Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Review of Nanostructures in Electrowetting-on-dielectric Systems: From Nanostructured Dielectric Layers to Nanofluids

Author(s): Marco L. Budlayan, Jonathan N. Patricio, Susan D. Arco and Raphael A. Guerrero*

Volume 20, Issue 2, 2024

Published on: 04 May, 2023

Page: [248 - 263] Pages: 16

DOI: 10.2174/1573413719666230330095106

Price: $65

Abstract

The extensive interest in electrowetting-on-dielectric (EWOD) as a key in advancing the efficiency and controllability of fluid-based microelectromechanical and actuator systems has resulted in a deluge of technological research, especially in the area of microfluidics, liquid lenses, and fluid-based lab-on-chips. More recently, the integration of nanostructures into EWOD-driven devices has shown promising improvement in these devices’ performance, design, and miniaturization. Due to the exceptional properties, availability, versatility, and tunability of nanostructures, they are being utilized as components of EWOD systems for various applications. Utilization ranges from fabricating nanodimensional dielectric layers to incorporating nanoparticles in fluid droplets. With the current trend in improving the performance and functionality of EWOD-driven devices at low voltage operations, it is timely to revisit the fundamental principle of EWOD phenomena and how it is extended experimentally using nanostructures. In this paper, we present the different nanostructures investigated as dielectric materials in various EWOD experiments focusing on metal oxide and silicon nitride layers. Notes on the structure of these dielectric layers are also presented. Furthermore, various EWOD experiments employing nanofluid droplets are also described. This paper provides a clear picture of nanostructures’ diverse impact on the advancement of EWOD technology. The insights presented in this paper may also serve as a guidepost for future exploration and development of the role of nanostructures in EWOD-driven devices.

Graphical Abstract

[1]
Mugele, F.; Baret, J.C. Electrowetting: From basics to applications. J. Phys. Condens. Matter, 2005, 17(28), R705-R774.
[http://dx.doi.org/10.1088/0953-8984/17/28/R01]
[2]
Rosenkilde, C.E. A dielectric fluid drop in an electric field. Proc. R. Soc. Lond. A Math. Phys. Sci., 1969, 312(1511), 473-494.
[http://dx.doi.org/10.1098/rspa.1969.0172]
[3]
Kim, J.H.; Lee, J.H.; Kim, J.Y.; Mirzaei, A.; Wu, P.; Kim, H.W.; Kim, S.S. Electrowetting on dielectric (EWOD) properties of Teflon-coated electrosprayed silica layers in air and oil media and the influence of electric leakage. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(25), 6808-6815.
[http://dx.doi.org/10.1039/C8TC01284A]
[4]
Beni, G.; Hackwood, S. Electro‐wetting displays. Appl. Phys. Lett., 1981, 38(4), 207-209.
[http://dx.doi.org/10.1063/1.92322]
[5]
Beni, G.; Hackwood, S.; Jackel, J.L. Continuous electrowetting effect. Appl. Phys. Lett., 1982, 40(10), 912-914.
[http://dx.doi.org/10.1063/1.92952]
[6]
Bansal, S.; Tokuda, Y.; Peasley, J.; Subramanian, S. Electrically induced liquid metal droplet bouncing. Langmuir, 2022, 38(22), 6996-7004.
[http://dx.doi.org/10.1021/acs.langmuir.2c00577] [PMID: 35617048]
[7]
Li, J.; Kim, C.J.C.J. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip, 2020, 20(10), 1705-1712.
[http://dx.doi.org/10.1039/D0LC00144A] [PMID: 32338272]
[8]
Nelson, W.C.; Kim, C.J.C.J. Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review. J. Adhes. Sci. Technol., 2012, 26(12-17), 1747-1771.
[http://dx.doi.org/10.1163/156856111X599562]
[9]
Berge, B. Électrocapillarité et mouillage de films isolants par l’eau. C. R. Acad. Sci. Paris, 1993, 317, 157-163.
[10]
Moon, H.; Kim, C.J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst., 2003, 12(1), 70-80.
[http://dx.doi.org/10.1109/JMEMS.2002.807467]
[11]
Zhu, Q.; Lu, Y.; Xie, S.; Luo, Z.; Shen, S.; Yan, Z.; Jin, M.; Zhou, G.; Shui, L. Intelligent droplet manipulation in electrowetting devices via capacitance based sensing and actuation for self adaptive digital microfuidics. Microfluid. Nanofluidics, 2020, 24(59), 1-9.
[12]
Nguyen, N.T.; Hejazian, M.; Ooi, C.; Kashaninejad, N. Recent advances and future perspectives on microfluidic liquid handling. Micromachines (Basel), 2017, 8(6), 186.
[http://dx.doi.org/10.3390/mi8060186]
[13]
Zhu, G.P.; Wang, Q.Y.; Ma, Z.K.; Wu, S.H.; Guo, Y.P. Droplet manipulation under a magnetic field: A review. Biosensors (Basel), 2022, 12(3), 156.
[http://dx.doi.org/10.3390/bios12030156] [PMID: 35323426]
[14]
Baigl, D. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip, 2012, 12(19), 3637-3653.
[http://dx.doi.org/10.1039/c2lc40596b] [PMID: 22864577]
[15]
Luo, J.T.; Geraldi, N.R.; Guan, J.H.; McHale, G.; Wells, G.G.; Fu, Y.Q. Slippery liquid-infused porous surfaces and droplet transportation by surface acoustic waves. Phys. Rev. Appl., 2017, 7(1), 014017.
[http://dx.doi.org/10.1103/PhysRevApplied.7.014017]
[16]
Edalatpour, M.; Liu, L.; Jacobi, A.M.; Eid, K.F.; Sommers, A.D. Managing water on heat transfer surfaces: A critical review of techniques to modify surface wettability for applications with condensation or evaporation. Appl. Energy, 2018, 222, 967-992.
[http://dx.doi.org/10.1016/j.apenergy.2018.03.178]
[17]
Ahn, C.; Choi, J-W. Microfluidics and Their Applications to Lab-on-a-Chip.In: Handbook of Nanotechnology; Springer, 2007, pp. 523-548.
[18]
Barman, S.R.; Khan, I.; Chatterjee, S.; Saha, S.; Choi, D.; Lee, S.; Lin, Z.H. Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety. Yao Wu Shi Pin Fen Xi, 2020, 28(4), 596-622.
[http://dx.doi.org/10.38212/2224-6614.1239] [PMID: 35696148]
[19]
Ward, K.; Fan, Z.H. Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng., 2015, 25(9), 094001.
[http://dx.doi.org/10.1088/0960-1317/25/9/094001] [PMID: 26549938]
[20]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[21]
Guisbiers, G.; Mejía-Rosales, S.; Leonard Deepak, F. Nanomaterial properties: size and shape dependencies. J. Nanomater., 2012, 2012, 1-2.
[http://dx.doi.org/10.1155/2012/180976]
[22]
Liu, H.; Dharmatilleke, S.; Maurya, D.K.; Tay, A.A.O. Dielectric materials for electrowetting-on-dielectric actuation. Microsyst. Technol., 2010, 16(3), 449-460.
[http://dx.doi.org/10.1007/s00542-009-0933-z]
[23]
Wasan, D.T.; Nikolov, A.D. Spreading of nanofluids on solids. Nature, 2003, 423(6936), 156-159.
[http://dx.doi.org/10.1038/nature01591] [PMID: 12736681]
[24]
Lee, W.S.; Jeon, S.; Oh, S.J. Wearable sensors based on colloidal nanocrystals. Nano Converg., 2019, 6(1), 10.
[http://dx.doi.org/10.1186/s40580-019-0180-7] [PMID: 30937630]
[25]
Zhang, J.; Meng, Z.; Liu, J.; Chen, S.; Yu, Z. Spherical colloidal photonic crystals with selected lattice plane exposure and enhanced color saturation for dynamic optical displays. ACS Appl. Mater. Interfaces, 2019, 11(45), 42629-42634.
[http://dx.doi.org/10.1021/acsami.9b15352] [PMID: 31623433]
[26]
Mazetyte-Stasinskiene, R.; Köhler, J.M. Sensor micro and nanoparticles for microfluidic application. Appl. Sci. (Basel), 2020, 10(23), 8353.
[http://dx.doi.org/10.3390/app10238353]
[27]
Adamo, C.B.; Junger, A.S.; Bressan, L.P.; da Silva, J.A.F.; Poppi, R.J.; de Jesus, D.P. Fast and straightforward in situ synthesis of gold nanoparticles on a thread-based microfluidic device for application in surface-enhanced Raman scattering detection. Microchem. J., 2020, 156, 104985.
[http://dx.doi.org/10.1016/j.microc.2020.104985]
[28]
Wang, L.; McCord, B. A four-channel paper microfluidic device with gold nanoparticles and aptamers for seized drugs. Anal. Biochem., 2020, 595, 113619.
[http://dx.doi.org/10.1016/j.ab.2020.113619] [PMID: 32057728]
[29]
Lee, M.R.; Lee, H.K.; Yang, Y.; Koh, C.S.L.; Lay, C.L.; Lee, Y.H.; Phang, I.Y.; Ling, X.Y. Direct metal writing and precise positioning of gold nanoparticles within microfluidic channels for SERS sensing of gaseous analytes. ACS Appl. Mater. Interfaces, 2017, 9(45), 39584-39593.
[http://dx.doi.org/10.1021/acsami.7b11649] [PMID: 29020445]
[30]
Barbosa, A.I.; Wichers, J.H.; van Amerongen, A.; Reis, N.M. Towards one-step quantitation of prostate-specific antigen (PSA) in microfluidic devices: feasibility of optical detection with nanoparticle labels. Bionanoscience, 2017, 7(4), 718-726.
[http://dx.doi.org/10.1007/s12668-016-0390-y] [PMID: 29214121]
[31]
Garrido-Maestu, A.; Azinheiro, S.; Carvalho, J.; Abalde-Cela, S.; Carbó-Argibay, E.; Diéguez, L.; Piotrowski, M.; Kolen’ko, Y.V.; Prado, M. Combination of microfluidic loop-mediated isothermal amplification with gold nanoparticles for rapid detection of salmonella spp. in food samples. Front. Microbiol., 2017, 8, 2159.
[http://dx.doi.org/10.3389/fmicb.2017.02159] [PMID: 29209283]
[32]
Ko, E.; Tran, V.K.; Son, S.E.; Hur, W.; Choi, H.; Seong, G.H. Characterization of Au@PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sens. Actuators B Chem., 2019, 294, 166-176.
[http://dx.doi.org/10.1016/j.snb.2019.05.051]
[33]
Lee, C.W.; Chang, H.Y.; Wu, J.K.; Tseng, F.G. Ultra-sensitive electrochemical detection of bacteremia enabled by redox-active gold nanoparticles (raGNPs) in a nano-sieving microfluidic system (NS-MFS). Biosens. Bioelectron., 2019, 133, 215-222.
[http://dx.doi.org/10.1016/j.bios.2019.03.040] [PMID: 30951981]
[34]
Huang, J-Y.; Lin, H-T.; Chen, T-H.; Chen, C-A.; Chang, H-T. Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sensors, 2018, 3, 174-182.
[35]
Sadeghi, S.K.S.; Abkenar, C.W.; Yang, O.; Nizamoglu, S. Efficient white LEDs using liquid-state magic-sized CdSe quantum dots. Sci. Rep., 2019, 9, 61.
[36]
Sadeghi, S.; Melikov, R.; Bahmani Jalali, H.; Nizamoglu, S. Ultraefficient green LEDs using quantum dots in liquid matrix. IEEE Trans. Electron Dev., 2019, 66(11), 4784-4789.
[http://dx.doi.org/10.1109/TED.2019.2938056]
[37]
Yang, C.; Zhuang, B.; Lin, J.; Wang, S.; Liu, M.; Jiang, N.; Chen, D. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display. Chem. Eng. J., 2020, 398, 125616.
[http://dx.doi.org/10.1016/j.cej.2020.125616]
[38]
Zhou, P.; Li, Y.; Liu, S.; Su, Y. Colour 3D holographic display based on a quantum-dot-doped liquid crystal. Liq. Cryst., 2019, 46(10), 1478-1484.
[http://dx.doi.org/10.1080/02678292.2019.1574036]
[39]
Shu, Y.; Lin, X.; Qin, H.; Hu, Z.; Jin, Y.; Peng, X. Quantum dots for display applications; Angewandte Chemie Int, 2020.
[http://dx.doi.org/10.1002/anie.202004857]
[40]
Tam, T.V.; Hur, S.H.; Chung, J.S.; Choi, W.M. Novel paper- and fiber optic-based fluorescent sensor for glucose detection using aniline-functionalized graphene quantum dots. Sens. Actuators B Chem., 2021, 329, 129250.
[http://dx.doi.org/10.1016/j.snb.2020.129250]
[41]
Abbas, A.; Tabish, T.A.; Bull, S.J.; Lim, T.M.; Phan, A.N. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing. Sci. Rep., 2020, 10(1), 21262.
[http://dx.doi.org/10.1038/s41598-020-78070-2] [PMID: 33277551]
[42]
Li, X.; Yu, Y.; Hong, J.; Feng, Z.; Guan, X.; Chen, D.; Zheng, Z. Optical temperature sensing of Eu3+-doped oxyhalide glasses containing CsPbBr3 perovskite quantum dots. J. Lumin., 2020, 219, 116897.
[http://dx.doi.org/10.1016/j.jlumin.2019.116897]
[43]
Arunragsa, S.; Seekaew, Y.; Pon-On, W.; Wongchoosuk, C. Hydroxyl edge-functionalized graphene quantum dots for gas-sensing applications. Diamond Relat. Mater., 2020, 105, 107790.
[http://dx.doi.org/10.1016/j.diamond.2020.107790]
[44]
Quinn, A.; Sedev, R.; Ralston, J. Contact angle saturation in electrowetting. J. Phys. Chem. B, 2005, 109(13), 6268-6275.
[http://dx.doi.org/10.1021/jp040478f] [PMID: 16851696]
[45]
Zhao, Y.P.; Wang, Y. Fundamentals and applications of electrowetting: A critical review. Rev. Adhes. Adhes, 2013, 1(1), 114-174.
[http://dx.doi.org/10.7569/RAA.2013.097304]
[46]
Makkonen, L. Young’s equation revisited. J. Phys. Condens. Matter, 2016, 28(13), 135001.
[http://dx.doi.org/10.1088/0953-8984/28/13/135001] [PMID: 26940644]
[47]
Wang, W.; Wang, Q.; Zhou, J.; Riaud, A. Observation of contact angle hysteresis due to inhomogeneous electric fields. Commun. Phys., 2021, 4(1), 197.
[http://dx.doi.org/10.1038/s42005-021-00691-4]
[48]
Vo, Q.; Tran, T. Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold. J. Fluid Mech., 2021, 925, A19.
[http://dx.doi.org/10.1017/jfm.2021.677]
[49]
Zhao, R.; Liang, Z-C. Mechanism of contact angle saturation and an energy-based model for electrowetting. Chin. Phys. B, 2016, 25(6), 066801.
[http://dx.doi.org/10.1088/1674-1056/25/6/066801]
[50]
Patacsil, C.; Calupitan, J.P.; Enriquez, E.; Guerrero, R.A. Electrowetting actuation of polydisperse nanofluid droplets. Adv. Mater. Sci. Eng., 2017, 2017, 1-6.
[http://dx.doi.org/10.1155/2017/2532173]
[51]
Chakraborty, D.; Sudha, G.S.; Chakraborty, S.; DasGupta, S. Effect of submicron particles on electrowetting on dielectrics (EWOD) of sessile droplets. J. Colloid Interface Sci., 2011, 363(2), 640-645.
[http://dx.doi.org/10.1016/j.jcis.2011.07.077] [PMID: 21855084]
[52]
Orejon, D.; Sefiane, K.; Shanahan, M.E.R. Young-Lippmann equation revisited for nano-suspensions. Appl. Phys. Lett., 2013, 102(20), 201601.
[http://dx.doi.org/10.1063/1.4807120]
[53]
Gu, Z.; Luo, J.J.; Ding, L.W.; Yan, B.Y.; Zhou, J.L.; Wang, J.G.; Wang, H.F.; Kong, C. Colorimetric sensing with gold nanoparticles on electrowetting-based digital microfluidics. Micromachines (Basel), 2021, 12(11), 1423.
[http://dx.doi.org/10.3390/mi12111423] [PMID: 34832834]
[54]
Azadmanjiri, J.; Berndt, C.C.; Wang, J.; Kapoor, A.; Srivastava, V.K.; Wen, C. A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(11), 3695-3708.
[http://dx.doi.org/10.1039/C3TA14034B]
[55]
Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys., 2001, 89(10), 5243-5275.
[http://dx.doi.org/10.1063/1.1361065]
[56]
Chang, J.; Choi, D-Y.; You, X.; Han, S. Low Voltage electrowetting on atomic-layer deposited aluminum oxide. Proceedings of the 2010 5th IEEE International, Xiamen, China2010.
[57]
Huang, L.X.; Koo, B.; Kim, C.J. Sputtered–Anodized Ta2O5 as the dielectric layer for electrowetting-on-dielectric. J. Microelectromech. Syst., 2013, 22(2), 253-255.
[http://dx.doi.org/10.1109/JMEMS.2012.2233719]
[58]
Mibus, M.; Zangari, G. Performance and reliability of electrowetting-on-dielectric (EWOD) systems based on tantalum oxide. ACS Appl. Mater. Interfaces, 2017, 9(48), 42278-42286.
[http://dx.doi.org/10.1021/acsami.7b07366] [PMID: 29112362]
[59]
Chen, H.H.; Fu, C.C. Annealing effect of high dielectric material for low voltage electrowetting on dielectric (EWOD). Mod. Appl. Sci., 2014, 8(3), 10-23.
[http://dx.doi.org/10.5539/mas.v8n3p10]
[60]
Li, Y.; Parkes, W.; Haworth, L.I.; Ross, A.; Stevenson, J.; Walton, A.J. Room temperature fabrication of anodic tantalum pentoxide for low voltage electrowetting on dielectric (EWOD). J. Microelectromech. Syst., 2008, 17(6), 1481-1488.
[http://dx.doi.org/10.1109/JMEMS.2008.2006827]
[61]
Kim, J.H.; Mirzaei, A.; Lee, J.H.; Kim, J.Y.; Wu, P.; Kim, H.W.; Kim, S.S. Electrowetting-on-dielectric behavior of micro-nano hierarchical SiO2 layers decorated with noble metals. Ceram. Int., 2021, 47(20), 28312-28320.
[http://dx.doi.org/10.1016/j.ceramint.2021.06.248]
[62]
Wu, J.; Xia, J.; Lei, W.; Wang, B.P. Electrowetting on ZnO nanowires. Appl. Phys., A Mater. Sci. Process., 2010, 99(4), 931-934.
[http://dx.doi.org/10.1007/s00339-010-5697-x]
[63]
Campbell, J.L.; Breedon, M.; Latham, K.; Kalantar-zadeh, K. Electrowetting of superhydrophobic ZnO nanorods. Langmuir, 2008, 24(9), 5091-5098.
[http://dx.doi.org/10.1021/la7030413] [PMID: 18373379]
[64]
Chen, L.Y.; Lai, C.H.; Wu, P.W.; Fan, S.K. Electrowetting of Superhydrophobic ZnO Inverse Opals. J. Electrochem. Soc., 2011, 158(8), 93.
[http://dx.doi.org/10.1149/1.3594723]
[65]
Kim, J.H.; Lee, J.H.; Mirzaei, A.; Kim, H.W.; Tan, B.T.; Wu, P.; Kim, S.S. Electrowetting-on-dielectric characteristics of ZnO nanorods. Sci. Rep., 2020, 10(1), 14194.
[http://dx.doi.org/10.1038/s41598-020-71017-7] [PMID: 32843699]
[66]
Hou, J.; Feng, Y.; Liao, J.; Ding, W.; Shui, L.; Li, H.; Wang, Y.; Tang, B.; Umar, A.; Zhou, G. Multiscale interface effect on homogeneous dielectric structure of ZrO2/teflon nanocomposite for electrowetting application. Polymers (Basel), 2018, 10(10), 1119.
[http://dx.doi.org/10.3390/polym10101119] [PMID: 30961044]
[67]
Basu, M.; Parihar, V.; Lincon, A.; Joshi, V.P.; Das, S.; DasGupta, S. Development of graphene oxide – PDMS composite dielectric for rapid droplet movement in digital microfluidic applications. Chem. Eng. Sci., 2021, 230, 116175.
[http://dx.doi.org/10.1016/j.ces.2020.116175]
[68]
Wang, J.; Yin, Y.; Zhang, J.; Liu, S.; Li, Y.; Wang, C. Design and preparation of the composite film of SiO2 inlaying RGO and its enhanced electro-wetting performance. Eur. Phys. J. Plus, 2020, 135(1), 52.
[http://dx.doi.org/10.1140/epjp/s13360-019-00060-9]
[69]
Lee, J.K.; Park, K.W.; Kim, H.R.; Kong, S.H. Dielectrically stabilized electrowetting on AF1600/Si3N4/TiO2 dielectric composite film. Sens. Actuators B Chem., 2011, 160(1), 1593-1598.
[http://dx.doi.org/10.1016/j.snb.2011.09.074]
[70]
Chen, S.; Kim, C.J. counterbalanced valve metal oxide as a reliable dielectric layer for electrowetting-on-dielectric devices. Sens. Mater., 2019, 31(9), 2861-2872.
[http://dx.doi.org/10.18494/SAM.2019.2449]
[71]
Shen, D.; Zhang, Q.; Zhang, Z.; Yang, H.; Sheng, J. Enhanced dielectric and hydrophobic properties of poly(vinylidene fluoride-trifluoroethylene)/TiO2 nanowire arrays composite film surface modified by electrospinning. Polymers (Basel), 2020, 13(1), 105.
[http://dx.doi.org/10.3390/polym13010105] [PMID: 33383843]
[72]
Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T.J.; Facchetti, A. High k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev., 2018, 118(11), 5690-5754.
[http://dx.doi.org/10.1021/acs.chemrev.8b00045] [PMID: 29785854]
[73]
Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys., 2004, 28(3), 265-291.
[http://dx.doi.org/10.1051/epjap:2004206]
[74]
Cha, G.; Kim, C.J.; Ju, Y.S. Thermal conductance switching based on the actuation of liquid droplets through the electrowetting on dielectric (EWOD) phenomenon. Appl. Therm. Eng., 2016, 98, 189-195.
[http://dx.doi.org/10.1016/j.applthermaleng.2015.11.098]
[75]
Shen, H.H.; Chung, L.Y.; Yao, D.J. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si 3 N 4 dielectric layer. Biomicrofluidics, 2015, 9(2), 022403.
[http://dx.doi.org/10.1063/1.4915613] [PMID: 25825614]
[76]
Cahill, B.P.; Giannitsis, A.T.; Land, R.; Gastrock, G.; Pliquett, U.; Frense, D.; Min, M.; Beckmann, D. Reversible electrowetting on silanized silicon nitride. Sens. Actuators B Chem., 2010, 144(2), 380-386.
[http://dx.doi.org/10.1016/j.snb.2008.12.041]
[77]
Ribet, F.; De Luca, E.; Ottonello-Briano, F.; Swillo, M.; Roxhed, N.; Stemme, G. Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets. Appl. Phys. Lett., 2019, 115(7), 073502.
[http://dx.doi.org/10.1063/1.5108936]
[78]
Tohgha, U.N.; Watson, A.M.; Godman, N.P. Tuning the electrowetting behavior of quantum dot nanofluids. J. Colloid Interface Sci., 2021, 584, 395-402.
[http://dx.doi.org/10.1016/j.jcis.2020.09.097] [PMID: 33080501]
[79]
Tohgha, U.N.; Alvino, E.L.; Jarnagin, C.C.; Iacono, S.T.; Godman, N.P. Electrowetting behavior and digital microfluidic applications of fluorescent, polymer-encapsulated quantum dot nanofluids. ACS Appl. Mater. Interfaces, 2019, 11(31), 28487-28498.
[http://dx.doi.org/10.1021/acsami.9b07983] [PMID: 31290307]
[80]
Roques-Carmes, T.; Aldeek, F.; Balan, L.; Corbel, S.; Schneider, R. Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting. Colloids Surf. A Physicochem. Eng. Asp., 2011, 377(1-3), 269-277.
[http://dx.doi.org/10.1016/j.colsurfa.2011.01.018]
[81]
Dash, R.K.; Borca-Tasciuc, T.; Purkayastha, A.; Ramanath, G. Electrowetting on dielectric actuation of microdroplets of aqueous bismuth telluride nanoparticle suspensions. Nanotechnology, 2017, 18, 1-6.
[82]
Zhao, J.; Nguyen, S.C.; Ye, R.; Ye, B.; Weller, H.; Somorjai, G.A.; Alivisatos, A.P.; Toste, F.D. A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci., 2017, 3(5), 482-488.
[http://dx.doi.org/10.1021/acscentsci.7b00122] [PMID: 28573211]
[83]
Zhang, G. Functional gold nanoparticles for sensing applications. Nanotechnol. Rev., 2013, 2(3), 269-288.
[http://dx.doi.org/10.1515/ntrev-2012-0088]
[84]
Liu, X. Colloidal plasmonic nanoparticles for ultrafast optical switching and laser pulse generation. Front. Mater., 2018, 5, 59.
[http://dx.doi.org/10.3389/fmats.2018.00059]
[85]
García-Lojo, D.; Gómez-Graña, S.; Martín, V.F.; Solís, D.M.; Taboada, J.M.; Pérez-Juste, J.; Pastoriza-Santos, I. Integrating plasmonic supercrystals in microfluidics for ultrasensitive, label-free, and selective surface-enhanced Raman spectroscopy detection. ACS Appl. Mater. Interfaces, 2020, 12(41), 46557-46564.
[http://dx.doi.org/10.1021/acsami.0c13940] [PMID: 32924423]
[86]
Laroque, L.; Jain, A.; Wang, T.; Chinnathambi, K.; Ramanath, G.; Tasciuc, T.B. Electrowetting of nanofluids containing silver nanoparticles ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, Massachusetts, USA. 2008.
[87]
Chakraborty, M.; Anand, R.; Rao, P.S.; Sen, S.; DasGupta, S. Oscillating nanofluid droplet for micro-cooling. Sens. Actuators B Chem., 2017, 239, 562-570.
[http://dx.doi.org/10.1016/j.snb.2016.06.145]
[88]
Wu, J.; Du, Y.Q.; Xia, J.; Lei, W.; Zhang, T.; Wang, B.P. Optofluidic system based on electrowetting technology for dynamically tunable spectrum absorber. Opt. Express, 2019, 27(3), 2521-2529.
[http://dx.doi.org/10.1364/OE.27.002521] [PMID: 30732289]
[89]
Vafaei, S.; Chinnathambi, K.; Borca-Tasciuc, T. Liquid–gas surface tension voltage dependence during electrowetting on dielectric testing of water and 5–90 nm gold nanofluids. J. Colloid Interface Sci., 2017, 490(15), 797-801.
[http://dx.doi.org/10.1016/j.jcis.2014.12.049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy