Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Green Synthesis, Characterization, and Biomedical Applications of Copper and Copper Oxide Nanoparticles of Plant Origin

Author(s): Sarika Dhir, Ravinder Verma, Shailendra Bhatt, Vandana Garg and Rohit Dutt*

Volume 18, Issue 5, 2023

Published on: 03 May, 2023

Page: [391 - 406] Pages: 16

DOI: 10.2174/1574885518666230328150208

Price: $65

Abstract

The green synthesis approach using plants for the formation of metal/metal oxide nanoparticles is biologically safe and environment-friendly as compared to various physical and chemical methods. Various phytoconstituents present in the plants, such as phenols, flavonoids, alkaloids, tannins, and proteins, act as potential bioresources for the formation of metal/metal oxide nanoparticles. The most common metals/metal oxides used are silver (Ag), copper (Cu), zinc, iron, and gold. Amongst them, copper is a comparably cheap metal than gold and silver. Copper oxide nanoparticles have diverse applications in various fields of therapeutics. This review provides insights regarding the bio-mediated synthesis of copper/copper oxide nanoparticles, factors affecting the synthesis, their characterization, and the biomedical applications, mainly the antibacterial, antifungal, and anticancer activity. Although many trials and research have already been conducted, indicating the potential for developing copper and copper oxide nanoparticles as a future drug, still, more research is needed focusing on different ways to minimize their toxicity and improve biological efficacy.

Graphical Abstract

[1]
Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: An in vitro and in vivo evaluation. Int J Nanomedicine 2021; 16: 905-24.
[http://dx.doi.org/10.2147/IJN.S287665] [PMID: 33603359]
[2]
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine 2012; 7(8): 1253-71.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[3]
Bonifácio BV, Silva PB, Ramos MA, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int J Nanomedicine 2014; 9: 1-15.
[PMID: 24363556]
[4]
El-Seedi HR, El-Shabasy RM, Khalifa SAM, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Advances 2019; 9(42): 24539-59.
[http://dx.doi.org/10.1039/C9RA02225B] [PMID: 35527869]
[5]
Yadi M, Mostafavi E, Saleh B, et al. Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artif Cells Nanomed Biotechnol 2018; 46(sup3): 336-43.
[http://dx.doi.org/10.1080/21691401.2018.1492931] [PMID: 30043657]
[6]
Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects. J Nanostructure Chem 2018; 8(3): 217-54.
[http://dx.doi.org/10.1007/s40097-018-0267-4]
[7]
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31(2): 346-56.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[8]
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J 2016; 24(4): 473-84.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[9]
Cele T. Preparation of nanoparticles. In: Engineered nanomaterials: Health and safety. Avramescu SM, Fierascu I, Akhtar K, Khan SB, Ali F, Asiri A. Eds., Intechopen. 2020. https://www.intechopen.com/books/9109
[http://dx.doi.org/10.5772/intechopen.83105.]
[10]
Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod 2014; 52: 562-6.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[11]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[12]
Krishnan B, Mahalingam S. Improved surface morphology of silver/copper oxide/bentonite nanocomposite using aliphatic ammonium based ionic liquid for enhanced biological activities. J Mol Liq 2017; 241: 1044-58.
[http://dx.doi.org/10.1016/j.molliq.2017.06.104]
[13]
Abdel Rafea M, Roushdy N. Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J Phys D Appl Phys 2009; 42(1): 015413.
[http://dx.doi.org/10.1088/0022-3727/42/1/015413]
[14]
Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 2009; 33(6): 587-90.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.12.004] [PMID: 19195845]
[15]
Verma N, Kumar N. Synthesis and biomedical applications of copper oxide nanoparticles: An expanding horizon. ACS Biomater Sci Eng 2019; 5(3): 1170-88.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01092] [PMID: 33405638]
[16]
Chang MH, Liu HS, Tai CY. Preparation of copper oxide nanoparticles and its application in nanofluid. Powder Technol 2011; 207(1-3): 378-86.
[http://dx.doi.org/10.1016/j.powtec.2010.11.022]
[17]
Devi HS, Singh TD. Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange. Adv Electr Electron Eng 2014; 4(1): 83-8.
[18]
Awwad A, Amer M. Biosynthesis of copper oxide nanoparticles using Ailanthus altissima leaf extract and antibacterial activity. Chem Int 2020; 6(4): 210-7.
[19]
Buazar F, Sweidi S, Badri M, Kroushawi F. Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: A mechanistic approach. Green Process Synth 2019; 8(1): 691-702.
[http://dx.doi.org/10.1515/gps-2019-0040]
[20]
Purohit D, Jalwal P, Manchanda D, et al. Nanocapsules: An emerging drug delivery system. Recent Pat Nanotechnol 2022; 16.
[http://dx.doi.org/10.2174/1872210516666220210113256] [PMID: 35142273]
[21]
Singh A, Singh NB, Hussain I, Singh H. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol 2017; 262: 11-27.
[http://dx.doi.org/10.1016/j.jbiotec.2017.09.016] [PMID: 28962841]
[22]
Nair PMG, Chung IM. The responses of germinating seedlings of green peas to copper oxide nanoparticles. Biol Plant 2015; 59(3): 591-5.
[http://dx.doi.org/10.1007/s10535-015-0494-1]
[23]
Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol 2013; 31(4): 240-8.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[24]
Andra S, Balu SK, Jeevanandham J, et al. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch Pharmacol 2019; 392(7): 755-71.
[http://dx.doi.org/10.1007/s00210-019-01666-7] [PMID: 31098696]
[25]
Rezaie AB, Montazer M, Rad MM. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles. J Photochem Photobiol B 2017; 176: 100-11.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.09.021] [PMID: 28985611]
[26]
Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 2020; 6(7): e04508.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04508] [PMID: 32715145]
[27]
Kerour A, Boudjadar S, Bourzami R, Allouche B. Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities. J Solid State Chem 2018; 263: 79-83.
[http://dx.doi.org/10.1016/j.jssc.2018.04.010]
[28]
Shayegan Mehr E, Sorbiun M, Ramazani A, Taghavi Fardood S. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J Mater Sci Mater Electron 2018; 29(2): 1333-40.
[http://dx.doi.org/10.1007/s10854-017-8039-3]
[29]
Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 2006; 22(2): 736-41.
[http://dx.doi.org/10.1021/la052055q] [PMID: 16401125]
[30]
Vanaja M, Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 2013; 3(3): 217-23.
[http://dx.doi.org/10.1007/s13204-012-0121-9]
[31]
Patra JK, Baek KH. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J Nanomater 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/417305]
[32]
Soni N, Prakash S. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2011; 2(1): 112-21.
[33]
Jacob PJ, Masarudin MJ, Hussein MZ, Rahim RA. Optimization of process parameters influencing the sustainable construction of iron oxide nanoparticles by a novel tropical wetlands Streptomyces spp. J Clean Prod 2019; 232: 193-202.
[http://dx.doi.org/10.1016/j.jclepro.2019.05.359]
[34]
Huang L, Luo F, Chen Z, Megharaj M, Naidu R. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 2015; 137: 154-9.
[http://dx.doi.org/10.1016/j.saa.2014.08.116] [PMID: 25218224]
[35]
Devatha CP. K J, Patil M. Effect of Green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. Environ Nanotechnol Monit Manag 2018; 9(9): 85-94.
[http://dx.doi.org/10.1016/j.enmm.2017.11.007]
[36]
Afsheen S, Tahir MB, Iqbal T, Liaqat A, Abrar M. Green synthesis and characterization of novel iron particles by using different extracts. J Alloys Compd 2018; 732: 935-44.
[http://dx.doi.org/10.1016/j.jallcom.2017.10.137]
[37]
Fazlzadeh M, Rahmani K, Zarei A, Abdoallahzadeh H, Nasiri F, Khosravi R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol 2017; 28(1): 122-30.
[http://dx.doi.org/10.1016/j.apt.2016.09.003]
[38]
Berra D, Laouini SE, Benhaoua B, Ouahrani MR, Berrani D, Rahal A. Green synthesis of copper oxide nanoparticles by Pheonix dactylifera L leaves extract. Dig J Nanomater Biostruct 2018; 13(4): 1231-8.
[39]
Rajendran K, Sen S. Optimization of process parameters for the rapid biosynthesis of hematite nanoparticles. J Photochem Photobiol B 2016; 159: 82-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.023] [PMID: 27045277]
[40]
Bhatia S. Natural polymer drug delivery systems: Nanoparticles, plants, and algae. Springer 2016; pp. 1-23.
[http://dx.doi.org/10.1007/978-3-319-41129-3]
[41]
Santhoshkumar J, Agarwal H, Menon S, Rajeshkumar S, Kumar SV. A biological synthesis of copper nanoparticles and its potential applications. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier 2019; pp. 199-221.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00009-5]
[42]
Abboud Y, Saffaj T, Chagraoui A, et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 2014; 4(5): 571-6.
[http://dx.doi.org/10.1007/s13204-013-0233-x]
[43]
Shard AG, Schofield RC, Minelli C. Ultraviolet-visible spectrophotometry. Elsevier Inc 2019; p. 1.
[44]
Nagar N, Devra V. Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater Chem Phys 2018; 213: 44-51.
[http://dx.doi.org/10.1016/j.matchemphys.2018.04.007]
[45]
Zhou NQ, Tian LJ, Wang YC, et al. Extracellular biosynthesis of copper sulfide nanoparticles by Shewanella oneidensis MR-1 as a photothermal agent. Enzyme Microb Technol 2016; 95: 230-5.
[http://dx.doi.org/10.1016/j.enzmictec.2016.04.002] [PMID: 27866620]
[46]
Vijayashree K, Rai KS, Demappa T. Synthesis of nanosized copper oxide by assimilating microwave radiation and its characterizations. Indian J Adv Chem Sci 2016; S1(6): 9.
[47]
Dhineshbabu NR, Rajendran V, Nithyavathy N, Vetumperumal R. Study of structural and optical properties of cupric oxide nanoparticles. Appl Nanosci 2016; 6(6): 933-9.
[http://dx.doi.org/10.1007/s13204-015-0499-2]
[48]
Zook JM, MacCuspie RI, Locascio LE, Halter MD, Elliott JT. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 2011; 5(4): 517-30.
[http://dx.doi.org/10.3109/17435390.2010.536615] [PMID: 21142841]
[49]
Specac Ltd Using Infrared Spectroscopy to Study Self Assembled Monolayers Azo Nano 2017; 1: 1-50. Available from:https://www.azonano.com/article.aspx?ArticleID=4347
[50]
Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O. Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. J Nanomater 2015 2015.
[http://dx.doi.org/10.1155/2015/789089]
[51]
Narayanan R, El-Sayed MA. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J Phys Chem B 2005; 109(26): 12663-76.
[http://dx.doi.org/10.1021/jp051066p] [PMID: 16852568]
[52]
Mohamed EA. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon 2020; 6(1): e03123.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03123] [PMID: 32042937]
[53]
Harishchandra BD, Pappuswamy M, Pu A, et al. Copper nanoparticles: A review on synthesis, characterization and applications. Asian Pac J Health Sci 2020; 5(4): 201-10.
[http://dx.doi.org/10.31557/apjcb.2020.5.4.201-210]
[54]
Purohit D, Manchanda D, Makhija M, et al. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Pat Nanotechnol 2021; 15(1): 15-34.
[http://dx.doi.org/10.2174/1872210514666200909154409] [PMID: 32912128]
[55]
Vishveshvar K, Aravind Krishnan MV, Haribabu K, Vishnuprasad S. Green synthesis of copper oxide nanoparticles using Ixiro coccinea plant leaves and its characterization. Bionanoscience 2018; 8(2): 554-8.
[http://dx.doi.org/10.1007/s12668-018-0508-5]
[56]
Ismail MIM. Green synthesis and characterizations of copper nanoparticles. Mater Chem Phys 2020; 240: 122283.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122283]
[57]
Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev 2016; 9(1): 33-8.
[http://dx.doi.org/10.1080/17518253.2016.1141238]
[58]
Santhosh Kumar J, Shanmugam V. Green synthesis of copper oxide nanoparticles from Magnolia champaca floral extract and its antioxidant & toxicity assay using Danio Rerio. Int J Recent Technol Eng 2020; 8: 5444-9.
[59]
Muhammad R, Ahson JS, Reena R, et al. A review on synthesis, characterization and applications of copper nanoparticles. Using Green Method 2017; pp. 1750043-66.
[60]
Długosz O, Chwastowski J, Banach M. Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chem Pap 2020; 74(1): 239-52.
[http://dx.doi.org/10.1007/s11696-019-00873-z]
[61]
Hargreaves JSJ. Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catal Struct React 2016; 2(1-4): 33-7.
[http://dx.doi.org/10.1080/2055074X.2016.1252548]
[62]
Murty BS, Shankar P, Raj B, Rath BB, Murday J. Textbook of nanoscience and nanotechnology. Springer Science & Business Media 2013.
[http://dx.doi.org/10.1007/978-3-642-28030-6]
[63]
Yugandhar P, Vasavi T, Jayavardhana RY, Uma MDP, Narasimha G, Savithramma N. Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity. J Cluster Sci 2018; 29(4): 743-55.
[http://dx.doi.org/10.1007/s10876-018-1395-1]
[64]
Gowri M, Latha N, Rajan M. Copper oxide nanoparticles synthesized using Eupatorium odoratum, Acanthospermum hispidum leaf extracts, and its antibacterial effects against pathogens: a comparative study. Bionanoscience 2019; 9(3): 545-52.
[http://dx.doi.org/10.1007/s12668-019-00655-7]
[65]
Sutradhar P, Saha M, Maiti D. Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J Nanostructure Chem 2014; 4(1): 86.
[http://dx.doi.org/10.1007/s40097-014-0086-1]
[66]
Ali K, Saquib Q, Ahmed B, et al. Bio-functionalized CuO nanoparticles induced apoptotic activities in human breast carcinoma cells and toxicity against Aspergillus flavus: An in vitro approach. Process Biochem 2020; 91: 387-97.
[http://dx.doi.org/10.1016/j.procbio.2020.01.008]
[67]
Emima Jeronsia J, Allwin Joseph L, Annie Vinosha P, Jerline Mary A, Jerome Das S. Camellia sinensis leaf extract mediated synthesis of copper oxide nanostructures for potential biomedical applications. Mater Today Proc 2019; 8: 214-22.
[http://dx.doi.org/10.1016/j.matpr.2019.02.103]
[68]
Devipriya D, Roopan SM. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater Sci Eng C 2017; 80: 38-44.
[http://dx.doi.org/10.1016/j.msec.2017.05.130] [PMID: 28866178]
[69]
Wu D, Wang W, He X, et al. Biofabrication of nano copper oxide and its aptamer bioconjugate for delivery of mRNA 29b to lung cancer cells. Mater Sci Eng C 2019; 97: 827-32.
[http://dx.doi.org/10.1016/j.msec.2018.12.009] [PMID: 30678973]
[70]
Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother 2017; 89: 1067-77.
[http://dx.doi.org/10.1016/j.biopha.2017.02.101] [PMID: 28292015]
[71]
Sathiyavimal S, Vasantharaj S, Bharathi D, et al. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of gram negative and gram positive bacteria. J Photochem Photobiol B 2018; 188: 126-34.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.09.014] [PMID: 30267962]
[72]
Sharmila G, Sakthi Pradeep R, Sandiya K, et al. Biogenic synthesis of CuO nanoparticles using Bauhinia tomentosa leaves extract: Characterization and its antibacterial application. J Mol Struct 2018; 1165: 288-92.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.011]
[73]
Sivaraj R, Rahman PKSM, Rajiv P, Narendhran S, Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 129: 255-8.
[http://dx.doi.org/10.1016/j.saa.2014.03.027] [PMID: 24747845]
[74]
Nwanya AC, Razanamahandry LC, Bashir AKH, et al. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles. J Hazard Mater 2019; 375: 281-9.
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.004] [PMID: 31078988]
[75]
Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J Alloys Compd 2015; 632: 321-5.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.172]
[76]
Saif S, Tahir A, Asim T, Chen Y. Plant mediated green synthesis of CuO nanoparticles: Comparison of toxicity of engineered and plant mediated CuO nanoparticles towards Daphnia magna. Nanomaterials 2016; 6(11): 205-25.
[http://dx.doi.org/10.3390/nano6110205] [PMID: 28335333]
[77]
Thekkae Padil VV, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 2013; 8: 889-98.
[PMID: 23467397]
[78]
Nasrollahzadeh M, Maham M, Mohammad Sajadi S. Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N -monosubstituted ureas and reduction of 4-nitrophenol. J Colloid Interface Sci 2015; 455: 245-53.
[http://dx.doi.org/10.1016/j.jcis.2015.05.045] [PMID: 26073846]
[79]
Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Hussin SM. Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J Colloid Interface Sci 2016; 466: 113-9.
[http://dx.doi.org/10.1016/j.jcis.2015.12.018] [PMID: 26707778]
[80]
Amer M, Awwad A. Green synthesis of copper nanoparticles by Citrus lemon fruits extract, characterization and antibacterial activity. Chem Int 2020; 7(1): 1-8.
[81]
Udayabhanu , Nethravathi PC, Pavan KMA, et al. Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Mater Sci Semicond Process 2015; 33: 81-8.
[http://dx.doi.org/10.1016/j.mssp.2015.01.034]
[82]
Kumar PPNV, Shameem U, Kollu P, Kalyani RL, Pammi SVN. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bionanoscience 2015; 5(3): 135-9.
[http://dx.doi.org/10.1007/s12668-015-0171-z]
[83]
Rajeshkumar S, Tharani M, Jeevitha M, Santhoshkumar J. Anticariogenic activity of fresh Aloe vera gel mediated copper oxide nanoparticles. Indian J Public Health Res Dev 2019; 10(11): 3664.
[http://dx.doi.org/10.5958/0976-5506.2019.04158.5]
[84]
Zangeneh MM, Ghaneialvar H, Akbaribazm M, et al. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J Photochem Photobiol B 2019; 197: 111556.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111556] [PMID: 31326842]
[85]
Das PE, Abu-Yousef IA, Majdalawieh AF, Narasimhan S, Poltronieri P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules 2020; 25(3): 555.
[http://dx.doi.org/10.3390/molecules25030555] [PMID: 32012912]
[86]
Mukhopadhyay R, Kazi J, Debnath MC. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: Evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed Pharmacother 2018; 97: 1373-85.
[http://dx.doi.org/10.1016/j.biopha.2017.10.167] [PMID: 29156527]
[87]
Ebrahimi K, Shiravand S, Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm J 2017; 21(4): 866-71.
[http://dx.doi.org/10.12991/mpj.2017.31]
[88]
Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C 2014; 44: 234-9.
[http://dx.doi.org/10.1016/j.msec.2014.08.030] [PMID: 25280701]
[89]
Varghese B, Kurian M, Krishna S, Athira TS. Biochemical synthesis of copper nanoparticles using Zingiber officinalis and Curcuma longa: Characterization and antibacterial activity study. Mater Today Proc 2020; 25: 302-6.
[http://dx.doi.org/10.1016/j.matpr.2020.01.476]
[90]
Kotval SC, John T, Parmar KA. Green synthesis of copper nanoparticles using Mitragyna parvifolia plant bark extract and its antimicrobial study. J Nanosci Nanotechnol 2018; 456-60.
[91]
Jadhav MS, Kulkarni S, Raikar P, Barretto DA, Vootla SK, Raikar US. Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J Chem 2018; 42(1): 204-13.
[http://dx.doi.org/10.1039/C7NJ02977B]
[92]
Vasantharaj S, Sathiyavimal S, Saravanan M, et al. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol B 2019; 191: 143-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.026] [PMID: 30639996]
[93]
Dobrucka R. Antioxidant and catalytic activity of biosynthesized CuO nanoparticles using extract of Galeopsidis herba. J Inorg Organomet Polym Mater 2018; 28(3): 812-9.
[http://dx.doi.org/10.1007/s10904-017-0750-2]
[94]
Hemmati S, Ahmeda A, Salehabadi Y, Zangeneh A, Zangeneh MM. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and l-Ascorbic acid. Polyhedron 2020; 180: 114425.
[http://dx.doi.org/10.1016/j.poly.2020.114425]
[95]
Vanathi P, Rajiv P, Sivaraj R. Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull Mater Sci 2016; 39(5): 1165-70.
[http://dx.doi.org/10.1007/s12034-016-1276-x]
[96]
Raina S, Roy A, Bharadvaja N. Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environ Nanotechnol Monit Manag 2020; 13: 100278.
[http://dx.doi.org/10.1016/j.enmm.2019.100278]
[97]
Zhao H, Su H, Ahmeda A, et al. Biosynthesis of copper nanoparticles using Allium eriophyllum Boiss leaf aqueous extract; characterization and analysis of their antimicrobial and cutaneous wound healing potentials. Appl Organomet Chem 2020; 36(12): e5587.
[http://dx.doi.org/10.1002/aoc.5587]
[98]
Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop J Pharm Res 2017; 16(4): 743-53.
[http://dx.doi.org/10.4314/tjpr.v16i4.2]
[99]
Chandrasekaran R, Yadav SA, Sivaperumal S. Phytosynthesis and characterization of copper oxide nanoparticles using the aqueous extract of Beta vulgaris L and evaluation of their antibacterial and anticancer activities. J Cluster Sci 2020; 31(1): 221-30.
[http://dx.doi.org/10.1007/s10876-019-01640-6]
[100]
Kiriyanthan RM, Sharmili SA, Balaji R, et al. Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: A photodynamic approach. Photodiagn Photodyn Ther 2020; 32: 102058.
[http://dx.doi.org/10.1016/j.pdpdt.2020.102058] [PMID: 33065306]
[101]
Narasaiah P, Mandal BK, Sarada NC. Biosynthesis of Copper Oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation. IOP Conf Series Mater Sci Eng 2017; 263(2): 022012.
[http://dx.doi.org/10.1088/1757-899X/263/2/022012]
[102]
Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B Biointerfaces 2013; 101: 430-3.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.002] [PMID: 23010051]
[103]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[104]
Singh J, Vishwakarma K, Ramawat N, et al. Nanomaterials and microbes’ interactions: A contemporary overview. 3 Biotech 2019; 9(3): 68.
[http://dx.doi.org/10.1007/s13205-019-1576-0] [PMID: 30729092]
[105]
Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 2017; 15(1): 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[106]
Jayarambabu N, Akshaykranth A, Venkatappa Rao T, Venkateswara Rao K, Rakesh Kumar R. Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater Lett 2020; 259: 126813.
[http://dx.doi.org/10.1016/j.matlet.2019.126813]
[107]
Abboud MAA. A novel biological approach to copper nanoparticles synthesis: characterization and its application against phytopathogenic fungi. J Saudi Chem Soc 2021; 1(1): 1-10.
[108]
Yugandhar P, Vasavi T, Uma Maheswari Devi P, Savithramma N. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl Nanosci 2017; 7(7): 417-27.
[http://dx.doi.org/10.1007/s13204-017-0584-9]
[109]
Bhavyasree PG, Xavier TS. Green synthesis of Copper Oxide/Carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon 2020; 6(2): e03323.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03323] [PMID: 32072042]
[110]
Mamatha G, Sowmya P, Madhuri D, et al. Antimicrobial cellulose nanocomposite films with in situ generations of bimetallic (Ag and Cu) nanoparticles using Vitex negundo leaves extract. J Inorg Organomet Polym Mater 2021; 31(2): 802-15.
[http://dx.doi.org/10.1007/s10904-020-01819-9]
[111]
Dey A, Manna S, Chattopadhyay S, et al. Azadirachta indica leaves mediated green synthesized copper oxide nanoparticles induce apoptosis through activation of TNF-α and caspases signaling pathway against cancer cells. J Saudi Chem Soc 2019; 23(2): 222-38.
[http://dx.doi.org/10.1016/j.jscs.2018.06.011]
[112]
Rajamma R, Gopalakrishnan NS, Abdul KF, Baskaran B. Antibacterial and anticancer activity of biosynthesised CuO nanoparticles. IET nanobiotechnology 2020; 14(9): 833-.
[http://dx.doi.org/10.1049/iet-nbt.2020.0088]
[113]
Kelkawi AHA, Abbasi Kajani A, Bordbar AK. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnol 2017; 11(4): 370-6.
[http://dx.doi.org/10.1049/iet-nbt.2016.0103] [PMID: 28530184]
[114]
Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM. Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 2021; 11(4): 564.
[http://dx.doi.org/10.3390/biom11040564] [PMID: 33921379]
[115]
Riss TL, Moravec RA. Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L. Cell Viability Assays. 2013 May 1 [updated 2016 Jul 1]. In: Assay Guidance Manual. Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin C, Baell J, Chung TDY, Coussens NP, Dahlin JL, Devanarayan V, Foley TL, Glicksman M, Gorshkov K, Haas JV, Hall MD, Hoare S, Inglese J, Iversen PW, Kales SC, Lal-Nag M, Li Z, McGee J, McManus O, Riss T, Saradjian P, Sittampalam GS, Tarselli M, Trask OJ Jr, Wang Y, Weidner JR, Wildey MJ, Wilson K, Xia M, Xu X., Eds. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences 2004.
[116]
Chung IM, Abdul Rahuman A, Marimuthu S, et al. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med 2017; 14(1): 18-24.
[PMID: 28672888]
[117]
Prakash S, Elavarasan N, Venkatesan A, Subashini K, Sowndharya M, Sujatha V. Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Adv Powder Technol 2018; 29(12): 3315-26.
[http://dx.doi.org/10.1016/j.apt.2018.09.009]
[118]
Shah R, Pathan A, Vaghela H, Ameta SC, Parmar K. Green synthesis and characterization of copper nanoparticles using mixture (Zingiber officinale, Piper nigrum and Piper longum) extract and its antimicrobial activity. Chem Sci Trans 2019; 8(1): 63-9.
[119]
Naika HR, Lingaraju K, Manjunath K, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 2015; 9(1): 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[120]
Rajesh KM, Ajitha B, Reddy YAK, Suneetha Y, Reddy PS. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 2018; 154: 593-600.
[http://dx.doi.org/10.1016/j.ijleo.2017.10.074]
[121]
Praburaman L, Jang JS, Muthusamy G, et al. Piper betle -mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles. Artif Cells Nanomed Biotechnol 2016; 44(6): 1400-5.
[http://dx.doi.org/10.3109/21691401.2015.1029630] [PMID: 26148178]
[122]
Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 2015; 31(6): 865-73.
[http://dx.doi.org/10.1007/s11274-015-1840-3] [PMID: 25761857]
[123]
Dhivyadharshini J, Arivarasu L, Kumar SR. Antimicrobial and Cytotoxic activity of Adhatoda Vasica mediated copper nano particle. Plant Cell Biotechnol Mol Biol 2020; 21(29-30): 1-7.
[124]
Rani H, Singh SP, Yadav TP, Khan MS, Ansari MI, Singh AK. In-vitro catalytic, antimicrobial and antioxidant activities of bioengineered copper quantum dots using Mangifera indica (L.) leaf extract. Mater Chem Phys 2020; 239: 122052.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122052]
[125]
Velsankar K. RM AK, Preethi R, Muthulakshmi V, Sudhahar V. Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J Environ Chem Eng 2020; 8(5): 104123.
[http://dx.doi.org/10.1016/j.jece.2020.104123]
[126]
Pagar K, Ghotekar S, Pagar T, et al. Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations. Asian J Nano Mat 2020; 3(1): 15-23.
[127]
Shammout M, Awwad A. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem Int 2021; 7(1): 71-8.
[128]
Mishra G, Yadav V, Saxena DA. Biosynthesis of copper nanoparticles using aqueous Ficus racemosa extract-characterization and study of antimicrobial effects. Am J Pharm Health Res 2019; 7(11): 63-76.
[http://dx.doi.org/10.46624/ajphr.2019.v7.i11.004]
[129]
Chakraborty N, Banerjee J, Chakraborty P, et al. Green synthesis of copper/copper oxide nanoparticles and their applications: A review. Green Chem Lett Rev 2022; 15(1): 187-215.
[http://dx.doi.org/10.1080/17518253.2022.2025916]
[130]
Gopinath V, Priyadarshini S, Al-Maleki AR, et al. In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles. RSC Advances 2016; 6(112): 110986-95.
[http://dx.doi.org/10.1039/C6RA13871C]
[131]
Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 2017; 10(2): 215-25.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.011]
[132]
Sulaiman GM, Tawfeeq AT, Jaaffer MD. Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnol Prog 2018; 34(1): 218-30.
[http://dx.doi.org/10.1002/btpr.2568] [PMID: 28960911]
[133]
Nagaraj E, Karuppannan K, Shanmugam P, Venugopal S. Exploration of bio-synthesized copper oxide nanoparticles using Pterolobium hexapetalum leaf extract by photocatalytic activity and biological evaluations. J Cluster Sci 2019; 30(4): 1157-68.
[http://dx.doi.org/10.1007/s10876-019-01579-8]
[134]
Kumari P, Panda PK, Jha E, et al. Mechanistic insight to ROS and Apoptosis regulated cytotoxicity inferred by Green synthesized CuO nanoparticles from Calotropis gigantea to Embryonic Zebrafish. Sci Rep 2017; 7(1): 16284.
[http://dx.doi.org/10.1038/s41598-017-16581-1] [PMID: 29176605]
[135]
Registered Clinical Trial Database 2023. Available from:https://clinicaltrials.gov/(Accessed on 08/01/ 2023).
[136]
Aldalbahi A, Alabdullah BI, Awad M A G, Alshehri H A A, Alsaggaf SM. Copper oxide nanoparticles synthesised using Rhatany root extract. Patent US 11,001,505 B1, 2021.
[137]
Yong SJ. Method of preparation of Cu or Cu-Ag bimetallic nanoparticles using Curcuma. patent KR20190072716A, 2017.
[138]
Aldalbahi A, Aldawish R, Awad MAG, Aldosari NS, Shoqiran KIB. Synthesis of copper oxide nanoparticles Patent US 10,995,010B1:, 2021.
[139]
Hassan SED, Fouda A, Radwan AA, et al. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 2019; 24(3): 377-93.
[http://dx.doi.org/10.1007/s00775-019-01654-5] [PMID: 30915551]
[140]
Saravanakumar K, Shanmugam S, Varukattu NB, et al. Biosynthesis and characterization of copper oxide nanoparticles from 844 indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B 2019; 190: 103-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.017] [PMID: 30508758]
[141]
Kouhkan M, Ahangar P, Babaganjeh LA, Allahyari-Devin M. Biosynthesis of copper oxide nanoparticles using Lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr Nanosci 2020; 16(1): 101-11.
[http://dx.doi.org/10.2174/1573413715666190318155801]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy