Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Potential of Herbal Extracts as Sunscreens and Antihyperpigmentation Treatment

Author(s): Lata Kothapalli*, Komal Bhosale, Asha Thomas and Pooja Sawant

Volume 18, Issue 5, 2023

Published on: 28 April, 2023

Page: [377 - 390] Pages: 14

DOI: 10.2174/1574885518666230330114431

Price: $65

conference banner
Abstract

Background: Skin pigmentation is one of the most serious problems in the adult population of all races. The underlying factors of skin pigmentation are excessive exposure to UV radiation, oxidative stress, and other provocative causes that cause melasma, black spots, and post-inflammatory hyperpigmentation. Hence, treating hyperpigmentation disorders is challenging.

Objective: Skin pigmentation occurs as a process of melanin biosynthesis triggered by UV exposure. Tyrosinase, an enzyme that catalyzes the rate-confining step in melanogenesis, if inhibited, can cause skin hypopigmentation. This has evoked an interest in reviewing plant extracts/ phytoconstituents, which can serve the purpose of sun protection and treat hyperpigmentation, ensuring skin glow for a better quality of life.

Methods: A literature search on Medline, PubMed, Embase, and Scopus databases was done using various keywords like hyperpigmentation, melasma, skin-lightening agents, and sunscreen.

Result: Sun protection products for canopy with photo-aging and skin pigmentation are recommended. Tyrosinase inhibitors are first-line topical medicines available as single or combined topical formulations. Hydroquinone, retinoids, corticosteroids, and kojic acid are clinically proven as exceptionally powerful. However, the adverse effects reported with these small molecules largely impact skin appearance, dermatitis, and exogenous ochronosis. Currently, there is a rising trend towards comfortable, fascinating, and well-endured skin depigmenting agents from natural products that might be utilized by a wide populace.

Conclusion: This present study aimed at exploring plant and fruit extracts together with their active ingredients as potential multitargeted anti-hyperpigmentation agents with sunscreen properties, tyrosinase inhibition, and skin whitening effects.

Graphical Abstract

[1]
Sarkar R, Arora P, Garg KV. Cosmeceuticals for hyperpigmentation: What is available? J Cutan Aesthet Surg 2013; 6(1): 4-11.
[http://dx.doi.org/10.4103/0974-2077.110089] [PMID: 23723597]
[2]
Kanlayavattanakul M, Lourith N. Plants, and natural products for the treatment of skin hyperpigmentation–a review. Planta Med 2018; 84(14): 988-1006.
[http://dx.doi.org/10.1055/a-0583-0410] [PMID: 29506294]
[3]
Solano F. Photoprotection and skin pigmentation: melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020; 25(7): 1537.
[http://dx.doi.org/10.3390/molecules25071537] [PMID: 32230973]
[4]
Jennifer C, Stephie CM, Abhishri SB, Shalini BU. A review on skin whitening property of plant extracts. Int J Pharma Bio Sci 2012; 3(4): 332-47.
[5]
Prasanth B, Soman A, Jobin J, Narayanan PS, John AP. Plants and phytoconstituents having sunscreen activity. World J of Current Medi and Pharmaceutical Res 2020; 27: 14-20.
[6]
Food and Drug Administration Sunscreen drug products for over-the-counter human use Code of Federal Regulations 2013; 5.
[7]
Mohiuddin AK. Sunscreen and suntan preparations. ARC J of Pharmaceutical Sci 2019; 5(2): 8-44.
[8]
Fisk WA, Agbai O, Lev-Tov HA, Sivamani RK. The use of botanically derived agents for hyperpigmentation: A systematic review. J Am Acad Dermatol 2014; 70(2): 352-65.
[http://dx.doi.org/10.1016/j.jaad.2013.09.048] [PMID: 24280646]
[9]
Liu Smith F, Meyskens FL. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol Nutr Food Res 2016; 60(6): 1264-74.
[http://dx.doi.org/10.1002/mnfr.201500822]
[10]
Cefali LC, Ataide JA, Moriel P, Foglio MA, Mazzola PG. Plant-based active photoprotectants for sunscreens. Int J Cosmet Sci 2016; 38(4): 346-53.
[http://dx.doi.org/10.1111/ics.12316] [PMID: 26919163]
[11]
Ando H, Niki Y, Ito M, et al. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Invest Dermatol 2012; 132(4): 1222-9.
[http://dx.doi.org/10.1038/jid.2011.413] [PMID: 22189785]
[12]
James G. Principles of Dermatology. In: Looking bill and Marks Fifth Edition . 2013.
[13]
Davis EC, Callender VD. Postinflammatory hyperpigmentation: a review of the epidemiology, clinical features, and treatment options in skin of color. J Clin Aesthet Dermatol 2010; 3(7): 20-31.
[PMID: 20725554]
[14]
Sarkar R, Ranjan R, Garg S, Garg VK, Sonthalia S, Bansal S. Periorbital hyperpigmentation: A comprehensive review. J Clin Aesthet Dermatol 2016; 9(1): 49-55.
[PMID: 26962392]
[15]
Farris PK. Combination therapy for solar lentigines. J Drugs Dermatol 2004; 3(5): S23-6.
[PMID: 15552596]
[16]
Goswami P, Sharma HK. Skin hyperpigmentation disorders and use of herbal extracts: A review. Curr Trends Pharm Res 2020; 7(2): 81-104.
[17]
Clark AK, Sivamani RK. Phytochemicals in the treatment of hyperpigmentation. J Botanics: Target and Therapy 2016; 6: 89-96.
[18]
Lukman M, Maria U, Reny S, Aisyah F. Antityrosinase effect of botanicals: A review of medicinal plants cosmetic. J Chem Pharm Res 2015; 7(5): 716-72.
[19]
Draelos ZD. Skin lightening preparations and the hydroquinone controversy. Dermatol Ther 2007; 20(5): 308-13.
[http://dx.doi.org/10.1111/j.1529-8019.2007.00144.x] [PMID: 18045355]
[20]
Desai SR. Hyperpigmentation therapy: a review. J Clin Aesthet Dermatol 2014; 7(8): 13-7.
[PMID: 25161755]
[21]
Seo SY, Sharma VK, Sharma N. Mushroom tyrosinase: recent prospects. J Agric Food Chem 2003; 51(10): 2837-53.
[http://dx.doi.org/10.1021/jf020826f] [PMID: 12720364]
[22]
D’Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling pathways in melanogenesis. Int J Mol Sci 2016; 17(7): 1144.
[http://dx.doi.org/10.3390/ijms17071144]
[23]
Saraf S, Kaur CD. Phytoconstituents as photoprotective novel cosmetic formulations. Pharmacogn Rev 2010; 4(7): 1-11.
[http://dx.doi.org/10.4103/0973-7847.65319] [PMID: 22228936]
[24]
Rigi H, Mohtashami L, Asnaashari M, Emami SA, Tayarani-Najaran Z. Dermoprotective effects of saffron: A mini review. Curr Pharm Des 2021; 27(46): 4693-8.
[http://dx.doi.org/10.2174/1381612827666210920150855] [PMID: 34544335]
[25]
Songtavisin T, Pratoomthai B, Gangnonngiw W, Naowaboot J. Azadirachta indica (Neem) water leaf extract inhibits melanin production and tyrosinase activity in b16f10 melanoma cells. Pharmacogn J 2021; 13(4): 1030-5.
[http://dx.doi.org/10.5530/pj.2021.13.133]
[26]
Sharma. Khemchand, et al. Critical review of Ayurvedic Varṇya herbs and their tyrosinase inhibition effect. Ancient sci of life 2015; 35: 18-25.
[http://dx.doi.org/10.4103/0257-7941.165627]
[27]
Searle T, Al-Niaimi F, Ali FR. The top 10 cosmeceuticals for facial hyperpigmentation. Dermatol Ther 2020; 33(6): e14095.
[http://dx.doi.org/10.1111/dth.14095] [PMID: 32720446]
[28]
Yokota T, Nishio H, Kubota Y, Mizoguchi M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res 1998; 11(6): 355-61.
[http://dx.doi.org/10.1111/j.1600-0749.1998.tb00494.x]
[29]
Amer M, Metwalli M. Topical liquiritin improves melasma. Int J Dermatol 2000; 39(4): 299-301.
[http://dx.doi.org/10.1046/j.1365-4362.2000.00943.x]
[30]
Zubair S, Mujtaba G. Comparison of the efficacy of topical 2% liquiritin, topical 4% liquiritin, and topical 4% hydroquinone in the management of melasma. J Pak Assoc Dermatol 2016; 19(3): 158-63.
[31]
Fu B, Li H, Wang X, Lee FS, Cui S. Isolation, and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J Agric Food Chem 2005; 53(19): 7408-14.
[32]
Kuthar SS, Hogade MG, Kosgi SS, Holkar SS. Comparative sun protection factor determination of root extracts of liquorice vs. marketed cosmetic formulation. WJPR 2021; 10(2): 795-800.
[33]
Nattapong S, Omboon L. A new source of whitening agent from a Thai Mulberry plant and its betulinic acid quantitation. Nat Prod Res 2008; 22(9): 727-34.
[http://dx.doi.org/10.1080/14786410601130794] [PMID: 18569714]
[34]
Singh SK, Baker R, Wibawa JID, Bell M, Tobin DJ. The effects of Sophora angustifolia and other natural plant extracts on melanogenesis and melanin transfer in human skin cells. Exp Dermatol 2013; 22(1): 67-9.
[http://dx.doi.org/10.1111/exd.12061] [PMID: 23278898]
[35]
Park KT, Kim JK, Hwang D, Yoo Y, Lim YH. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food Chem Toxicol 2011; 49(12): 3038-45.
[http://dx.doi.org/10.1016/j.fct.2011.09.008] [PMID: 21946069]
[36]
Lee SH, Choi SY, Kim H, et al. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol Pharm Bull 2002; 25(8): 1045-8.
[http://dx.doi.org/10.1248/bpb.25.1045] [PMID: 12186407]
[37]
Alvin G, Catambay N, Vergara A, Jamora MJ. A comparative study of the safety and efficacy of 75% mulberry (Morus alba) extract oil versus placebo as a topical treatment for melasma: a randomized, single-blind, placebo-controlled trial. J Drugs Dermatol 2011; 10(9): 1025-31.
[PMID: 22052272]
[38]
Faizatun F, Asto SD. In vitro determination of sun protection factors on ethanol extract and nanostructured lipid carrier-based gel extract of mulberry root (Morus alba L.). Asian J Pharm Clin Res 2018; 11(13): 138-40.
[http://dx.doi.org/10.22159/ajpcr.2018.v11s1.26590]
[39]
Draelos Z. A double-blind, randomized clinical trial evaluating the dermatologic benefits of coffee berry extract. Int. J Am Acad Dermatol 2008; 58(2): AB64-4.
[40]
Kanokwan K, Thananya N, Pimporn L. Evaluation of antioxidant and anti-tyrosinase activities as well as stability of green and roasted coffee bean extracts from Coffea arabica and Coffea canephora grown in Thailand. J Pharmacogn Phytother 2016; 8(10): 182-92.
[http://dx.doi.org/10.5897/JPP2016.0413]
[41]
Chen CY, Shih CH, Lin TC, et al. Antioxidation and tyrosinase inhibitory ability of coffee pulp extract by ethanol. J Chem 2021; 2021
[42]
Iwai K, Kishimoto N, Kakino Y, Mochida K, Fujita T. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J Agric Food Chem 2004; 52(15): 4893-8.
[http://dx.doi.org/10.1021/jf040048m] [PMID: 15264931]
[43]
Palmer DM, Kitchin JS. A double-blind, randomized, controlled clinical trial evaluating the efficacy and tolerance of a novel phenolic antioxidant skin care system containing Coffea arabica and concentrated fruit and vegetable extracts. J Drugs Dermatol 2010; 9(12): 1480-7.
[PMID: 21120255]
[44]
Katiyar SK, Ahmad N, Mukhtar H. Green tea and skin. Arch Dermatol 2000; 136(8): 989-94.
[http://dx.doi.org/10.1001/archderm.136.8.989] [PMID: 10926734]
[45]
Wei X, Liu Y, Xiao J, Wang Y. Protective effects of tea polysaccharides and polyphenols on skin. J Agric Food Chem 2009; 57(17): 7757-62.
[http://dx.doi.org/10.1021/jf901340f] [PMID: 19670868]
[46]
Zhu W, Xu J, Ge Y, et al. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression. J Radiat Res 2014; 55(6): 1056-65.
[http://dx.doi.org/10.1093/jrr/rru047] [PMID: 24968709]
[47]
Elmets CA, Singh D, Tubesing K, Matsui M, Katiyar S, Mukhtar H. Cutaneous photoprotection from ultraviolet injury by green tea polyphenols. J Am Acad Dermatol 2001; 44(3): 425-32.
[http://dx.doi.org/10.1067/mjd.2001.112919] [PMID: 11209110]
[48]
Syed T, Aly R, Ahmad SA, Andersson T, Wong W. Management of melasma with 2% analog of green tea extract in a hydrophilic cream: a placebo-controlled, double-blind study. Int J of the American Academy of Dermatol 2009; 60(3): AB160-0.
[49]
No JK, Soung DY, Kim YJ, et al. Inhibition of tyrosinase by green tea components. Life Sci 1999; 65(21): PL241-6.
[http://dx.doi.org/10.1016/S0024-3205(99)00492-0] [PMID: 10576599]
[50]
Correa CR, Li L, Aldini G, et al. Composition and stability of phytochemicals in five varieties of black soybeans (Glycine max). Food Chem 2010; 123(4): 1176-84.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.083]
[51]
Seiberg M. Non-denatured Soybean Extracts in Skin Care: Multiple Anti-Aging Effects.Soybean - Biochemistry, Chemistry, and Physiology. London: IntechOpen 2011..https://www.intech open.com/chapters/15705
[http://dx.doi.org/10.5772/15308]
[52]
Paine C, Sharlow E, Liebel F, Eisinger M, Shapiro S, Seiberg M. An alternative approach to depigmentation by soybean extracts via inhibition of the PAR-2 pathway. J Invest Dermatol 2001; 116(4): 587-95.
[http://dx.doi.org/10.1046/j.1523-1747.2001.01291.x] [PMID: 11286627]
[53]
Kim JH, Lee JE, Kim T, et al. 7, 3′, 4′-trihydroxyisoflavone, a metabolite of the soy isoflavone daidzein, suppresses α- melanocyte-stimulating hormone-induced melanogenesis by targeting melanocortin 1 receptor. Frontiers in mole biosci 2020; 7: 577284.
[54]
Leyden J, Wallo W. The mechanism of action and clinical benefits of soy for the treatment of hyperpigmentation. Int J Dermatol 2011; 50(4): 470-7.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04765.x] [PMID: 21332714]
[55]
Waqas MK, Akhtar N, Mustafa R, Jamshaid M, Khan HM, Murtaza G. Dermatological and cosmeceutical benefits of Glycine max (soybean) and its active components. Acta Pol Pharm 2015; 72(1): 3-11.
[PMID: 25850195]
[56]
Wallo W, Nebus J, Leyden JJ. Efficacy of a soy moisturizer in photoaging: a double-blind, vehicle-controlled, 12-week study. J Drugs Dermatol 2007; 6(9): 917-22.
[PMID: 17941363]
[57]
Pierard G, Graf J, Gonzalez R, Cauwenbergh W. Effects of soy on hyperpigmentation in Caucasian and Hispanic populations. J Invest Dermatol 2001; 116: 587-95.
[58]
Arct J, Ratz-Łyko A,, Mieloch M,, Witulska M. Evaluation of skin colouring properties of Curcuma longa extract. Indian J Pharm Sci 2014; 76(4): 374-8.
[PMID: 25284937]
[59]
Du ZY, Jiang YF, Tang ZK, et al. Antioxidation and tyrosinase inhibition of polyphenolic curcumin analogs. Biosci Biotechnol Biochem 2011; 75(12): 2351-8.
[http://dx.doi.org/10.1271/bbb.110547] [PMID: 22146732]
[60]
Jang JY, Lee JH, Jeong SY, Chung KT, Choi YH, Choi BT. Partially purified Curcuma longa inhibits alpha-melanocyte-stimulating hormone-stimulated melanogenesis through extracellular signal-regulated kinase or Akt activation-mediated signalling in B16F10 cells. Exp Dermatol 2009; 18(8): 689-94.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00857.x] [PMID: 19469902]
[61]
Panich U, Kongtaphan K, Onkoksoong T, et al. Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis. Cell Biol Toxicol 2010; 26(2): 103-16.
[http://dx.doi.org/10.1007/s10565-009-9121-2] [PMID: 19288216]
[62]
Farooqui RK, Kaurav M, Kumar M, Sudheesh MS, Pandey RS. Permeation enhancer nanovesicles mediated topical delivery of curcumin for the treatment of hyperpigmentation. J Liposome Res 2022; 32(4): 332-9.
[http://dx.doi.org/10.1080/08982104.2021.2024567] [PMID: 35099353]
[63]
Shrotriya S, Ranpise N, Satpute P, Vidhate B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif Cells Nanomed Biotechnol 2018; 46(7): 1471-82.
[http://dx.doi.org/10.1080/21691401.2017.1373659] [PMID: 28884598]
[64]
Shi L, Tang HL, Xu SL. Chemo-preventive functions of grape seed proanthocyanidin extract against UV-induced intracellular oxidative stress and tyrosinase activity. J Braz Chem Soc 2018; 29(8): 1601-6.
[http://dx.doi.org/10.21577/0103-5053.20180098]
[65]
Zi SX, Ma HJ, Li Y, et al. Oligomeric proanthocyanidins from grape seeds effectively inhibit ultraviolet-induced melanogenesis of human melanocytes in vitro. Int J Mol Med 2009; 23(2): 197-204.
[PMID: 19148543]
[66]
Hsu CK, Chou ST, Huang PJ, et al. Crude ethanol extracts from grape seeds and peels exhibit anti-tyrosinase activity. J Cosmet Sci 2012; 63(4): 225-32.
[PMID: 23193886]
[67]
Sharif A, Akhtar N, Khan MS, et al. Formulation and evaluation on human skin of a water-in-oil emulsion containing Muscat hamburg black grape seed extract. Int J Cosmet Sci 2015; 37(2): 253-8.
[http://dx.doi.org/10.1111/ics.12184] [PMID: 25402429]
[68]
Aladrén S, Garre A, Valderas-Martínez P, Piquero-Casals J, Granger C. Efficacy and safety of an oral nutritional (dietary) supplement containing Pinus pinaster bark extract and grape seed extract in combination with a high spf sunscreen in the treatment of mild-to-moderate melasma: a prospective clinical study. Cosmetics 2019; 6(1): 15.
[http://dx.doi.org/10.3390/cosmetics6010015]
[69]
Jin KS, Oh YN, Hyun SK, Kwon HJ, Kim BW. Vitis amurensis Ruprecht root inhibited α-melanocyte stimulating hormone-induced melanogenesis in B16F10 cells. Nutr Res Pract 2014; 8(5): 509-15.
[http://dx.doi.org/10.4162/nrp.2014.8.5.509] [PMID: 25324929]
[70]
Kasai K, Yoshimura M, Koga T, Arii M, Kawasaki S. Effects of oral administration of ellagic acid-rich pomegranate extract on ultraviolet-induced pigmentation in the human skin. J Nutr Sci Vitaminol 2006; 52(5): 383-8.
[http://dx.doi.org/10.3177/jnsv.52.383] [PMID: 17190110]
[71]
Nahhas AF, Abdel-Malek ZA, Kohli I, Braunberger TL, Lim HW, Hamzavi IH. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light induced oxidative stress. Photodermatol Photoimmunol Photomed 2019; 35(6): 420-8.
[http://dx.doi.org/10.1111/phpp.12423] [PMID: 30198587]
[72]
Syed DN, Malik A, Hadi N, Sarfaraz S, Afaq F, Mukhtar H. Photochemopreventive effect of pomegranate fruit extract on UVA-mediated activation of cellular pathways in normal human epidermal keratinocytes. Photochem Photobiol 2006; 82(2): 398-405.
[http://dx.doi.org/10.1562/2005-06-23-RA-589] [PMID: 16613491]
[73]
Afaq F, Syed DN, Malik A, et al. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Invest Dermatol 2007; 127(1): 222-32.
[http://dx.doi.org/10.1038/sj.jid.5700510] [PMID: 16902416]
[74]
Yu CH, Lin YT, Su HL, et al. Unripe fruit extracts of Mangifera indica L. protect against AGEs formation, melanogenesis and UVA-induced cell damage. Food Nutr Sci 2019; 10(2): 188-97.
[http://dx.doi.org/10.4236/fns.2019.102014]
[75]
De Silva DS, Bandara LL, Samanmali BL, Ratnasooriya WD, Pathirana RN, Abeysekara WP. Investigation of sun screening and antioxidant activity of M. indica ver “Willard”. J Pharmacogn Phytochem 2019; 8(4): 1130-3.
[76]
Patel I, Mashru R. Development of herbal SPF formulation. J Pharmacogn Phytochem 2020; 9(1): 40-4.
[http://dx.doi.org/10.22271/phyto.2020.v9.i1a.10469]
[77]
Chaudhuri RK. A standardised extract of Phyllanthus emblica. A skin tightener with anti-aging benefits. Proceeding PCIA conference. Guangzhou, China. 2004; pp. 9-11.
[78]
Wang YC, Haung XY, Chiu CC, et al. Inhibitions of melanogenesis via Phyllanthus emblica fruit extract powder in B16F10 cells. Food Biosci 2019; 28: 177-82.
[http://dx.doi.org/10.1016/j.fbio.2019.01.006]
[79]
Draelos ZD, Yatskayer M, Bhushan P, Pillai S, Oresajo C. Evaluation of a kojic acid, emblica extract, and glycolic acid formulation compared with hydroquinone 4% for skin lightening. Cutis 2010; 86(3): 153-8.
[PMID: 21049734]
[80]
Majeed M, Bhat B, Anand TS. Inhibition of UV-induced adversaries by β-glucogallin from Amla (Emblica officinalis Gaertn.) fruits. Indian J Nat Prod Resour 2010; 1(4): 462-5.
[81]
Perera HK, Pradeep AP, Devinda KD, Ratnayake RM, Gunawardhana DK, Jayasinghe JA. Antityrosinase activities of Thespesia populnea bark and Phyllanthus emblica Fruit. J Ad Med Pharm Sci 2018; 16(3): 1-8.
[http://dx.doi.org/10.9734/JAMPS/2018/40775]
[82]
Homklob J. Free radical scavenging capacity, tyrosinase inhibition activity, and total phenolics content of ethyl acetate extract from Indian gooseberry (Phyllanthus Emblica L.) in Thailand. Proceedings of the 48th Kasetsart University Annual Conference, Kasetsart.
[83]
Burke KE, Clive J, Combs GF Jr, Commisso J, Keen CL, Nakamura RM. Effects of topical and oral vitamin E on pigmentation and skin cancer induced by ultraviolet irradiation in Skh:2 hairless mice. Nutr Cancer 2000; 38(1): 87-97.
[http://dx.doi.org/10.1207/S15327914NC381_13] [PMID: 11341050]
[84]
McVean M, Liebler DC. Prevention of DNA photodamage by vitamin E compounds and sunscreens: roles of ultraviolet absorbance and cellular uptake. Mol Carcin: 1999; 24(3): 169-76.
[http://dx.doi.org/10.1002/(SICI)1098-2744(199903)24:3<169:AID-MC3>3.0.CO;2-A]
[85]
Shimizu K, Kondo R, Sakai K, Takeda N, Nagahata T, Oniki T. Novel vitamin E derivative with 4-substituted resorcinol moiety has both antioxidant and tyrosinase inhibitory properties. Lipids 2001; 36(12): 1321-6.
[http://dx.doi.org/10.1007/s11745-001-0847-9] [PMID: 11834083]
[86]
Hayakawa R, Ueda H, Nozaki T, et al. Effects of combination treatment with vitamins E and C on chloasma and pigmented contact dermatitis. A double-blind controlled clinical trial. Acta Vitaminol Enzymol 1981; 3(1): 31-8.
[87]
Choi YK, Rho YK, Yoo KH, et al. Effects of vitamin C vs. multivitamin on melanogenesis: comparative study in vitro and in vivo. Int J Dermatol 2010; 49(2): 218-26.
[http://dx.doi.org/10.1111/j.1365-4632.2009.04336.x] [PMID: 20465650]
[88]
Farris PK. Cosmeceutical vitamins: vitamin C In: Cosmeceuticals EBook: Procedures in Cosmetic Dermatol Series, 2014; 37.
[89]
Rendon MI, Benitez AL, Gaviria JI. Treatment of Solar Lentigines with Mequinol/Tretinoin in Combination with a Pigment-Specific aser. Cosmetic dermatol-cedar knolls 2004; 17(4): 223-6.
[90]
Huh CH, Seo KI, Park JY, Lim JG, Eun HC, Park KC. A randomized, double-blind, placebo-controlled trial of vitamin C iontophoresis in melasma. Dermatology 2003; 206(4): 316-20.
[http://dx.doi.org/10.1159/000069943] [PMID: 12771472]
[91]
Panich U, Onkoksoong T, Kongtaphan K, Kasetsinsombat K, Akarasereenont P, Wongkajornsilp A. Inhibition of UVAmediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Archives of Pharmacal res 2011; 34(5): 811-20.
[92]
Espinal-Perez LE, Moncada B, Castanedo-Cazares JP. A double-blind randomized trial of 5% ascorbic acid vs. 4% hydroquinone in melasma. Int J Dermatol 2004; 43(8): 604-7.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02134.x] [PMID: 15304189]
[93]
Kim WS. Efficacy and safety of a new superficial chemical peel using alpha-hydroxy acid, vitamin C and oxygen for melasma. J Cosmet Laser Ther 2013; 15(1): 21-4.
[http://dx.doi.org/10.3109/14764172.2012.748199] [PMID: 23368684]
[94]
Soliman MM, Ramadan SA, Bassiouny DA, Abdelmalek M. Combined trichloroacetic acid peel and topical ascorbic acid versus trichloroacetic acid peel alone in the treatment of melasma: a comparative study. J Cosmet Dermatol 2007; 6(2): 89-94.
[http://dx.doi.org/10.1111/j.1473-2165.2007.00302.x] [PMID: 17524124]
[95]
Greatens A, Hakozaki T, Koshoffer A, et al. Effective inhibition of melanosome transfer to keratinocytes by lectins and niacinamide is reversible. Exp Dermatol 2005; 14(7): 498-508.
[http://dx.doi.org/10.1111/j.0906-6705.2005.00309.x] [PMID: 15946237]
[96]
Hakozaki T, Minwalla L, Zhuang J, et al. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol 2002; 147(1): 20-31.
[http://dx.doi.org/10.1046/j.1365-2133.2002.04834.x] [PMID: 12100180]
[97]
Lee DH, Oh IY, Koo KT, et al. Reduction in facial hyperpigmentation after treatment with a combination of topical niacinamide and tranexamic acid: a randomized, double-blind, vehicle-controlled trial. Skin Res Technol 2014; 20(2): 208-12.
[http://dx.doi.org/10.1111/srt.12107] [PMID: 24033822]
[98]
Castanedo-Cazares JP, Larraga-Piñones G, Ehnis-Pérez A, et al. Topical niacinamide 4% and desonide 0.05% for treatment of axillary hyperpigmentation: a randomized, double-blind, placebo-controlled study. Clin Cosmet Investig Dermatol 2013; 6: 29-36.
[http://dx.doi.org/10.2147/CCID.S39246] [PMID: 23355788]
[99]
Kim B, Kim JE, Lee SM, et al. N-Nicotinoyl dopamine, a novel niacinamide derivative, retains high antioxidant activity and inhibits skin pigmentation. Exp Dermatol 2011; 20(11): 950-2.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01345.x] [PMID: 21843252]
[100]
Mizoguchi H, Li J, Whittenbarger DJ, Marmor MJ, Jerajani HR. The effects of a daily facial lotion containing vitamins B3 and E and provitamin B5 on the facial skin of Indian women: A randomized, double-blind trial. Indian J Dermatol Venereol Leprol 2010; 76(1): 20-6.
[http://dx.doi.org/10.4103/0378-6323.58674] [PMID: 20061726]
[101]
Choi S, Park YI, Lee SK, Kim JE, Chung MH. Aloesin inhibits hyperpigmentation induced by UV radiation. Clin Exp Dermatol 2002; 27(6): 513-5.
[http://dx.doi.org/10.1046/j.1365-2230.2002.01120.x]
[102]
Wang Z, Li X, Yang Z, He X, Tu J, Zhang T. Effects of aloesin on melanogenesis in pigmented skin equivalents. Int J Cosmet Sci 2008; 30(2): 121-30.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00432.x] [PMID: 18377621]
[103]
Jin YH, Lee SJ, Chung MH, et al. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch Pharm Res 1999; 22(3): 232.
[http://dx.doi.org/10.1007/BF02976355]
[104]
Jones K, Hughes J, Hong M, Jia Q, Orndorff S. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res 2002; 15(5): 335-40.
[http://dx.doi.org/10.1034/j.1600-0749.2002.02014.x] [PMID: 12213089]
[105]
Goswami PK, Samant M, Srivastava R. Natural sunscreen agents: a review. SchAcad J Pharm 2013; 2(6): 458-63.
[106]
Kim K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J Ginseng Res 2015; 39(1): 1-6.
[http://dx.doi.org/10.1016/j.jgr.2014.10.006] [PMID: 25535470]
[107]
Lim JY, Ishiguro K, Kubo I. Tyrosinase inhibitory p-Coumaric acid from Ginseng leaves. Phytother Res 1999; 13(5): 371-5.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199908/09)13:5<371:AID-PTR453>3.0.CO;2-L] [PMID: 10441774]
[108]
Jakimiuk K, Sari S, Milewski R, Supuran CT, Şöhretoğlu D,, Tomczyk M,. Flavonoids as tyrosinase inhibitors in in silico and in vitro models: basic framework of SAR using a statistical modelling approach. J Enzyme Inhib Med Chem 2022; 37(1): 427-36.
[http://dx.doi.org/10.1080/14756366.2021.2014832] [PMID: 34923888]
[109]
Tiedtke J, Morel J, Marks O. Depigmentation factor. Bioflavonoids—a safe and effective skin lightener based on encapsulated citrus bioflavonoids. Cosmetochem 2004; 2: 12-7.
[110]
Huang YB, Lee KF, Huang CT, Tsai YH, Wu PC. The effect of component of cream for topical delivery of hesperetin. Chem Pharm Bull 2010; 58(5): 611-4.
[111]
Zhang RZ, Zhu WY, Xie F, Ge XS, Jin HL. Effect of hesperidin on B16 and HaCaT cell lines irradiated by Narrowband-UVB light. J Of Clinical Dermatol 2008; 37(3): 146.
[112]
Proteggente AR, Basu-Modak S, Kuhnle G, et al. Hesperetin glucuronide, a photoprotective agent arising from flavonoid metabolism in human skin fibroblasts. Photochem Photobiol 2003; 78(3): 256-61.
[http://dx.doi.org/10.1562/0031-8655(2003)078<0256:HGAPAA>2.0.CO;2] [PMID: 14556312]
[113]
Fan M, Zhang G, Hu X, Xu X, Gong D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res Int 2017; 100(Pt 1): 226-33.
[http://dx.doi.org/10.1016/j.foodres.2017.07.010] [PMID: 28873682]
[114]
Yu Q, Fan L, Duan Z. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem 2019; 297: 124910.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.184] [PMID: 31253292]
[115]
Kumar KJS, Vani MG, Wang SY, et al. In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: A novel skin lightening agent for hyperpigmentary skin diseases. Biofactors 2013; 39(3): 259-70.
[http://dx.doi.org/10.1002/biof.1064] [PMID: 23322673]
[116]
Tan C, Zhu W, Lu Y. Aloin, cinnamic acid and sophorcarpidine are potent inhibitors of tyrosinase. Chin Med J 2002; 115(12): 1859-62.
[PMID: 12622939]
[117]
Maignan J. Cosmetic use of cinnamic acid derivatives as lightening agent., WO 2004/084854 A1 2004.
[118]
Berg-Schultz K, Schehlmann V, Westenfelder H. Novel stabilized cinnamic ester sunscreen compositions. United States patent application US 10/542,927 2006.
[119]
Hseu YC, Korivi M, Lin FY, et al. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. J Dermatol Sci 2018; 90(2): 123-34.
[http://dx.doi.org/10.1016/j.jdermsci.2018.01.004] [PMID: 29395579]
[120]
Lei Z, Jervis J, Helm RF. Use of methanolysis for the determination of total ellagic and gallic acid contents of wood and food products. J Agric Food Chem 2001; 49(3): 1165-8.
[http://dx.doi.org/10.1021/jf000974a] [PMID: 11312829]
[121]
Shimogaki H, Tanaka Y, Tamai H, Masuda M. In vitro and in vivo evaluation of ellagic acid on melanogenesis inhibition. Int J Cosmet Sci 2000; 22(4): 291-303.
[http://dx.doi.org/10.1046/j.1467-2494.2000.00023.x] [PMID: 18503416]
[122]
Ertam I, Mutlu B, Unal I, Alper S, Kivçak B, Ozer O. Efficiency of ellagic acid and arbutin in melasma: A randomized, prospective, open-label study. J Dermatol 2008; 35(9): 570-4.
[http://dx.doi.org/10.1111/j.1346-8138.2008.00522.x] [PMID: 18837701]
[123]
Dahl A, Yatskayer M, Raab S, Oresajo C. Tolerance and efficacy of a product containing ellagic and salicylic acids in reducing hyperpigmentation and dark spots in comparison with 4% hydroquinone. J Drugs Dermatol 2013; 12(1): 52-8.
[PMID: 23377328]
[124]
Gubitosa J, Rizzi V, Fini P, et al. Multifunctional green synthetized gold nanoparticles/chitosan/ellagic acid self-assembly: Antioxidant, sun filter and tyrosinase-inhibitor properties. Mater Sci Eng C 2020; 106: 110170.
[http://dx.doi.org/10.1016/j.msec.2019.110170] [PMID: 31753365]
[125]
Yang HL, Lin CP, Vudhya Gowrisankar Y, et al. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes. Biochem Pharmacol 2021; 185: 114454.
[http://dx.doi.org/10.1016/j.bcp.2021.114454] [PMID: 33545118]
[126]
Lee TH, Seo JO, Baek SH, Kim SY. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol Ther 2014; 22(1): 35-40.
[http://dx.doi.org/10.4062/biomolther.2013.081] [PMID: 24596619]
[127]
Abbas H, Kamel R. Potential role of resveratrol-loaded elastic sorbitan monostearate nanovesicles for the prevention of UV-induced skin damage. J Liposome Res 2020; 30(1): 45-53.
[http://dx.doi.org/10.1080/08982104.2019.1580721] [PMID: 30741053]
[128]
Chaiprasongsuk A, Onkoksoong T, Pluemsamran T, Limsaengurai S, Panich U. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol 2016; 8: 79-90.
[http://dx.doi.org/10.1016/j.redox.2015.12.006] [PMID: 26765101]
[129]
Lim TK. Glycyrrhiza glabra. Edible Medicinal and Non-Medicinal Plants. 2015 oct; 22: 354-457.
[http://dx.doi.org/10.1007/978-94-017-7276-1_18.] [PMCID: PMC7122586.]
[130]
Memete AR, Timar AV, Vuscan AN, Miere Groza F, Venter AC, Vicas SI. Phytochemical composition of different botanical parts of morus species, health benefits and application in food industry. Plants 2022; 11(2): 152.
[http://dx.doi.org/10.3390/plants11020152] [PMID: 35050040]
[131]
Klingel T, Kremer JI, Gottstein V, Rajcic de Rezende T, Schwarz S, Lachenmeier DW. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the european union. Foods 2020; 9(5): 665.
[http://dx.doi.org/10.3390/foods9050665] [PMID: 32455549]
[132]
Prasanth M, Sivamaruthi B, Chaiyasut C, Tencomnao T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019; 11(2): 474.
[http://dx.doi.org/10.3390/nu11020474] [PMID: 30813433]
[133]
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci 2020; 21(5): 1744.
[http://dx.doi.org/10.3390/ijms21051744] [PMID: 32143309]
[134]
Kim JE, Kang YG, Seong Park J, Lim TG, Won Lee K. Review of soybean phytochemicals and their bioactive properties relevant for skin health. J Food Nutr Res 2017; 5(11): 852-8.
[http://dx.doi.org/10.12691/jfnr-5-11-9]
[135]
de Oliveira Filho JG, de Almeida MJ, Sousa TL, dos Santos DC, Egea MB. Bioactive compounds of turmeric (Curcuma longa L.).In: Murthy, HN., Paek, KY. (eds) Bioactive compounds in underutilized vegetables and legumes. Reference Series in Phytochemistry. Springer, 2021.
[http://dx.doi.org/10.1007/978-3-030-57415-4_37]
[136]
Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. J Food Sci Technol 2020; 57(4): 1205-15.
[http://dx.doi.org/10.1007/s13197-019-04113-w] [PMID: 32180617]
[137]
Fischer UA, Carle R, Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem 2011; 127(2): 807-21.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.156] [PMID: 23140740]
[138]
Maldonado-Celis ME, Yahia EM, Bedoya R, Landázuri P, Loango N, Aguillón J, et al. Chemical composition of mango (Mangifera indica L.) fruit: nutritional and phytochemical compounds. Front Plant Sci 2019; 10: 1073.
[http://dx.doi.org/10.3389/fpls.2019.01073]
[139]
Lebaka VR, Wee YJ, Ye W, Korivi M. Nutritional composition and bioactive compounds in three different parts of mango fruit. Int J Environ Res Public Health 2021; 18(2): 741.
[http://dx.doi.org/10.3390/ijerph18020741] [PMID: 33467139]
[140]
Gul M,, Liu ZW, Iahtisham-Ul- Haq,, et al. Functional and Nutraceutical Significance of Amla (Phyllanthus emblica L.): A Review. Antioxidants (Basel). 2022; Apr 22;11(5). 816.
[http://dx.doi.org/10.3390/antiox11050816]
[141]
Qian W, Liu W, Zhu D, et al. Natural skin whitening compounds for the treatment of melanogenesis.(Review) Exp Ther Med 2020; 20(1): 173-85.
[http://dx.doi.org/10.3892/etm.2020.8687] [PMID: 32509007]
[142]
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Kucharska E, Zajdel R. The modulation of melanogenesis in B16 cells upon treatment with plant extracts and isolated plant compounds. Molecules 2022; 27(14): 4360.
[http://dx.doi.org/10.3390/molecules27144360] [PMID: 35889231]
[143]
Thornfeldt C. Cosmeceuticals containing herbs: fact, fiction, and future. Dermatol Surg 2005; 31(7 Pt 2): 873-81.
[http://dx.doi.org/10.1111/j.1524-4725.2005.31734] [PMID: 16029681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy