Abstract
This review updates the field of asymmetric cascade palladium catalysis applied to the synthesis of chiral heterocycles since 2019. It illustrates how much a diversity of chiral palladium catalysts promote unprecedented asymmetric domino reactions of many types, allowing direct access to a wide variety of complex and densely functionalized chiral heterocyclic molecules.
Graphical Abstract
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046];
(b) Nelson, D.I.; Cox, M.M. Lehninger: Principles of Biochemistry, 7th ed; W. H. Freeman: New York, 2017. ;
(c) Faisca Phillips, A.M.M.M. Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; Wiley: Hoboken, 2021, Vol. 1 and 2, .
(b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 1998, Vol. I and II, .
[http://dx.doi.org/10.1002/9783527619399];
(c) Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999. ;
(d) Ojima, I. Catalytic Asymmetric Synthesis; Wiley Online Library, 2000.
[http://dx.doi.org/10.1002/0471721506];
(e) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, 2002. ;
(f) de Meijere, A.; von Zezschwitz, P.; Nüske, H.; Stulgies, B. New cascade and multiple cross-coupling reactions for the efficient construction of complex molecules. J. Organomet. Chem., 2002, 653(1-2), 129-140.
[http://dx.doi.org/10.1016/S0022-328X(02)01168-3];
(g) Beller, M.; Bolm, C. Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004. ;
(h) Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747];
(i) Ramón, D.J.; Yus, M. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath. Chem. Rev., 2006, 106(6), 2126-2208.
[http://dx.doi.org/10.1021/cr040698p] [PMID: 16771446];
(j) Pellissier, H.; Clavier, H. Cobalt-catalyzed selective hydrogenation of nitriles to secondary imines. Chem. Rev., 2014, 114, 2775-2823.
[http://dx.doi.org/10.1021/cr4004055] [PMID: 24428605];
(k) Pellissier, H. Recent advances in enantioselective vanadiumcatalyzed transformations. Coord. Chem. Rev., 2015, 284, 93-110.
[http://dx.doi.org/10.1016/j.ccr.2014.09.014];
(l) Pellissier, H. Enantioselective Silver-catalyzed transformations. Chem. Rev., 2016, 116(23), 14868-14917.
[http://dx.doi.org/10.1021/acs.chemrev.6b00639] [PMID: 27960274];
(m) Pellissier, H. Enantioselective magnesium-catalyzed transformations. Org. Biomol. Chem., 2017, 15(22), 4750-4782.
[http://dx.doi.org/10.1039/C7OB00903H] [PMID: 28513750];
(n) Pellissier, H. Recent developments in enantioselective cobalt-catalyzed transformations. Coord. Chem. Rev., 2018, 360, 122-168.
[http://dx.doi.org/10.1016/j.ccr.2018.01.013];
(o) Pellissier, H. Recent developments in enantioselective vanadium-catalyzed transformations. Coord. Chem. Rev., 2020, 418, 213395.
[http://dx.doi.org/10.1016/j.ccr.2020.213395];
(p) Pellissier, H. Enantioselective indium-catalyzed transformations. Synthesis, 2021, 53(8), 1379-1395.
[http://dx.doi.org/10.1055/a-1348-9122]
[http://dx.doi.org/10.1002/anie.199301313];
(b) Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746];
(c) Parsons, P.J.; Penkett, C.S.; Shell, A.J. Tandem reactions in organic synthesis: novel strategies for natural product elaboration and the development of new synthetic methodology. Chem. Rev., 1996, 96(1), 195-206.
[http://dx.doi.org/10.1021/cr950023+] [PMID: 11848750];
(d) Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349];
(e) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118];
(f) Tietze, L.F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609925];
(g) Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron, 2006, 62(10), 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041];
(h) Pellissier, H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron, 2006, 62(8), 1619-1665.
[http://dx.doi.org/10.1016/j.tet.2005.10.040];
(i) Enders, D.; Grondal, C.; Hüttl, M.R.M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed., 2007, 46(10), 1570-1581.
[http://dx.doi.org/10.1002/anie.200603129] [PMID: 17225236];
(j) Guillena, G.; Ramón, D.J.; Yus, M. Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron Asymmetry, 2007, 18(6), 693-700.
[http://dx.doi.org/10.1016/j.tetasy.2007.03.002];
(k) Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390];
(l) Orru, R.V.A.; Ruijter, E. Synthesis of Heterocycles via Multicomponent Reactions, Topics in Heterocyclic Chemistry; Springer: Berlin, 2010, Vol. I and II, . ;
(m) Pellissier, H. Recent developments in asymmetric organocatalytic domino reactions. Adv. Synth. Catal., 2012, 354(2-3), 237-294.
[http://dx.doi.org/10.1002/adsc.201100714];
(n) Clavier, H.; Pellissier, H. Recent developments in enantioselective metalcatalyzed domino reactions. Adv. Synth. Catal., 2012, 354(18), 3347-3403.
[http://dx.doi.org/10.1002/adsc.201200254];
(o) Pellissier, H. Stereocontrolled domino reactions. Chem. Rev., 2013, 113(1), 442-524.
[http://dx.doi.org/10.1021/cr300271k] [PMID: 23157479];
(p) Pellissier, H. Asymmetric Domino Reactions; Royal Society of Chemistry: Cambridge, 2013.
[http://dx.doi.org/10.1039/9781849737104];
(q) Tietze, L.F. Domino Reactions - Concepts for Efficient Organic Synthesis; Wiley-VCH: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527671304];
(r) Zhu, J.; Wang, Q.; Wang, M. Multicomponent Reactions in Organic Synthesis; Wiley: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527678174];
(s) Herrera, R.P.; Marques-Lopez, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; Wiley: Weinheim, 2015. ;
(t) Pellissier, H. Recent developments in enantioselective metalcatalyzed domino reactions. Adv. Synth. Catal., 2016, 358(14), 2194-2259.
[http://dx.doi.org/10.1002/adsc.201600462];
(u) Snyder, S.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis; Thieme Verlag: Stuttgart, 2016, Vol. 1-2, . ;
(v) Pellissier, H. Green copper catalysis in enantioselective domino reactions. Curr. Org. Chem., 2018, 22, 2670-2697.;
(w) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361(8), 1733-1755.
[http://dx.doi.org/10.1002/adsc.201801371];
(x) Pellissier, H. Asymmetric Metal Catalysis in Enantioselective Domino Reactions; Wiley: Weinheim, 2019.
[http://dx.doi.org/10.1002/9783527822539];
(y) Pellissier, H. Syntheses of natural and biologically relevant products through asymmetric metal-catalyzed domino reactions. A Review. Org. Prep. Proced. Int., 2019, 51(4), 311-344.
[http://dx.doi.org/10.1080/00304948.2019.1590681];
(z) Shu, T.; Cossy, J. Asymmetric desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metal catalysis. Chem. Soc. Rev., 2021, 50(1), 658-666.
[http://dx.doi.org/10.1039/D0CS00666A] [PMID: 33283801];
(aa) Benaglia, M.; Greco, S.J.; Westphal, R.; Venturini Filho, E.; Medici, F. Stereoselective domino reactions in the synthesis of spiro compounds. Synthesis, 2022, 54(13), 2927-2975.
[http://dx.doi.org/10.1055/a-1771-0641]
(b) Wang, J.; Dong, G. Palladium/Norbornene cooperative catalysis. Chem. Rev., 2019, 119(12), 7478-7528.
[http://dx.doi.org/10.1021/acs.chemrev.9b00079] [PMID: 31021606]
[http://dx.doi.org/10.1016/S0040-4020(00)00438-5];
(b) Suffert, J.; Blouin, S.; Blond, G.; Donnard, M.; Gulea, M. Cyclocarbopalladation as a key step in cascade reactions: recent developments. Synthesis, 2017, 49(8), 1767-1784.
[http://dx.doi.org/10.1055/s-0036-1588708];
(c) Tsukano, C. Palladium(0)-Catalyzed Benzylic Csp3–H functionalization for the concise synthesis of heterocycles and its applications. Chem. Pharm. Bull., 2017, 65(5), 409-425.
[http://dx.doi.org/10.1248/cpb.c16-00969] [PMID: 28458363];
(d) Zhang, D.; Liu, J.; Córdova, A.; Liao, W.W. Recent developments in palladium-catalyzed oxidative cascade carbocyclization. ACS Catal., 2017, 7(10), 7051-7063.
[http://dx.doi.org/10.1021/acscatal.7b02438];
(e) Mehta, V.P.; García-López, J.A. σ-Alkyl-PdII Species for remote C−H functionalization. ChemCatChem, 2017, 9(7), 1149-1156.
[http://dx.doi.org/10.1002/cctc.201601624];
(f) Garlets, Z.J.; White, D.R.; Wolfe, J.P. Recent Developments in Pd0‐catalyzed alkene‐carboheterofunctionalization reactions. Asian J. Org. Chem., 2017, 6(6), 636-653.
[http://dx.doi.org/10.1002/ajoc.201600577] [PMID: 29130026];
(g) Delayre, B.; Wang, Q.; Zhu, J. Natural product synthesis enabled by domino processes incorporating a 1,2-rearrangement step. Synthesis, 2018, 50, 700-710.
[http://dx.doi.org/10.1055/s-0031-1289766] [PMID: 27397938];
(b) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Recent advances in directed C–H functionalizations using monodentate nitrogen-based directing groups. Org. Chem. Front., 2014, 1(7), 843-895.
[http://dx.doi.org/10.1039/C4QO00068D];
(c) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front., 2015, 2(9), 1107-1295.
[http://dx.doi.org/10.1039/C5QO00004A];
(d) Roudesly, F.; Oble, J.; Poli, G. Metal-catalyzed C H activation/functionalization: The fundamentals. J. Mol. Catal. Chem., 2017, 426, 275-296.
[http://dx.doi.org/10.1016/j.molcata.2016.06.020];
(e) He, J.; Wasa, M.; Chan, K.S.L.; Shao, Q.; Yu, J.Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev., 2017, 117(13), 8754-8786.
[http://dx.doi.org/10.1021/acs.chemrev.6b00622] [PMID: 28697604];
(f) Newton, C.G.; Wang, S.G.; Oliveira, C.C.; Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev., 2017, 117(13), 8908-8976.
[http://dx.doi.org/10.1021/acs.chemrev.6b00692] [PMID: 28212007];
(g) Dong, Z.; Ren, Z.; Thompson, S.J.; Xu, Y.; Dong, G. transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev., 2017, 117(13), 9333-9403.
[http://dx.doi.org/10.1021/acs.chemrev.6b00574] [PMID: 28125210];
(h) Karimov, R.R.; Hartwig, J.F. Transition-metal-catalyzed selective Functionalization of C(sp3)−H bonds in natural products. Angew. Chem. Int. Ed., 2018, 57(16), 4234-4241.
[http://dx.doi.org/10.1002/anie.201710330] [PMID: 29228463];
(i) Gensch, T.; James, M.J.; Dalton, T.; Glorius, F. Increasing catalyst efficiency in C−H activation catalysis. Angew. Chem. Int. Ed., 2018, 57(9), 2296-2306.
[http://dx.doi.org/10.1002/anie.201710377] [PMID: 29205745];
(j) Le Bras, J.; Muzart, J. C-O bonds from Pd-Catalyzed C(sp 3)-H reactions mediated by heteroatomic groups. Eur. J. Org. Chem., 2018, 2018(10), 1176-1203.
[http://dx.doi.org/10.1002/ejoc.201701446];
(k) Saint-Denis, T.G.; Zhu, R.Y.; Chen, G.; Wu, Q.F.; Yu, J.Q. Enantioselective C(sp 3)‒H bond activation by chiral transition metal catalysts. Science, 2018, 359(6377), eaao4798.
[http://dx.doi.org/10.1126/science.aao4798] [PMID: 29449462]
[http://dx.doi.org/10.1002/anie.198605081];
(b) Heck, R.F. Comprehensive Organic Synthesis; Trost, B.M.; Fleming, I., Eds.; Pergamon: Oxford, 1991, Vol. 4, p. 833.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00110-4];
(c) Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007];
(d) Hiyama, T. How I came across the silicon-based cross-coupling reaction. J. Organomet. Chem., 2002, 653(1-2), 58-61.
[http://dx.doi.org/10.1016/S0022-328X(02)01157-9];
(e) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross Coupling Reactions; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619535];
(f) Negishi, E-i.; Hu, Q.; Huang, Z.; Qian, M.; Wang, G. Palladium-catalyzed alkenylation by the negishi coupling. Aldrichim Acta, 2005, 38, 71-88.;
(g) Beccalli, E.M.; Broggini, G.; Martinelli, M.; Sottocornola, S. C-C, C-O, C-N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem. Rev., 2007, 107(11), 5318-5365.
[http://dx.doi.org/10.1021/cr068006f] [PMID: 17973536];
(h) Surry, D.S.; Buchwald, S.L. Biaryl phosphane ligands in palladiumcatalyzed amination. Angew. Chem. Int. Ed., 2008, 47(34), 6338-6361.
[http://dx.doi.org/10.1002/anie.200800497] [PMID: 18663711];
(i) Hartwig, J.F. Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature, 2008, 455(7211), 314-322.
[http://dx.doi.org/10.1038/nature07369] [PMID: 18800130];
(j) Denmark, S.E.; Regens, C.S. Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: Practical alternatives to boron- and tin-based methods. Acc. Chem. Res., 2008, 41(11), 1486-1499.
[http://dx.doi.org/10.1021/ar800037p] [PMID: 18681465];
(k) Johansson Seechurn, C.C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed., 2012, 51(21), 5062-5085.
[http://dx.doi.org/10.1002/anie.201107017] [PMID: 22573393];
(l) Majumdar, K.; Samanta, S.; Sinha, B. Recent developments in palladiumcatalyzed formation of five- and six-membered fused heterocycles. Synthesis, 2012, 44(6), 817-847.
[http://dx.doi.org/10.1055/s-0031-1289734];
(m) Wu, X.F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev., 2013, 113(1), 1-35.
[http://dx.doi.org/10.1021/cr300100s] [PMID: 23039127];
(n) Biajoli, A.F.P.; Schwalm, C.S.; Limberger, J.; Claudino, T.S.; Monteiro, A.L. Recent progress in the use of pd-catalyzed C-C Cross-Coupling Reactions in the Synthesis of Pharmaceutical Compounds. J. Braz. Chem. Soc., 2014, 25, 2186-2214.
[http://dx.doi.org/10.5935/0103-5053.20140255];
(o) Roy, D.; Uozumi, Y. Recent advances in palladium-catalyzed crosscoupling reactions at ppm to ppb molar catalyst loadings. Adv. Synth. Catal., 2018, 360(4), 602-625.
[http://dx.doi.org/10.1002/adsc.201700810];
(p) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A Critical Review. Chem. Rev., 2018, 118(4), 2249-2295.
[http://dx.doi.org/10.1021/acs.chemrev.7b00443] [PMID: 29460627]
[http://dx.doi.org/10.1002/adsc.201000979]
[http://dx.doi.org/10.1021/acs.organomet.9b00110]
[http://dx.doi.org/10.1002/anie.201806088] [PMID: 29959826]
[http://dx.doi.org/10.1021/cr9903048] [PMID: 11749313];
(b) Bräse, S.; Meijere, A. Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002, Vol. 1, pp. 1223-1254.
[http://dx.doi.org/10.1002/0471212466.ch49];
(c) Dounay, A.B.; Overman, L.E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev., 2003, 103(8), 2945-2964.
[http://dx.doi.org/10.1021/cr020039h] [PMID: 12914487];
(d) Mc Cartney, D.; Guiry, P.J. The asymmetric Heck and related reactions. Chem. Soc. Rev., 2011, 40(10), 5122-5150.
[http://dx.doi.org/10.1039/c1cs15101k] [PMID: 21677934];
(e) Xie, J.Q.; Liang, R.X.; Jia, Y.X. Recent advances of catalytic enantioselective heck reactions and reductive‐heck reactions. Chin. J. Chem., 2021, 39(3), 710-728.
[http://dx.doi.org/10.1002/cjoc.202000464]
[http://dx.doi.org/10.1002/anie.201907840]
[http://dx.doi.org/10.1039/C9CC07036B] [PMID: 31713555]
[http://dx.doi.org/10.1021/acs.orglett.1c00974] [PMID: 33983037]
[http://dx.doi.org/10.1039/C9SC03406D] [PMID: 32015808]
[http://dx.doi.org/10.1002/anie.201913367] [PMID: 31755165]
[http://dx.doi.org/10.1021/acs.orglett.1c02881] [PMID: 34582193]
[http://dx.doi.org/10.1002/adsc.201700361];
(b) Pellissier, H. Synthesis of chiral 3-substituted 3-amino-2-oxindoles through enantioselective catalytic nucleophilic additions to isatin imines. Beilstein J. Org. Chem., 2018, 14, 1349-1369.
[http://dx.doi.org/10.3762/bjoc.14.114] [PMID: 29977400];
(c) Pellissier, H. Synthesis of chiral 3-substituted 3-amino-2-oxindoles through enantioselective catalytic domino and tandem reactions. Synthesis, 2019, 51(6), 1311-1318.
[http://dx.doi.org/10.1055/s-0037-1610350]
[http://dx.doi.org/10.1002/anie.201904838] [PMID: 31074567]
[http://dx.doi.org/10.1021/acs.joc.1c01478] [PMID: 34645261]
[http://dx.doi.org/10.31635/ccschem.020.202000506]
[http://dx.doi.org/10.1039/D2CC01435A] [PMID: 35506738]
[http://dx.doi.org/10.1021/acs.organomet.9b00112];
(b) Liang, R.X.; Jia, Y.X. Aromatic π-components for enantioselective heck reactions and heck/anion-capture domino sequences. Acc. Chem. Res., 2022, 55(5), 734-745.
[http://dx.doi.org/10.1021/acs.accounts.1c00781] [PMID: 35119256]
[http://dx.doi.org/10.31635/ccschem.021.202000596]
[http://dx.doi.org/10.1002/anie.202106518] [PMID: 34240542]
[http://dx.doi.org/10.1002/cjoc.202100538]
[http://dx.doi.org/10.1055/s-0035-1561567]
[http://dx.doi.org/10.1039/C8SC05737K]
[http://dx.doi.org/10.1039/D1SC06229H] [PMID: 35308863]
[http://dx.doi.org/10.1002/anie.202003288] [PMID: 32239787]
[http://dx.doi.org/10.1002/chem.202103670] [PMID: 34643304]
[http://dx.doi.org/10.1039/D1QO01680F]
[http://dx.doi.org/10.1021/acs.orglett.1c01036] [PMID: 33886342]
[http://dx.doi.org/10.1021/acs.orglett.2c00962] [PMID: 35436128]
[http://dx.doi.org/10.1002/anie.201911961] [PMID: 31691440]
[http://dx.doi.org/10.1021/acs.orglett.2c00142] [PMID: 35274964]
[http://dx.doi.org/10.1039/D0QO01486A]
[http://dx.doi.org/10.2174/1385272823666190429155004]
[http://dx.doi.org/10.1002/ejoc.201900431]
[http://dx.doi.org/10.1021/jacs.1c00840] [PMID: 33683109]
[http://dx.doi.org/10.1021/acs.joc.1c01026] [PMID: 34255511]
[http://dx.doi.org/10.1021/acs.orglett.0c04030] [PMID: 33464091]
[http://dx.doi.org/10.1039/D1CC03240B] [PMID: 34558575]
[http://dx.doi.org/10.1002/anie.202004504] [PMID: 32391972]
[http://dx.doi.org/10.1021/acs.orglett.1c00204] [PMID: 33683896]
[http://dx.doi.org/10.1021/acs.joc.9b01372] [PMID: 31475825]
[http://dx.doi.org/10.1002/anie.202016001] [PMID: 33369004]
[http://dx.doi.org/10.1002/anie.201914049] [PMID: 31756260]
[http://dx.doi.org/10.1021/acs.orglett.1c02012] [PMID: 34236878]
[http://dx.doi.org/10.1021/acs.orglett.9b01064] [PMID: 31184176]
[http://dx.doi.org/10.1021/acs.orglett.9b02412] [PMID: 31557039]
[http://dx.doi.org/10.1002/chem.201900425] [PMID: 30694590]
[http://dx.doi.org/10.1021/acscatal.8b04590]
[http://dx.doi.org/10.1039/D1SC04558J] [PMID: 34760158]
[http://dx.doi.org/10.1021/acs.orglett.2c00937] [PMID: 35544680]
[http://dx.doi.org/10.1021/jacs.9b04332] [PMID: 31070918]
[http://dx.doi.org/10.1002/anie.202200880] [PMID: 35156289]