Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Modern Advancements, Patents and Applications of Futuristic Nanozymes: A Comprehensive Review

Author(s): Suryakanta Swain, Debashish Ghose, Bikash Ranjan Jena*, GSN Koteswara Rao and Abhisek Sahu

Volume 13, Issue 2, 2023

Published on: 22 May, 2023

Article ID: e300323215258 Pages: 21

DOI: 10.2174/2210681213666230330165806

Price: $65

conference banner
Abstract

In the last few years, nanozymes have emerged as an adequate substitute for natural enzymes. Recently, much attention has been paid to enzyme-mimic nanomaterials (nanozymes). Because of their distinct characteristics, they are a critical alternative to natural enzymes that can be produced at a subordinate cost and more efficiently. These nanomaterials have enzyme-like activity and have been cast off to detect and treat biomolecules such as DNA, proteins, cells, and tiny molecules such as glucose. Hence, the critical analysis of recent nanozyme is deemed essential for futuristic research, outcome-based results specified to current trends of analytical tools, and several disease monitoring for targeted oncology therapies like circulating tumor cells, MRI, PET, etc. In addition, the multivariate applications of nanozymes for biosensors, immunoassay formation, tumor cell detection with earlier remedies, and environmentallysound engineering technologies are discussed to climax the modern advancements. The novelty and originality of this current review is to intensify the recent advancement, types and mimicking activity, biomedical applications of nanozymes, implementation of the chemometric approach in nanozymes, and its futuristic approach. Finally, to promote the understanding of nanozymes and the development of novel and multifunctional nanozymes, we provide a comprehensive review of the nanozymes with their broadest applications and modern technologies involved in targeted drug delivery, inventory with other diversified arenas and existing patents indicating future implications.

Graphical Abstract

[1]
Ragg, R.; Tahir, M.N.; Tremel, W. Solids go Bio: Inorganic nanoparticles as enzyme mimics. Eur. J. Inorg. Chem., 2016, 2016(13-14), 1906-1915.
[http://dx.doi.org/10.1002/ejic.201501237]
[2]
Wu, J.; Li, S.; Wei, H. Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horiz., 2018, 3(4), 367-382.
[http://dx.doi.org/10.1039/C8NH00070K] [PMID: 32254124]
[3]
Wu, J.; Li, S.; Wei, H. Integrated nanozymes: Facile preparation and biomedical applications. Chem. Commun. (Camb.), 2018, 54(50), 6520-6530.
[http://dx.doi.org/10.1039/C8CC01202D] [PMID: 29564455]
[4]
Gao, L.; Fan, K.; Yan, X. Iron Oxide Nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics, 2017, 7(13), 3207-3227.
[http://dx.doi.org/10.7150/thno.19738] [PMID: 28900505]
[5]
Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev., 2019, 48(4), 1004-1076.
[http://dx.doi.org/10.1039/C8CS00457A] [PMID: 30534770]
[6]
Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev., 2013, 42(14), 6060-6093.
[http://dx.doi.org/10.1039/c3cs35486e] [PMID: 23740388]
[7]
Wang, C.; Wang, H.; Xu, B.; Liu, H. Photo‐responsive nanozymes: Mechanism, activity regulation, and biomedical applications. VIEW, 2021, 2(1), 20200045.
[http://dx.doi.org/10.1002/VIW.20200045]
[8]
Dong, H.; Fan, Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem., 2019, 30(5), 1273-1296.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00171] [PMID: 30966739]
[9]
Wang, H.; Wan, K.; Shi, X. Recent advances in nanozyme research. Adv. Mater., 2019, 31(45), 1805368.
[http://dx.doi.org/10.1002/adma.201805368] [PMID: 30589120]
[10]
Liu, X.; Gao, Y.; Chandrawati, R.; Hosta-Rigau, L. Therapeutic applications of multifunctional nanozymes. Nanoscale, 2019, 11(44), 21046-21060.
[http://dx.doi.org/10.1039/C9NR06596B] [PMID: 31686088]
[11]
Zhang, L.; Jiang, C.; Li, B.; Liu, Z.; Gu, B.; He, S.; Li, P.; Sun, Y.; Song, S. A core-shell Au@Cu2-xSe heterogeneous metal nanocomposite for photoacoustic and computed tomography dual-imaging-guided photothermal boosted chemodynamic therapy. J. Nanobiotechnol., 2021, 19(1), 410.
[http://dx.doi.org/10.1186/s12951-021-01159-x] [PMID: 34876141]
[12]
Meng, X.; Li, D.; Chen, L.; He, H.; Wang, Q.; Hong, C.; He, J.; Gao, X.; Yang, Y.; Jiang, B.; Nie, G.; Yan, X.; Gao, L.; Fan, K. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano, 2021, 15(3), 5735-5751.
[http://dx.doi.org/10.1021/acsnano.1c01248] [PMID: 33705663]
[13]
Jin, Z.; Hildebrandt, N. Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol., 2012, 30(7), 394-403.
[http://dx.doi.org/10.1016/j.tibtech.2012.04.005] [PMID: 22608980]
[14]
Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold nanoparticles for in vitro diagnostics. Chem. Rev., 2015, 115(19), 10575-10636.
[http://dx.doi.org/10.1021/acs.chemrev.5b00100] [PMID: 26114396]
[15]
Zhou, X.; Guo, S.; Gao, J.; Zhao, J.; Xue, S.; Xu, W. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosens. Bioelectron., 2017, 98, 83-90.
[http://dx.doi.org/10.1016/j.bios.2017.06.039] [PMID: 28654887]
[16]
Deng, B.; Lin, Y.; Wang, C.; Li, F.; Wang, Z.; Zhang, H.; Li, X.F.; Le, X.C. Aptamer binding assays for proteins: The thrombin example—A review. Anal. Chim. Acta, 2014, 837, 1-15.
[http://dx.doi.org/10.1016/j.aca.2014.04.055] [PMID: 25000852]
[17]
Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970.
[http://dx.doi.org/10.1039/c2cs15355f] [PMID: 22388295]
[18]
Barreto, J.A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: applications in cancer imaging and therapy. Adv. Mater., 2011, 23(12), H18-H40.
[http://dx.doi.org/10.1002/adma.201100140] [PMID: 21433100]
[19]
Fan, K.; Cao, C.; Pan, Y.; Lu, D.; Yang, D.; Feng, J.; Song, L.; Liang, M.; Yan, X. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol., 2012, 7(7), 459-464.
[http://dx.doi.org/10.1038/nnano.2012.90] [PMID: 22706697]
[20]
Li, J.; Wang, J.; Wang, Y.; Trau, M. Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles. Analyst, 2017, 142(24), 4788-4793.
[http://dx.doi.org/10.1039/C7AN01102D] [PMID: 29139486]
[21]
Wang, F.; Zhang, Y.; Du, Z.; Ren, J.; Qu, X. Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat. Commun., 2018, 9(1), 1209.
[http://dx.doi.org/10.1038/s41467-018-03617-x] [PMID: 29572444]
[22]
Tian, L.; Qi, J.; Qian, K.; Oderinde, O.; Cai, Y.; Yao, C.; Song, W.; Wang, Y. An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced graphene oxide/molybdenum disulfide nanozyme. Sens. Actuators B Chem., 2018, 260, 676-684.
[http://dx.doi.org/10.1016/j.snb.2018.01.092]
[23]
Li, M.; Lao, Y.H.; Mintz, R.L.; Chen, Z.; Shao, D.; Hu, H.; Wang, H.X.; Tao, Y.; Leong, K.W. A multifunctional mesoporous silica–gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay. Nanoscale, 2019, 11(6), 2631-2636.
[http://dx.doi.org/10.1039/C8NR08337A] [PMID: 30694277]
[24]
Tao, Y.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater., 2013, 25(18), 2594-2599.
[http://dx.doi.org/10.1002/adma.201204419] [PMID: 23418013]
[25]
Maji, S.K.; Mandal, A.K.; Nguyen, K.T.; Borah, P.; Zhao, Y. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl. Mater. Interfaces, 2015, 7(18), 9807-9816.
[http://dx.doi.org/10.1021/acsami.5b01758] [PMID: 25909624]
[26]
Ge, S.; Liu, F.; Liu, W.; Yan, M.; Song, X.; Yu, J. Colorimetric assay of K-562 cells based on folic acid-conjugated porous bimetallic Pd@Au nanoparticles for point-of-care testing. Chem. Commun., 2014, 50(4), 475-477.
[http://dx.doi.org/10.1039/C3CC47622G] [PMID: 24257545]
[27]
Wang, Y.; Zhang, Y.; Su, Y.; Li, F.; Ma, H.; Li, H.; Du, B.; Wei, Q. Ultrasensitive non-mediator electrochemical immunosensors using Au/Ag/Au core/double shell nanoparticles as enzyme-mimetic labels. Talanta, 2014, 124, 60-66.
[http://dx.doi.org/10.1016/j.talanta.2014.02.035] [PMID: 24767446]
[28]
Miller, K.P.; Wang, L.; Benicewicz, B.C.; Decho, A.W. Inorganic nanoparticles engineered to attack bacteria. Chem. Soc. Rev., 2015, 44(21), 7787-7807.
[http://dx.doi.org/10.1039/C5CS00041F] [PMID: 26190826]
[29]
Ghose, D.; Swain, S.; Patra, C.N.; Jena, B.R.; Rao, M.E.B. Advancement and applications of platelet-inspired nanoparticles: A paradigm for cancer targeting. Curr. Pharm. Biotechnol., 2022, 24(2), 213-237.
[http://dx.doi.org/10.2174/1389201023666220329111920]
[30]
Chwalibog, A.; Sawosz, E.; Hotowy, A.; Szeliga, J.; Mitura, S.; Mitura, K.; Grodzik, M.; Orlowski, P.; Sokolowska, A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomedicine, 2010, 5, 1085-1094.
[http://dx.doi.org/10.2147/IJN.S13532] [PMID: 21270959]
[31]
Ahmed, S.R.; Cirone, J.; Chen, A. Fluorescent Fe3O4 Quantum Dots for H2O2 Detection. ACS Appl. Nano Mater., 2019, 2(4), 2076-2085.
[http://dx.doi.org/10.1021/acsanm.9b00071]
[32]
Zhuo, S.; Fang, J.; Zhu, C.; Du, J. Preparation of palladium/carbon dot composites as efficient peroxidase mimics for H2O2 and glucose assay. Anal. Bioanal. Chem., 2020, 412(4), 963-972.
[http://dx.doi.org/10.1007/s00216-019-02320-0] [PMID: 31853600]
[33]
Yao, S.; Zhao, C.; Liu, Y.; Nie, H.; Xi, G.; Cao, X.; Li, Z.; Pang, B.; Li, J.; Wang, J. Colorimetric immunoassay for the detection of Staphylococcus aureus by using magnetic carbon dots and sliver nanoclusters as o-phenylenediamine-oxidase mimetics. Food Anal. Methods, 2020, 13(4), 833-838.
[http://dx.doi.org/10.1007/s12161-019-01683-5]
[34]
Fakhri, N.; Salehnia, F.; Mohammad Beigi, S.; Aghabalazadeh, S.; Hosseini, M.; Ganjali, M.R. Enhanced peroxidase-like activity of platinum nanoparticles decorated on nickel- and nitrogen-doped graphene nanotubes: colorimetric detection of glucose. Mikrochim. Acta, 2019, 186(6), 385.
[http://dx.doi.org/10.1007/s00604-019-3489-3] [PMID: 31139931]
[35]
Das, B.; Franco, J.L.; Logan, N.; Balasubramanian, P.; Kim, M.I.; Cao, C. Nanozymes in point-of-care diagnosis: An emerging futuristic approach for biosensing. Nano-Micro Lett., 2021, 13(1), 193.
[http://dx.doi.org/10.1007/s40820-021-00717-0] [PMID: 34515917]
[36]
Jena, B.R.; Chakraborty, A. Recent advancement of Carbon-based Nanomaterials (CBNs). Acta Sci. Pharm. Sci., 2021, 5(11), 01-02.
[37]
Petree, J.R.; Yehl, K.; Galior, K.; Glazier, R.; Deal, B.; Salaita, K. Site-selective RNA splicing nanozyme: DNAzyme and RtcB conjugates on a gold nanoparticle. ACS Chem. Biol., 2018, 13(1), 215-224.
[http://dx.doi.org/10.1021/acschembio.7b00437] [PMID: 29155548]
[38]
Chen, J.; Ma, Q.; Li, M.; Chao, D.; Huang, L.; Wu, W.; Fang, Y.; Dong, S. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun., 2021, 12(1), 3375.
[http://dx.doi.org/10.1038/s41467-021-23737-1] [PMID: 34099730]
[39]
Fan, L.; Xu, X.; Zhu, C.; Han, J.; Gao, L.; Xi, J.; Guo, R. Tumor catalytic-photothermal therapy with yolk-shell Gold@Carbon nanozymes. ACS Appl. Mater. Interfaces, 2018, 10(5), 4502-4511.
[http://dx.doi.org/10.1021/acsami.7b17916] [PMID: 29341583]
[40]
Dan, Q.; Hu, D.; Ge, Y.; Zhang, S.; Li, S.; Gao, D.; Luo, W.; Ma, T.; Liu, X.; Zheng, H.; Li, Y.; Sheng, Z. Ultrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapy. Biomater. Sci., 2020, 8(3), 973-987.
[http://dx.doi.org/10.1039/C9BM01742A] [PMID: 31850404]
[41]
Gao, S.; Lin, H.; Zhang, H.; Yao, H.; Chen, Y.; Shi, J. Nanocatalytic tumor therapy by biomi metic dual inorganic nanozyme catalyzed cascade reaction. Adv. Sci., 2019, 6(3), 1801733.
[http://dx.doi.org/10.1002/advs.201801733] [PMID: 31168441]
[42]
Liu, C.; Xing, J.; Akakuru, O.U.; Luo, L.; Sun, S.; Zou, R.; Yu, Z.; Fang, Q.; Wu, A. Nanozymes-engineered metal-organic frameworks for catalytic cascades-enhanced synergistic cancer therapy. Nano Lett., 2019, 19(8), 5674-5682.
[http://dx.doi.org/10.1021/acs.nanolett.9b02253] [PMID: 31361142]
[43]
Zhang, L.; Laug, L.; Münchgesang, W.; Pippel, E.; Gösele, U.; Brandsch, M.; Knez, M. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett., 2010, 10(1), 219-223.
[http://dx.doi.org/10.1021/nl903313r] [PMID: 20017497]
[44]
Fan, J.; Yin, J.J.; Ning, B.; Wu, X.; Hu, Y.; Ferrari, M.; Anderson, G.J.; Wei, J.; Zhao, Y.; Nie, G. Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials, 2011, 32(6), 1611-1618.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.004] [PMID: 21112084]
[45]
Unsoy, G.; Gunduz, U.; Oprea, O.; Ficai, D.; Sonmez, M.; Radulescu, M.; Alexie, M.; Ficai, A. Magnetite: from synthesis to applications. Curr. Top. Med. Chem., 2015, 15(16), 1622-1640.
[http://dx.doi.org/10.2174/1568026615666150414153928] [PMID: 25877083]
[46]
Colombo, M.; Carregal-Romero, S.; Casula, M.F.; Gutiérrez, L.; Morales, M.P.; Böhm, I.B.; Heverhagen, J.T.; Prosperi, D.; Parak, W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev., 2012, 41(11), 4306-4334.
[http://dx.doi.org/10.1039/c2cs15337h] [PMID: 22481569]
[47]
Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem., 2008, 80(6), 2250-2254.
[http://dx.doi.org/10.1021/ac702203f] [PMID: 18290671]
[48]
Liu, B.; Han, X.; Liu, J. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale, 2016, 8(28), 13620-13626.
[http://dx.doi.org/10.1039/C6NR02584F] [PMID: 27364882]
[49]
Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun., 2012, 48(19), 2540-2542.
[http://dx.doi.org/10.1039/c2cc17013b] [PMID: 22288077]
[50]
Wang, J.; Wang, Y.; Zhang, D.; Chen, C. Intrinsic oxidase-like nanoenzyme Co4S3/Co(OH)2 hybrid nanotubes with broad-spectrum antibacterial activity. ACS Appl. Mater. Interfaces, 2020, 12(26), 29614-29624.
[http://dx.doi.org/10.1021/acsami.0c05141]
[51]
Li, S.; Sun, W.; Luo, Y.; Gao, Y.; Jiang, X.; Yuan, C.; Han, L.; Cao, K.; Gong, Y.; Xie, C. Hollow PtCo alloy nanospheres as a high- Z and oxygen generating nanozyme for radiotherapy enhancement in non-small cell lung cancer. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(23), 4643-4653.
[http://dx.doi.org/10.1039/D1TB00486G] [PMID: 34009230]
[52]
Dong, J.; Song, L.; Yin, J.J.; He, W.; Wu, Y.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces, 2014, 6(3), 1959-1970.
[http://dx.doi.org/10.1021/am405009f] [PMID: 24387092]
[53]
Sang, Y.; Cao, F.; Li, W.; Zhang, L.; You, Y.; Deng, Q.; Dong, K.; Ren, J.; Qu, X. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc., 2020, 142(11), 5177-5183.
[http://dx.doi.org/10.1021/jacs.9b12873] [PMID: 32100536]
[54]
Singh, N.; Mugesh, G. CeVO4 nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species. Angew. Chem. Int. Ed., 2019, 58(23), 7797-7801.
[http://dx.doi.org/10.1002/anie.201903427] [PMID: 30950157]
[55]
Wang, Z.; Shen, X.; Gao, X.; Zhao, Y. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: A catalytic model bridging computations and experiments for nanozymes. Nanoscale, 2019, 11(28), 13289-13299.
[http://dx.doi.org/10.1039/C9NR03473K] [PMID: 31287483]
[56]
Khoris, I.M.; Ganganboina, A.B.; Suzuki, T.; Park, E.Y. Self assembled chromogen-loaded polymeric cocoon for respiratory virus detection. Nanoscale, 2021, 13(1), 388-396.
[http://dx.doi.org/10.1039/D0NR06893D] [PMID: 33351018]
[57]
Shan, J.; Li, X.; Yang, K.; Xiu, W.; Wen, Q.; Zhang, Y.; Yuwen, L.; Weng, L.; Teng, Z.; Wang, L. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano, 2019, 13(12), 13797-13808.
[http://dx.doi.org/10.1021/acsnano.9b03868] [PMID: 31696705]
[58]
Wang, Y.; Li, Z.; Hu, Y.; Liu, J.; Guo, M.; Wei, H.; Zheng, S.; Jiang, T.; Sun, X.; Ma, Z.; Sun, Y.; Besenbacher, F.; Chen, C.; Yu, M. Photothermal conversion-coordinated Fenton-like and photocatalytic reactions of Cu2-xSe-Au Janus nanoparticles for tri-combination antitumor therapy. Biomaterials, 2020, 255, 120167.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120167] [PMID: 32540756]
[59]
Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.; Sang, Y.; Liu, H.; Bu, W.; Li, L. Self-assembled copper-amino acid nanoparticles for in situ glutathione and H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc., 2019, 141(2), 849-857.
[http://dx.doi.org/10.1021/jacs.8b08714] [PMID: 30541274]
[60]
Soltani, T.; Lee, B.K. Enhanced formation of sulfate radicals by metal-doped BiFeO3 under visible light for improving photo-Fenton catalytic degradation of 2-chlorophenol. Chem. Eng. J., 2017, 313, 1258-1268.
[http://dx.doi.org/10.1016/j.cej.2016.11.016]
[61]
Xi, J.; Wei, G.; An, L.; Xu, Z.; Xu, Z.; Fan, L.; Gao, L. Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett., 2019, 19(11), 7645-7654.
[http://dx.doi.org/10.1021/acs.nanolett.9b02242] [PMID: 31580681]
[62]
Xu, J.; Cai, R.; Zhang, Y.; Mu, X. Molybdenum disulfide-based materials with enzyme-like characteristics for biological applications. Colloids Surf. B Biointerfaces, 2021, 200, 111575.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111575] [PMID: 33524697]
[63]
Wu, H.; Jiang, Q.; Luo, K.; Zhu, C.; Xie, M.; Wang, S.; Fei, Z.; Zhao, J. Synthesis of iridium-based nanocomposite with catalase activity for cancer phototherapy. J. Nanobiotechnology, 2021, 19(1), 203.
[http://dx.doi.org/10.1186/s12951-021-00948-8] [PMID: 34233696]
[64]
Xing, C.; Chang, J.; Ma, M.; Ma, P.; Sun, L.; Li, M. Ultrahigh-efficiency antibacterial and adsorption performance induced by copper-substituted polyoxomolybdate-decorated graphene oxide nanocomposites. J. Colloid Interface Sci., 2022, 612, 664-678.
[http://dx.doi.org/10.1016/j.jcis.2021.12.175] [PMID: 35026570]
[65]
Fan, Y.; Liu, S.; Yi, Y.; Rong, H.; Zhang, J. Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano, 2021, 15(2), 2005-2037.
[http://dx.doi.org/10.1021/acsnano.0c06962] [PMID: 33566564]
[66]
Singh, N.; Savanur, M.A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a parkinson’s disease model. Angew. Chem. Int. Ed., 2017, 56(45), 14267-14271.
[http://dx.doi.org/10.1002/anie.201708573] [PMID: 28922532]
[67]
Huo, M.; Wang, L.; Wang, Y.; Chen, Y.; Shi, J. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano, 2019, 13(2), 2643-2653.
[PMID: 30753056]
[68]
André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H.C.; Müller, W.E.G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater., 2011, 21(3), 501-509.
[http://dx.doi.org/10.1002/adfm.201001302]
[69]
Jiao, X.; Song, H.; Zhao, H.; Bai, W.; Zhang, L.; Lv, Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods, 2012, 4(10), 3261-3267.
[http://dx.doi.org/10.1039/c2ay25511a]
[70]
Vernekar, A.A.; Das, T.; Ghosh, S.; Mugesh, G. A remarkably efficient MnFe2O4-based oxidase nanozyme. Chem. Asian J., 2016, 11(1), 72-76.
[http://dx.doi.org/10.1002/asia.201500942] [PMID: 26377634]
[71]
Liu, L.; Du, J.; Liu, W.; Guo, Y.; Wu, G.; Qi, W.; Lu, X. Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem., 2019, 411(10), 2189-2200.
[http://dx.doi.org/10.1007/s00216-019-01655-y] [PMID: 30868189]
[72]
Kim, C.K.; Kim, T.; Choi, I.Y.; Soh, M.; Kim, D.; Kim, Y.J.; Jang, H.; Yang, H.S.; Kim, J.Y.; Park, H.K.; Park, S.P.; Park, S.; Yu, T.; Yoon, B.W.; Lee, S.H.; Hyeon, T. Ceria nanoparticles that can protect against Ischemic Stroke. Angew. Chem. Int. Ed., 2012, 51(44), 11039-11043.
[http://dx.doi.org/10.1002/anie.201203780] [PMID: 22968916]
[73]
Liu, H.; Gu, C.; Xiong, W.; Zhang, M. A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics. Sens. Actuators B Chem., 2015, 209, 670-676.
[http://dx.doi.org/10.1016/j.snb.2014.12.052]
[74]
Liu, Y.; Ding, D.; Zhen, Y.; Guo, R. Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron., 2017, 92, 140-146.
[http://dx.doi.org/10.1016/j.bios.2017.01.036] [PMID: 28213326]
[75]
Zhao, S.; Duan, H.; Yang, Y.; Yan, X.; Fan, K. Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria. Nano Lett., 2019, 19(12), 8887-8895.
[http://dx.doi.org/10.1021/acs.nanolett.9b03774] [PMID: 31671939]
[76]
Lopez-Cantu, D.O.; González-González, R.B.; Melchor-Martínez, E.M.; Martínez, S.A.H.; Araújo, R.G.; Parra-Arroyo, L.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Iqbal, H.M.N. Enzyme-mimicking capacities of carbon-dots nanozymes: Properties, catalytic mechanism, and applications – A review. Int. J. Biol. Macromol., 2022, 194, 676-687.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.112] [PMID: 34813781]
[77]
Khramtsov, P.; Kropaneva, M.; Minin, A.; Bochkova, M.; Timganova, V.; Maximov, A.; Puzik, A.; Zamorina, S.; Rayev, M. Prussian blue nanozymes with enhanced catalytic activity: Size tuning and application in ELISA-like immunoassay. Nanomaterials, 2022, 12(10), 1630.
[http://dx.doi.org/10.3390/nano12101630] [PMID: 35630852]
[78]
Chong, Y.; Liu, Q.; Ge, C. Advances in oxidase-mimicking nanozymes: Classification, activity regulation and biomedical applications. Nano Today, 2021, 37, 101076.
[http://dx.doi.org/10.1016/j.nantod.2021.101076]
[79]
Zhao, H.; Zhang, R.; Yan, X.; Fan, K. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(35), 6939-6957.
[http://dx.doi.org/10.1039/D1TB00720C] [PMID: 34161407]
[80]
Fan, K.; Xi, J.; Fan, L.; Wang, P.; Zhu, C.; Tang, Y.; Xu, X.; Liang, M.; Jiang, B.; Yan, X.; Gao, L. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun., 2018, 9(1), 1440.
[http://dx.doi.org/10.1038/s41467-018-03903-8] [PMID: 29650959]
[81]
Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2(9), 577-583.
[http://dx.doi.org/10.1038/nnano.2007.260] [PMID: 18654371]
[82]
Zhang, G.; Dasgupta, P.K. Hematin as a peroxidase substitute in hydrogen peroxide determinations. Anal. Chem., 1992, 64(5), 517-522.
[http://dx.doi.org/10.1021/ac00029a013] [PMID: 1575321]
[83]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[84]
Hu, D.; Sheng, Z.; Fang, S.; Wang, Y.; Gao, D.; Zhang, P.; Gong, P.; Ma, Y.; Cai, L. Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis. Theranostics, 2014, 4(2), 142-153.
[http://dx.doi.org/10.7150/thno.7266] [PMID: 24465272]
[85]
Swain, S.; Parhi, R.; Jena, B.R.; Babu, S.M. Quality by design: Concept to applications. Curr. Drug Discov. Technol., 2019, 16(3), 240-250.
[http://dx.doi.org/10.2174/1570163815666180308142016] [PMID: 29521238]
[86]
Jena, B.R.; Panda, S.P.; Umasankar, K.; Swain, S.; Koteswara Rao, G.S.N.; Damayanthi, D.; Ghose, D.; Pradhan, D.P. Applications of QbD-based Software’s in analytical research and development. Curr. Pharm. Anal., 2021, 17(4), 461-473.
[http://dx.doi.org/10.2174/1573412916666200108155853]
[87]
Ghose, D.; Patra, C.N.; Ravi Kumar, B.V.V.; Swain, S.; Jena, B.R.; Choudhury, P.; Shree, D. QbD-based formulation optimization and characterization of polymeric nanoparticles of Cinacalcet hydrochloride with improved biopharmaceutical attributes. Turkish J. Pharmaceut. Sci., 2021, 18(4), 452-464.
[http://dx.doi.org/10.4274/tjps.galenos.2020.08522] [PMID: 34496552]
[88]
Bhanoji Rao, M.E.; Swain, S.; Patra, C.N.; Mund, S.P. Formulation design, optimization and characterization of eprosartanmesylate nanoparticles. Nanosci. Nanotechnol. Asia, 2018, 8, 2130-2143.
[89]
Swain, S.; Jena, B.R.; Madugula, D.; Beg, S. Chapter 6 - Application of Quality by Design Paradigms for Development of Solid Dosage Forms. In: Pharmaceutical Quality by Design Principles and Applications; , 2019; pp. 109-130.
[http://dx.doi.org/10.1016/B978-0-12-815799-2.00007-1]
[90]
Barrios-Estrada, C.; de Jesús Rostro-Alanis, M.; Muñoz-Gutiérrez, B.D.; Iqbal, H.M.N.; Kannan, S.; Parra-Saldívar, R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation – A review. Sci. Total Environ., 2018, 612, 1516-1531.
[http://dx.doi.org/10.1016/j.scitotenv.2017.09.013] [PMID: 28915546]
[91]
Bromberg, J.E.C.; Breems, D.A.; Kraan, J.; Bikker, G.; van der Holt, B.; Smitt, P.S.; van den Bent, M.J.; van’t Veer, M.; Gratama, J.W. CSF flow cytometry greatly improves diagnostic accuracy in CNS hematologic malignancies. Neurology, 2007, 68(20), 1674-1679.
[http://dx.doi.org/10.1212/01.wnl.0000261909.28915.83] [PMID: 17502548]
[92]
Chen, W.Y.; Chang, H.Y.; Lu, J.K.; Huang, Y.C.; Harroun, S.G.; Tseng, Y.T.; Li, Y.J.; Huang, C.C.; Chang, H.T. Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater., 2015, 25(46), 7189-7199.
[http://dx.doi.org/10.1002/adfm.201503248]
[93]
Greter, A.; Ortega, R. Nanozymes with radical-scavenging capping agents and methods of detection there with. WO Patent 207842A1, 2021.
[94]
Zhou, H.; Liu, J. Antibacterial nanozyme and preparation method therefor. WO Patent 248674A1, 2021.
[95]
Ponusami, N.; Park, S. Biosensors using metal nanozyme with hydrolysis activity. KR Patent 0029016A, 2022.
[96]
Balwant, R; Kaur, J Method and system for diagnosis and management of gastroesophageal diseases. WO Patent 198884A1, 2021.
[97]
Kim, D. Nanozymes including anisotropic plasmonic nanostructures and pharmaceutical compositions including the same. KR Patent 0117020A, 2021.
[98]
Gunasekaran, D.; Piyush, K.G. Nanozyme linked oligo probe sorbent assay (nlopsa) for the detection of nucleic acid biomarkers. WO Patent 111461A1, 2021.
[99]
A kind of therapeutic nano enzyme and preparation method thereof assembled by free yl induction. CN Patent 110343144A, 2019.
[100]
Ding, H.; Xi, W. Nano enzyme cascade bioreactor and preparation method and application thereof. CN Patent 113930335A, 2022.
[101]
Lee, S. Method to diagnose allergy by determination of Immunoglobulin E using an immunoassay based on based on enzymemimicking nanozymes. KR Patent 102070794B1, 2020.
[102]
Liu, D.Y.; Xi, Y.D. Nano enzyme for enzymatic chemiluminescence detection and application thereof. CN Patent 111693689A, 2020.
[103]
Li, G.; Zeng, Q. Chitosan-modified nano-enzyme mucosal immune adjuvant, influenza mucosal vaccine and preparation method thereof. CN Patent 111617241A 2020.
[104]
Xi, L.; Li, Y. Method for preparing cerium oxide nanoenzyme based on laser liquid phase irradiation and application. CN Patent 114190401A, 2022.
[105]
Ren, X.; Chen, D.; Wang, Y.; Li, H.; Zhang, Y.; Chen, H.; Li, X.; Huo, M. Nanozymes-recent development and biomedical applications. J. Nanobiotechnol., 2022, 20(1), 92.
[http://dx.doi.org/10.1186/s12951-022-01295-y] [PMID: 35193573]
[106]
Wang, D.; Jana, D.; Zhao, Y. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res., 2020, 53(7), 1389-1400.
[http://dx.doi.org/10.1021/acs.accounts.0c00268] [PMID: 32597637]
[107]
Liu, X.; Wang, X.; Han, Q.; Qi, C.; Wang, C.; Yang, R. Facile synthesis of IrO2/rGO nanocomposites with high peroxidase-like activity for sensitive colorimetric detection of low weight biothiols. Talanta, 2019, 203(203), 227-234.
[http://dx.doi.org/10.1016/j.talanta.2019.05.070] [PMID: 31202330]
[108]
a) Yang, M.; Wu, X.; Hu, X.; Wang, K.; Zhang, C.; Gyimah, E.; Yakubu, S.; Zhang, Z. Electrochemical immunosensor based on Ag+-dependent CTAB-AuNPs for ultrasensitive detection of sulfamethazine. Biosens. Bioelectron., 2019, 144, 111643.
[http://dx.doi.org/10.1016/j.bios.2019.111643] [PMID: 31499389];
b) Chen, Z.; Yin, J.J.; Zhou, Y.T.; Zhang, Y.; Song, L.; Song, M.; Hu, S.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 2012, 6(5), 4001-4012.
[http://dx.doi.org/10.1021/nn300291r] [PMID: 22533614]
[109]
Dai, Z.; Guo, J.; Xu, J.; Liu, C.; Gao, Z.; Song, Y.Y. Target-driven nanozyme growth in TiO2 nanochannels for improving selectivity in electrochemical biosensing. Anal. Chem., 2020, 92(14), 10033-10041.
[http://dx.doi.org/10.1021/acs.analchem.0c01815] [PMID: 32603589]
[110]
Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun., 2011, 47(23), 6695-6697.
[http://dx.doi.org/10.1039/c1cc11943e] [PMID: 21562663]
[111]
Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano, 2017, 11(6), 5558-5566.
[http://dx.doi.org/10.1021/acsnano.7b00905] [PMID: 28549217]
[112]
Reddy, A.; Norris, D.F.; Momeni, S.S.; Waldo, B.; Ruby, J.D. The pH of beverages in the United States. J. Am. Dent. Assoc., 2016, 147(4), 255-263.
[http://dx.doi.org/10.1016/j.adaj.2015.10.019] [PMID: 26653863]
[113]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k] [PMID: 20419217]
[114]
Zhang, X.; Li, G.; Wu, D.; Li, X.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron., 2019, 137, 178-198.
[http://dx.doi.org/10.1016/j.bios.2019.04.061] [PMID: 31100598]
[115]
Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; Zhou, G.; Wei, S.; Li, Y. Single cobalt atoms with precise N-Coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed., 2016, 55(36), 10800-10805.
[http://dx.doi.org/10.1002/anie.201604802] [PMID: 27491018]
[116]
Zhang, S.; Lin, F.; Yuan, Q.; Liu, J.; Li, Y.; Liang, H. Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants. J. Environ. Sci., 2020, 88, 103-111.
[http://dx.doi.org/10.1016/j.jes.2019.07.008] [PMID: 31862051]
[117]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[http://dx.doi.org/10.1016/S0956-5663(01)00115-4] [PMID: 11261847]
[118]
Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials, 2019, 12(1), 121.
[http://dx.doi.org/10.3390/ma12010121] [PMID: 30609693]
[119]
Golub, E.; Albada, H.B.; Liao, W.C.; Biniuri, Y.; Willner, I. Nucleoapzymes: Hemin/G-Quadruplex DNAzyme–Aptamer binding site conjugates with superior enzyme-like catalytic functions. J. Am. Chem. Soc., 2016, 138(1), 164-172.
[http://dx.doi.org/10.1021/jacs.5b09457] [PMID: 26652164]
[120]
Mahmudunnabi, R.G.; Farhana, F.Z.; Kashaninejad, N.; Firoz, S.H.; Shim, Y.B.; Shiddiky, M.J.A. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst, 2020, 145(13), 4398-4420.
[http://dx.doi.org/10.1039/D0AN00558D] [PMID: 32436931]
[121]
Vokhmyanina, D.V.; Andreeva, K.D.; Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. ‘Artificial peroxidase’ nanozyme – enzyme based lactate biosensor. Talanta, 2020, 208, 120393.
[http://dx.doi.org/10.1016/j.talanta.2019.120393] [PMID: 31816797]
[122]
Jiang, X.; Sun, C.; Guo, Y.; Nie, G.; Xu, L. Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens. Bioelectron., 2015, 64, 165-170.
[http://dx.doi.org/10.1016/j.bios.2014.08.078] [PMID: 25218100]
[123]
Shah, M.; Shah, J.; Arya, H.; Vyas, A.; Vijapura, A.; Gajipara, A.; Shamal, A.; Bakshi, M.; Thakore, P.; Shah, R.; Saxena, V.; Varade, D.; Singh, S. Biological oxidase enzyme mimetic Cu‐Pt nanoalloys: A multifunctional nanozyme for colorimetric detection of ascorbic acid and identification of mammalian cells. Chemist. Select, 2019, 4(21), 6537-6546.
[http://dx.doi.org/10.1002/slct.201900681]
[124]
Lei, L.; Yang, X.; Song, Y.; Huang, H.; Li, Y. Current research progress on laccase-like nanomaterials. New J. Chem., 2022, 46(8), 3541-3550.
[http://dx.doi.org/10.1039/D1NJ05658A]
[125]
Wang, Z.; Gao, H.; Zhang, Y.; Liu, G.; Niu, G.; Chen, X. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng., 2017, 11(4), 633-646.
[http://dx.doi.org/10.1007/s11705-017-1620-8] [PMID: 29503759]
[126]
Wang, Z.; Zhang, Y.; Ju, E.; Liu, Z.; Cao, F.; Chen, Z.; Ren, J.; Qu, X. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun., 2018, 9(1), 3334.
[http://dx.doi.org/10.1038/s41467-018-05798-x] [PMID: 30127408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy