Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Phenyliodine(III)diacetate (PIDA): Applications in Rearrangement/Migration Reactions

Author(s): M. Mujahid Alam, Hari Babu Bollikolla, Mohammed Amanullah, Mohamed Hussein and Ravi Varala*

Volume 27, Issue 2, 2023

Published on: 17 April, 2023

Page: [93 - 107] Pages: 15

DOI: 10.2174/1385272827666230330105241

Price: $65

conference banner
Abstract

One of the most widely utilized hypervalent iodines used as an oxidizing agent in organic chemistry is (dialcetoxyiodo)benzene (PhI(OAc)2), also known as (DAIB), phenyliodine(III) diacetate (PIDA). In this mini-review, PIDA is highlighted in relation to its applications in organic synthesis involving rearrangement/migration reactions along with their interesting mechanistic aspects from the summer of 2015 to the present.

Graphical Abstract

[1]
Richardson, R.D.; Wirth, T. Hypervalent iodine goes catalytic. Angew. Chem. Int. Ed., 2006, 45(27), 4402-4404.
[http://dx.doi.org/10.1002/anie.200601817] [PMID: 16804953]
[2]
Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem., 2018, 14, 1813-1825.
[http://dx.doi.org/10.3762/bjoc.14.154] [PMID: 30112085]
[3]
Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev., 2008, 108(12), 5299-5358.
[http://dx.doi.org/10.1021/cr800332c] [PMID: 18986207]
[4]
Zhdankin, V. Application of hypervalent iodine compounds in advanced green technologies. Resource-Efficient Technolog., 2021, 1(1), 1-16.
[http://dx.doi.org/10.18799/24056537/2021/1/286]
[5]
Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun., 2009, 16(16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e] [PMID: 19360157]
[6]
Bauer, A.; Maulide, N. Recent discoveries on the structure of iodine(III) reagents and their use in cross-nucleophile coupling. Chem. Sci., 2021, 12(3), 853-864.
[http://dx.doi.org/10.1039/D0SC03266B] [PMID: 34163852]
[7]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[8]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, 2009(1), 1-62.
[http://dx.doi.org/10.3998/ark.5550190.0010.101]
[9]
Silva, L.F., Jr; Olofsson, B. Hypervalent iodine reagents in the total synthesis of natural products. Nat. Prod. Rep., 2011, 28(10), 1722-1754.
[http://dx.doi.org/10.1039/c1np00028d] [PMID: 21829843]
[10]
Zheng, Z.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci. China Chem., 2014, 57(2), 189-214.
[http://dx.doi.org/10.1007/s11426-013-5043-1]
[11]
Shetgaonkar, S.E.; Mamgain, R.; Kikushima, K.; Dohi, T.; Singh, F.V. Palladium-catalyzed organic reactions involving hypervalent iodine reagents. Molecules, 2022, 27(12), 3900-3956.
[http://dx.doi.org/10.3390/molecules27123900] [PMID: 35745020]
[12]
Shetgaonkar, S.E.; Krishnan, M.; Singh, F.V. Hypervalent iodine reagents for oxidative rearrangements. Mini Rev. Org. Chem., 2021, 18(2), 138-158.
[http://dx.doi.org/10.2174/1570193X17999200727204349]
[13]
Zhang, B.; Li, X.; Guo, B.; Du, Y. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chem. Commun., 2020, 56(91), 14119-14136.
[http://dx.doi.org/10.1039/D0CC05354F] [PMID: 33140751]
[14]
Soni, R.; Sihag, M.; Rani, N.; Kinger, M.; Aneja, D.K. Aqueous mediated reactions involving hypervalent iodine reagents. Asian J. Org. Chem., 2022, 11(9), e202200125.
[http://dx.doi.org/10.1002/ajoc.202200125]
[15]
Rani, N.; Soni, R.; Sihag, M.; Kinger, M.; Aneja, D.K. Combined approach of hypervalent iodine reagents and transition metals in organic reactions. Adv. Synth. Catal., 2022, 364(11), 1798-1848.
[http://dx.doi.org/10.1002/adsc.202200088]
[16]
Mironova, I.A.; Kirsch, S.F.; Zhdankin, V.V.; Yoshimura, A.; Yusubov, M.S. Hypervalent iodine-mediated azidation reactions. Eur. J. Org. Chem., 2022, 2022(34), e202200754.
[http://dx.doi.org/10.1002/ejoc.202200754]
[17]
Willgerodt, C. On some aromatic iodide chlorides. J. Prakt. Chem., 1886, 33, 154e160.
[18]
Togo, H.; Iinuma, M.; Moriyama, K. Simple and practical method for preparation of [(diacetoxy)iodo]arenes with iodoarenes and m-chloroperoxybenzoic acid. Synlett, 2012, 23(18), 2663-2666.
[http://dx.doi.org/10.1055/s-0032-1317345]
[19]
Kitamura, T.; Hossain, M.D. Alternative, Easy preparation of (diacetoxyiodo)arenes from iodoarenes using potassium peroxodisulfate as the oxidant. Synthesis, 2005, 2005(12), 1932-1934.
[http://dx.doi.org/10.1055/s-2005-869962]
[20]
Togo, H.; Nabana, T.; Yamaguchi, K. Preparation and reactivities of novel (Diacetoxyiodo)arenes bearing heteroaromatics. J. Org. Chem., 2000, 65(24), 8391-8394.
[http://dx.doi.org/10.1021/jo001186n] [PMID: 11101405]
[21]
Alcock, N.W.; Countryman, R.M.; Esperås, S.; Sawyer, J.F. Secondary bonding. Part 5. The crystal and molecular structures of phenyliodine(III) diacetate and bis(dichloroacetate). J. Chem. Soc., Dalton Trans., 1979, 5(5), 854-860.
[http://dx.doi.org/10.1039/DT9790000854]
[22]
Kiprof, P. The nature of iodine oxygen bonds in hypervalent 10-I-3 iodine compounds. ARKIVOC, 2005, iv, 19-25.
[23]
Alcock, N.W.; Harrison, W.D.; Howes, C. Secondary bonding. Part 13. Aryl-tellurium(IV) and -iodine(III) acetates and trifluoroacetates. The crystal and molecular structures of bis-(p-methoxyphenyl)tellurium diacetate, µ-oxo-bis[diphenyltrifluoroacetoxytellurium] hydrate, and [bis(trifluoroacetoxy)iodo]benzene. J. Chem. Soc., Dalton Trans., 1984, (8), 1709-1716.
[http://dx.doi.org/10.1039/DT9840001709]
[24]
Lee, C.K.; Mak, T.C.W.; Li, W.K.; Kirner, J.F. Iodobenzene diacetate. Acta Crystallogr. B, 1977, 33(5), 1620-1622.
[http://dx.doi.org/10.1107/S0567740877006694]
[25]
Sharefkin, J.G.; Saltzman, H. Iodosobenzene diacetate. Org. Synth. Coll., 1973, V, 660-663.
[26]
Freitas, R.H.C.N. (Diacetoxyiodo)benzene: More than an oxidant. Aust. J. Chem., 2017, 70(3), 338-340.
[http://dx.doi.org/10.1071/CH16239]
[27]
Pelter, A.; Elgendy, S.M.A. Phenolic oxidations with phenyliodonium diacetate. J. Chem. Soc. Perkin Trans., 1993, 1(16), 1891-1896.
[http://dx.doi.org/10.1039/p19930001891]
[28]
Kryska, A.; Skulski, L. Improved, acid-catalyzed iodinating procedures for activated aromatics with (diacetoxyiodo)benzene as the oxidant. J. Chem. Res. Synop., 1999, 10(10), 590-591.
[http://dx.doi.org/10.1039/a904053f]
[29]
Chen, D.J.; Chen, Z.C. Hypervalent iodine in synthesis. Part 54: One-step conversion of aryl aldehydes to aroyl azides using a combined reagent of (diacetoxy-iodo)benzene with sodium azide. Tetrahedron Lett., 2000, 41(38), 7361-7363.
[http://dx.doi.org/10.1016/S0040-4039(00)00990-4]
[30]
Barluenga, J.; González-Bobes, F.; González, J.M. Activation of alkanes upon reaction with PhI(OAc)2-I2. Angew. Chem. Int. Ed., 2002, 41(14), 2556-2558.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2556::AIDANIE2556>3.0.CO;2-C] [PMID: 12203532]
[31]
Yusubov, M.S.; Zholobova, G.A.; Filimonova, I.L.; Chi, K.W. New oxidative transformations of alkenes and alkynes under the action of diacetoxyiodobenzene. Russ. Chem. Bull., 2004, 53(8), 1735-1742.
[http://dx.doi.org/10.1007/s11172-005-0027-8]
[32]
Piancatelli, G.; Leonelli, F.; Do, N.; Ragan, J. Oxidation of nerol to neral with iodosobenzene diacetate and TEMPO. Org. Synth., 2006, 83, 18-23.
[http://dx.doi.org/10.15227/orgsyn.083.0018]
[33]
Fan, R.; Wen, F.; Qin, L.; Pu, D.; Wang, B.PhI. (OAc)2 induced intramolecular oxidative bromocyclization of homoallylic sulfonamides with KBr as the bromine source. Tetrahedron Lett., 2007, 48(42), 7444-7447.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.085]
[34]
Bérard, D.; Jean, A.; Canesi, S. Novel formal [2+3] cycloaddition between substituted phenols and furan. Tetrahedron Lett., 2007, 48(46), 8238-8241.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.062]
[35]
Chanu, A.; Safir, I.; Basak, R.; Chiaroni, A.; Arseniyadis, S. Synthesis of a norsesquiterpene spirolactone/steroidal hybrid by using an environmentally friendly domino reaction as a key step. Eur. J. Org. Chem., 2007, 2007(26), 4305-4312.
[http://dx.doi.org/10.1002/ejoc.200700446]
[36]
Shu, X.Z.; Xia, X.F.; Yang, Y.F.; Ji, K.G.; Liu, X.Y.; Liang, Y.M. Selective functionalization of sp(3) C-H bonds adjacent to nitrogen using (diacetoxyiodo)benzene (DIB). J. Org. Chem., 2009, 74(19), 7464-7469.
[http://dx.doi.org/10.1021/jo901583r] [PMID: 19731925]
[37]
Mendelsohn, B.A.; Lee, S.; Kim, S.; Teyssier, F.; Aulakh, V.S.; Ciufolini, M.A. Oxidation of oximes to nitrile oxides with hypervalent iodine reagents. Org. Lett., 2009, 11(7), 1539-1542.
[http://dx.doi.org/10.1021/ol900194v] [PMID: 19254039]
[38]
Telvekar, V.; Sasane, K. Oxidative decarboxylation of 2- aryl carboxylic acids using (diacetoxyiodo)benzene forpreparation of aryl aldehydes, ketones, and nitriles. Synlett, 2010, 2010(18), 2778-2780.
[http://dx.doi.org/10.1055/s-0030-1258812]
[39]
Nicolaou, K.C.; Adsool, V.A.; Hale, C.R.H. An expedient procedure for the oxidative cleavage of olefinic bonds with PhI(OAc)2, NMO, and catalytic OsO4. Org. Lett., 2010, 12(7), 1552-1555.
[http://dx.doi.org/10.1021/ol100290a] [PMID: 20192259]
[40]
Kim, H.J.; Kim, J.; Cho, S.H.; Chang, S. Intermolecular oxidative C-N bond formation under metal-free conditions: control of chemoselectivity between aryl sp2 and benzylic sp3 C-H bond imidation. J. Am. Chem. Soc., 2011, 133(41), 16382-16385.
[http://dx.doi.org/10.1021/ja207296y] [PMID: 21928852]
[41]
Mo, D.L.; Ding, C.H.; Dai, L.X.; Hou, X.L. Metal-free synthesis of polysubstituted pyrroles by (diacetoxyiodo)benzene-mediated cascade reaction of 3-alkynyl amines. Chem. Asian J., 2011, 6(12), 3200-3204.
[http://dx.doi.org/10.1002/asia.201100474] [PMID: 21954112]
[42]
Jen, T.; Mendelsohn, B.A.; Ciufolini, M.A. Oxidation of α-oxo-oximes to nitrile oxides with hypervalent iodine reagents. J. Org. Chem., 2011, 76(2), 728-731.
[http://dx.doi.org/10.1021/jo102241s] [PMID: 21175144]
[43]
Ball, L.T.; Lloyd-Jones, G.C.; Russell, C.A. Gold-catalyzed direct arylation. Science, 2012, 337(6102), 1644-1648.
[http://dx.doi.org/10.1126/science.1225709] [PMID: 23019647]
[44]
Prasad, V.; Kale, R.R.; Mishra, B.B.; Kumar, D.; Tiwari, V.K. Diacetoxyiodobenzene mediated one-pot synthesis of diverse carboxamides from aldehydes. Org. Lett., 2012, 14(12), 2936-2939.
[http://dx.doi.org/10.1021/ol3012315] [PMID: 22630055]
[45]
Chen, H.; Sanjaya, S.; Wang, Y.F.; Chiba, S. Copper-catalyzed aliphatic C-H amination with an amidine moiety. Org. Lett., 2013, 15(1), 212-215.
[http://dx.doi.org/10.1021/ol303302r] [PMID: 23252919]
[46]
Xu, J.H.; Jiang, Q.; Guo, C.C. Phenyliodonium diacetate mediated direct synthesis of benzonitriles from styrenes through oxidative cleavage of C═C bonds. J. Org. Chem., 2013, 78(23), 11881-11886.
[http://dx.doi.org/10.1021/jo401919h] [PMID: 24171555]
[47]
Xie, F.; Qi, Z.; Li, X. Rhodium(III)-catalyzed azidation and nitration of arenes by C-H activation. Angew. Chem. Int. Ed., 2013, 52(45), 11862-11866.
[http://dx.doi.org/10.1002/anie.201305902] [PMID: 24573725]
[48]
Xu, L.; Mou, X.Q.; Chen, Z.M.; Wang, S.H. Copper-catalyzed intermolecular azidocyanation of aryl alkenes. Chem. Commun., 2014, 50(73), 10676-10679.
[http://dx.doi.org/10.1039/C4CC04640D] [PMID: 25079085]
[49]
Zhang, N.; Cheng, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Hypervalent iodine-mediated oxygenation of N,N-diaryl tertiary amines: Intramolecular functionalization of sp3 C-H bonds adjacent to nitrogen. J. Org. Chem., 2014, 79(21), 10581-10587.
[http://dx.doi.org/10.1021/jo5016823] [PMID: 25279661]
[50]
Gomes, L.F.R.; Veiros, L.F.; Maulide, N.; Afonso, C.A.M. Diazo- and transition-metal-free C-H insertion: A direct synthesis of β-lactams. Chemistry, 2015, 21(4), 1449-1453.
[http://dx.doi.org/10.1002/chem.201404990] [PMID: 25412838]
[51]
Liu, G.Q.; Yang, C.H.; Li, Y.M. Modular preparation of 5-halomethyl-2-oxazolines via PIDA-promoted intramolecular halooxygenation of N-allylcarboxamides. J. Org. Chem., 2015, 80(22), 11339-11350.
[http://dx.doi.org/10.1021/acs.joc.5b01832] [PMID: 26501791]
[52]
Zenzola, M.; Doran, R.; Luisi, R.; Bull, J.A. Synthesis of sulfoximine carbamates by rhodium-catalyzed nitrene transfer of carbamates to sulfoxides. J. Org. Chem., 2015, 80(12), 6391-6399.
[http://dx.doi.org/10.1021/acs.joc.5b00844] [PMID: 25989821]
[53]
Mandal, S.; Pramanik, A. Synthesis of Hydroxylated Polycyclic Pyrrolo/Indolo[1,2-a]quinoxaline-fused lactam derivatives via PhI(OAc)2 -promoted 1,2-bond migration and solvent insertion. J. Org. Chem., 2022, 87(14), 9282-9295.
[http://dx.doi.org/10.1021/acs.joc.2c01008] [PMID: 35786893]
[54]
Martins, B.S.; Kaiser, D.; Bauer, A.; Tiefenbrunner, I.; Maulide, N. Formal enone α-arylation via I(III)-mediated aryl migration/elimination. Org. Lett., 2021, 23(6), 2094-2098.
[http://dx.doi.org/10.1021/acs.orglett.1c00251] [PMID: 33635665]
[55]
Li, J.; Bauer, A.; Di Mauro, G.; Maulide, N. α-Arylation of carbonyl compounds through oxidative C-C bond activation. Angew. Chem. Int. Ed., 2019, 58, 9816-9819.
[http://dx.doi.org/10.1002/anie.201904899] [PMID: 31112360]
[56]
Bauer, A.; Di Mauro, G.; Li, J.; Maulide, N. An α-Cyclopropanation of carbonyl derivatives by oxidative umpolung. Angew. Chem. Int. Ed., 2020, 59(41), 18208-18212.
[http://dx.doi.org/10.1002/anie.202007439] [PMID: 32808419]
[57]
Reboul, V.; Saraiva Rosa, N.; Glachet, T.; Ibert, Q.; Lohier, J-F.; Franck, X. A straightforward synthesis of N-substituted ureas from primary amides. Synthesis, 2020, 52(14), 2099-2105.
[http://dx.doi.org/10.1055/s-0040-1707103]
[58]
Fang, Z-Y.; Qi, L.; Song, J-Y.; Ren, P-X.; Hou, C-Y.; Ji, S-C.; Wang, L-J.; Li, W.PhI. (OAc)2-Promoted 1,2-diaza-cope rearrangement of βᵧ-unsaturated hydrazones with acetate/H2O: access to diacyl/acyl N-allylhydrazines. Eur. J. Org. Chem., 2020, 2020(33), 5464-5468.
[http://dx.doi.org/10.1002/ejoc.202000875]
[59]
Ye, Z.; Zhang, H.; Chen, N.; Wu, Y.; Zhang, F. PIDA-Mediated rearrangement for the synthesis of enantiopure triazolopyridinones. Org. Lett., 2020, 22(16), 6464-6467.
[http://dx.doi.org/10.1021/acs.orglett.0c02278] [PMID: 32806197]
[60]
Patel, O.P.S.; Jaspal, S.; Shinde, V.N.; Nandwana, N.K.; Rangan, K.; Kumar, A. Phenyliodine(III) Diacetate-Mediated 1,2- ipso -Migration in Mannich Bases of Imid-azo[1,2- a]pyridines: Preparation of N -Acetoxymethyl/Alkoxymethyl- N -arylimidazo[1,2- a]pyridine-3-amines. J. Org. Chem., 2020, 85(11), 7309-7321.
[http://dx.doi.org/10.1021/acs.joc.0c00674] [PMID: 32408748]
[61]
Feng, Y.; Yang, C.; Deng, Q.; Xiong, R.; Zhang, X.; Xiong, Y.; Xiong, Y. Synthesis of antitricyclic morpholine derivatives through iodine(iii)-mediated intramolecular umpolung cycloaddition of olefins. J. Org. Chem., 2020, 85(6), 4500-4506.
[http://dx.doi.org/10.1021/acs.joc.0c00286] [PMID: 32098469]
[62]
Danton, F.; Othman, M.; Lawson, A.M.; Moncol, J.; Ghinet, A.; Rigo, B.; Daïch, A. Phenyliodine(III) diacetate/i2-mediated domino approach for pyrrolo[1,4]thiazines and 1,4-thiazines by a one-pot morin rearrangement of N,S-acetals. Chemistry, 2019, 25(24), 6113-6118.
[http://dx.doi.org/10.1002/chem.201901111] [PMID: 30908789]
[63]
Li, X-Q.; Shang, X-X.; Vu, H-M.L. One-pot synthesisof 2-arylbenzoxazinones from 2-arylindoles with(diacetoxyiodo)benzene as the sole oxidant. Synthesis, 2018, 50(2), 377-383.
[http://dx.doi.org/10.1055/s-0036-1590933]
[64]
Garia, A.; Jain, N. Transition-metal-free synthesis offused quinazolinones by oxidative cyclization of N-pyridylindoles. J. Org. Chem., 2019, 84(15), 9661-9670.
[http://dx.doi.org/10.1021/acs.joc.9b01170] [PMID: 31267751]
[65]
Glachet, T.; Marzag, H.; Saraiva Rosa, N.; Colell, J.F.P.; Zhang, G.; Warren, W.S.; Franck, X.; Theis, T.; Reboul, V. Iodonitrene in action: Directtransformation of amino acids into terminaldiazirines and 15N2-diazirines and their applicationas hyperpolarized markers. J. Am. Chem. Soc., 2019, 141(34), 13689-13696.
[http://dx.doi.org/10.1021/jacs.9b07035] [PMID: 31373802]
[66]
Yamakoshi, W.; Arisawa, M.; Murai, K. OxidativeRearrangement of primary amines using PhI(OAc)2and Cs2CO3. Org. Lett., 2019, 21(9), 3023-3027.
[http://dx.doi.org/10.1021/acs.orglett.9b00559] [PMID: 30998017]
[67]
Zheng, Z.J.; Yu, T.Y.; Xu, P.F.; Wei, H. (Diacetoxyiodo)benzene-mediated selective synthesisof α-azido ketones or acyl azides from β-keto acids. Asian J. Org. Chem., 2018, 7(8), 1579-1582.
[http://dx.doi.org/10.1002/ajoc.201800319]
[68]
Moriarty, R.M.; Prakash, O.; Vavilikolanu, P.R. Oxidative Cleavage of Ketoximes with Iodosobenzene diacetate. Synth. Commun., 1986, 16(10), 1247-1253.
[http://dx.doi.org/10.1080/00397918608056372]
[69]
Maegawa, T.; Miki, Y.; Oishi, R.; Segi, K.; Hamamoto, H.; Nakamura, A. Hypervalent iodine-mediated beckmann rearrangement of ketoximes. Synlett, 2018, 29(11), 1465-1468.
[http://dx.doi.org/10.1055/s-0037-1609686]
[70]
Kiyokawa, K.; Watanabe, T.; Fra, L.; Kojima, T.; Minakata, S. Hypervalent iodine(III)-mediateddecarboxylative Ritter-type amination leading to theproduction of α-tertiary amine derivatives. J. Org. Chem., 2017, 82(22), 11711-11720.
[http://dx.doi.org/10.1021/acs.joc.7b01202] [PMID: 28603990]
[71]
Guo, T.; Jiang, Q.; Yu, Z. Copper-catalyzed ring-expansion/thiolactonization via azidation ofinternal olefinic C-H bond under mild conditions. Adv. Synth. Catal., 2016, 358(21), 3450-3457.
[http://dx.doi.org/10.1002/adsc.201600675]
[72]
Debnath, P.; Baeten, M.; Lefèvre, N.; Daele, S.V.; Maes, B.U.W. Synthesis of secondaryamides from N-substituted amidines by tandemoxidative rearrangement and isocyanateelimination. Adv. Synth. Catal., 2015, 357(1), 197-209.
[http://dx.doi.org/10.1002/adsc.201400648]
[73]
Zhang, X.; Huang, R.; Marrot, J.; Coeffard, V.; Xiong, Y. Hypervalent iodine-mediated synthesis of benzoxazoles and benzimidazoles via an oxidative rearrangement. Tetrahedron, 2015, 71(4), 700-708.
[http://dx.doi.org/10.1016/j.tet.2014.11.066]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy