Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

In-silico Evaluation of Novel Honokiol Derivatives against Breast Cancer Target Protein LKB1

Author(s): Izzah Shahid*, Muhammad Shoaib, Rabail Zehra Raza, Muhammad Jahangir, Sumra Wajid Abbasi, Areej Riasat, Ansa Akbar and Samina Mehnaz

Volume 23, Issue 12, 2023

Published on: 19 April, 2023

Page: [1388 - 1396] Pages: 9

DOI: 10.2174/1871520623666230330083630

Price: $65

Abstract

Background: Breast cancer is characterized by uncontrolled cell growth in the breast tissue and is a leading cause of death globally. Cytotoxic effects and reduced efficacy of currently used therapeutics insist to look for new chemo-preventive strategies against breast cancer. LKB1 gene has recently been categorized as a tumor suppressor gene where its inactivation can cause sporadic carcinomas in various tissues. Mutations in the highly conserved LKB1 catalytic domain lead to the loss of function and subsequently elevated expression of pluripotency factors in breast cancer.

Objective: The utilization of drug-likeness filters and molecular simulation has helped evaluate the pharmacological activity and binding abilities of selected drug candidates to the target proteins in many cancer studies.

Methods: The current in silico study provides a pharmacoinformatic approach to decipher the potential of novel honokiol derivatives as therapeutic agents against breast cancer. AutoDock Vina was used for molecular docking of the molecules. A 100 nano second (ns) molecular dynamics simulation of the lowest energy posture of 3'-formylhonokiol- LKB1, resulting from docking studies, was carried out using the AMBER 18.

Results: Among the three honokiol derivatives, ligand-protein binding energy of 3' formylhonokiol with LKB1 protein was found to be the highest via molecular docking. Moreover, the stability and compactness inferred for 3'- formylhonokiol with LKB1 are suggestive of 3' formylhonokiol being an effective activator of LKB1 via simulation studies.

Conclusion: It was further established that 3'- formylhonokiol displays an excellent profile of distribution, metabolism, and absorption, indicating it is an anticipated future drug candidate.

Graphical Abstract

[1]
Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis, 2010, 31(1), 100-110.
[http://dx.doi.org/10.1093/carcin/bgp263] [PMID: 19934210]
[2]
Chaudhari, S.K.; Arshad, S.; Amjad, M.S.; Akhtar, M.S. Natural compounds extracted from medicinal plants and their applications. In: Natural Bio-active Compounds; Springer: Singapore, 2019; pp. 193-207.
[http://dx.doi.org/10.1007/978-981-13-7154-7_7]
[3]
Bai, X.; Cerimele, F.; Ushio-Fukai, M.; Waqas, M.; Campbell, P.M.; Govindarajan, B.; Der, C.J.; Battle, T.; Frank, D.A.; Ye, K.; Murad, E.; Dubiel, W.; Soff, G.; Arbiser, J.L. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J. Biol. Chem., 2003, 278(37), 35501-35507.
[http://dx.doi.org/10.1074/jbc.M302967200] [PMID: 12816951]
[4]
Wang, J.; Liu, D.; Guan, S.; Zhu, W.; Fan, L.; Zhang, Q.; Cai, D. Hyaluronic acid-modified liposomal honokiol nanocarrier: Enhance anti-metastasis and antitumor efficacy against breast cancer. Carbohydr. Polym., 2020, 235, 115981.
[http://dx.doi.org/10.1016/j.carbpol.2020.115981] [PMID: 32122511]
[5]
Katiyar, S. Emerging phytochemicals for the prevention and treatment of head and neck cancer. Molecules, 2016, 21(12), 1610.
[http://dx.doi.org/10.3390/molecules21121610] [PMID: 27886147]
[6]
Pan, J.; Lee, Y.; Wang, Y.; You, M. Honokiol targets mitochondria to halt cancer progression and metastasis. Mol. Nutr. Food Res., 2016, 60(6), 1383-1395.
[http://dx.doi.org/10.1002/mnfr.201501007] [PMID: 27276215]
[7]
Vaahtomeri, K.; Mäkelä, T.P. Molecular mechanisms of tumor suppression by LKB1. FEBS Lett., 2011, 585(7), 944-951.
[http://dx.doi.org/10.1016/j.febslet.2010.12.034] [PMID: 21192934]
[8]
Sengupta, S.; Nagalingam, A.; Muniraj, N.; Bonner, M.Y.; Mistriotis, P.; Afthinos, A.; Kuppusamy, P.; Lanoue, D.; Cho, S.; Korangath, P.; Shriver, M.; Begum, A.; Merino, V.F.; Huang, C-Y.; Arbiser, J.L.; Matsui, W.; Győrffy, B.; Konstantopoulos, K.; Sukumar, S.; Marignani, P.A.; Saxena, N.K.; Sharma, D. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene, 2017, 36(41), 5709-5721.
[http://dx.doi.org/10.1038/onc.2017.164] [PMID: 28581518]
[9]
Fried, L.E.; Arbiser, J.L. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid. Redox Signal., 2009, 11(5), 1139-1148.
[http://dx.doi.org/10.1089/ars.2009.2440] [PMID: 19203212]
[10]
Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods, 2010, 7(4), 248-249.
[http://dx.doi.org/10.1038/nmeth0410-248] [PMID: 20354512]
[11]
Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc., 2016, 11(1), 1-9.
[http://dx.doi.org/10.1038/nprot.2015.123] [PMID: 26633127]
[12]
Capriotti, E.; Fariselli, P. PhD-SNPg: A webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res., 2017, 45(W1), W247-W252.
[http://dx.doi.org/10.1093/nar/gkx369] [PMID: 28482034]
[13]
Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; Mooney, S.D.; Radivojac, P. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun., 2020, 11(1), 5918.
[http://dx.doi.org/10.1038/s41467-020-19669-x] [PMID: 33219223]
[14]
Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res., 2005, 33, W306-W310.
[http://dx.doi.org/10.1093/nar/gki375] [PMID: 15980478]
[15]
Choi, Y.; Chan, A.P.; Qin, B.; Zhang, Y.; Liu, X.S. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 2015, 31(16), 2745-2747.
[http://dx.doi.org/10.1093/bioinformatics/btv195] [PMID: 25851949]
[16]
Buchan, D.W.A.; Minneci, F.; Nugent, T.C.O.; Bryson, K.; Jones, D.T. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res., 2013, 41(W1), W349-W357.
[http://dx.doi.org/10.1093/nar/gkt381] [PMID: 23748958]
[17]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[18]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[19]
Kolpakov, F.A.; Babenko, V.N. Computer system MGL: Tool for sample generation, visualization, and analysis of regulatory genomic sequences. Mol. Biol., 1997, 31, 540-547.
[20]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J.; Jiang, S.; Zhou, Y.; Du, L. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[21]
Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1298.
[http://dx.doi.org/10.1002/wcms.1298]
[22]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33, W363-W367.
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[23]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M.; Damore, M.A.; Boedigheimer, M.; Blomme, E.; Ciurlionis, R. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[24]
Case, D.A.; Darden, T.A.; Cheatham, T.E.; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Crowley, M.R.; Walker, R.C.; Zhang, W.; Merz, K.M. AMBER 10; University of California; San Francisco , 2008.
[25]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2016.
[26]
Eggimann, B.L.; Sunnarborg, A.J.; Stern, H.D.; Bliss, A.P.; Siepmann, J.I. An online parameter and property database for the TraPPE force field. Mol. Simul., 2014, 40(1-3), 101-105.
[http://dx.doi.org/10.1080/08927022.2013.842994]
[27]
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65(3), 712-725.
[http://dx.doi.org/10.1002/prot.21123] [PMID: 16981200]
[28]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R., Jr; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[29]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[30]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[31]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[32]
Mermelstein, D.J.; Lin, C.; Nelson, G.; Kretsch, R.; McCammon, J.A.; Walker, R.C. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package. J. Comput. Chem., 2018, 39(19), 1354-1358.
[http://dx.doi.org/10.1002/jcc.25187] [PMID: 29532496]
[33]
Liu, H.; Zang, C.; Emde, A.; Planas-Silva, M.D.; Rosche, M.; Kühnl, A.; Schulz, C.O.; Elstner, E.; Possinger, K.; Eucker, J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol., 2008, 591(1-3), 43-51.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.026] [PMID: 18588872]
[34]
Nagalingam, A.; Arbiser, J.L.; Bonner, M.Y.; Saxena, N.K.; Sharma, D. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Res., 2012, 14(1), R35.
[http://dx.doi.org/10.1186/bcr3128] [PMID: 22353783]
[35]
Wang, W.; Shang, Y.; Li, Y.; Chen, S. Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacol. Sin., 2019, 40(9), 1219-1227.
[http://dx.doi.org/10.1038/s41401-019-0240-x] [PMID: 31235819]
[36]
Haggag, Y.A.; Ibrahim, R.R.; Hafiz, A.A. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int. J. Nanomedicine, 2020, 15, 1625-1642.
[http://dx.doi.org/10.2147/IJN.S241428] [PMID: 32210557]
[37]
Yousuf, Z.; Iman, K.; Iftikhar, N.; Mirza, M. Structure-based virtual screening and molecular docking for the identification of potential multi-targeted inhibitors against breast cancer. Breast Cancer, 2017, 9, 447-459.
[http://dx.doi.org/10.2147/BCTT.S132074] [PMID: 28652811]
[38]
Abdel-Mohsen, H.T.; Abd El-Meguid, E.A.; El Kerdawy, A.M.; Mahmoud, A.E.E.; Ali, M.M. Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch. Pharm., 2020, 353(4), 1900340.
[http://dx.doi.org/10.1002/ardp.201900340] [PMID: 32045054]
[39]
Elshal, M.; Eid, N.; El-Sayed, I.; El-Sayed, W.; Al-Karmalawy, A.A. Concanavalin-A shows synergistic cytotoxicity with tamoxifen via inducing apoptosis in estrogen receptor-positive breast cancer: In vitro and molecular docking studies. Ulum-i Daruyi, 2021, 28, 76-85.
[http://dx.doi.org/10.34172/PS.2021.22]
[40]
Idris, M.O.; Adeniji, S.E.; Habib, K.; Adeiza, A.A. Molecular docking of some novel quinoline derivatives as potent inhibitors of human breast cancer cell line. Lab-in-Silico, 2021, 2, 30-37.
[http://dx.doi.org/10.22034/labinsilico21021030]
[41]
Acharya, R.; Chacko, S.; Bose, P.; Lapenna, A.; Pattanayak, S.P. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci. Rep., 2019, 9(1), 15743.
[http://dx.doi.org/10.1038/s41598-019-52162-0] [PMID: 31673107]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy