yan, R.; Wang, S.; Li, G.; Kang, X.; Hu, Y.; Lin, M.; Shan, W.; Zhao, Y.; Wang, Z.; Sun, R.; Yao, J.; Zhang, N. Sinapic acid reduces oxidative stress and pyroptosis via inhibition of brd4 in alcoholic liver disease. Front. Pharmacol., 2021, 12, 668708.
[http://dx.doi.org/10.3389/fphar.2021.668708] [PMID: 34149421]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy