Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

LCMS Determination and Cytotoxicity of Abrus precatorius on L6 and SK-N-MC Cell Lines

Author(s): Krishna Prabha Naduchamy and Varadarajan Parthasarathy*

Volume 23, Issue 12, 2023

Published on: 18 April, 2023

Page: [1376 - 1387] Pages: 12

DOI: 10.2174/1871520623666230320144607

Price: $65

Abstract

Objective: The present study aimed to investigate the cytotoxic effect of various extracts derived from Abrus precatorius Linn. leaves on rat L6 and human SK-N-MC neuroblastoma cell lines and determine the secondary metabolites responsible for the cytotoxicity of Abrus precatorius.

Methods: Successive solvent extraction of A. precatorius leaves was carried out using the Soxhlet apparatus with solvents such as petroleum ether, chloroform, ethyl acetate, and ethanol. HPTLC fingerprinting and LC-MS studies were performed to assess the presence of secondary metabolites, such as flavonoids and phenols, in the ethyl acetate extract. Furthermore, the cytotoxic effect of extracts was tested on rat skeletal muscle cell line L6 and human neuroblastoma cell line SK-N-MC using MTT assay.

Results: The total phenolic content of ethyl acetate and ethanol extracts of A. precatorius were 72.67 and 60.73 mg, respectively, of GAE/g dry weight of the extract. The total flavonoid content of ethyl acetate and ethanol extract of A. precatorius were 107.33 and 40.66 mg of Quercetin equivalents/g dry weight of the extract. LCMS analysis demonstrated that the flavonoids in specific Naringenin, Diosmetin, Glycitin, and Genistein might play a prominent role in the cytotoxicity of A. precatorius. The cytotoxicity study revealed that the extracts of A. precatorius were non-toxic to rat L6 myotubes, and the IC50 values of the various extracts, such as APPE, APCH, APEA, and APET, were >100 μg/ml. The extracts exhibited cytotoxic activity against human neuroblastoma SK-N-MC cells, and the IC50 values of APPE, APCH, APEA, APET, and the standard drug “Cisplatin” were >100, >100, 64.88, >100, and 3.72 μg/ml, respectively.

Conclusion: It was concluded from the study that the extracts of Abrus precatorius were cytotoxic to neuroblastoma cell lines but non-toxic to normal cell lines. HPTLC and LC-MS studies confirmed that flavonoids in the ethyl acetate extract could be responsible for the biological activity.

Graphical Abstract

[1]
Manoharan, S.; Balaji, R.; Aruna, A.; Niraimathi, V.; Manikandan, G.; Babu, M.B.V.; Vijayan, P. Preliminary phytochemical and cytotoxic property of leaves of Abrus precatorius Linn. J. Herb. Med. Toxicol., 2010, 4, 21-24.
[2]
Meena, P.P.; Chendraya, P.P.; Praveen, K.M.; Soundarrajan, S.; Srinivasan, M.; Sampathkumar, R. Pharmacological activities of Abrus precatorius (L.) seeds. Int. J. Pharm. Med. Res, 2015, 3(2), 195-200.
[3]
Acharya, D.; Sancheti, G.; Shrivastava, A. Medicinal plants for curing common ailments in India. Posit Health, 2004, 102, 28-30.
[4]
Wagstaff, D.J. International poisonous plants check list: An evidence-based reference. 1sted; CRC Press: Boca Raton, 2008.
[5]
Raamachandran, J. Herbs of Siddha medicines: The first 3D book on Herbs, 1sted; Murugan Patthipagam: India, 2008.
[6]
Sunday, O.J.; Babatunde, S.K.; Ajiboye, A.E.; Adedayo, R.M.; Ajao, M.A.; Ajuwon, B.I. Evaluation of phytochemical properties and in-vitro antibacterial activity of the aqueous extracts of leaf, seed and root of Abrus precatorius Linn. against Salmonella and Shigella. Asian Pac. J. Trop. Biomed., 2016, 6(9), 755-759.
[http://dx.doi.org/10.1016/j.apjtb.2016.07.002]
[7]
Menash, A.Y.; Bonsu, A.S.; Fleischer, T.C. Investigation of the bronchodilator activity of Abrus precatorius. Int. J. Pharm. Sci. Rev. Res., 2011, 6(2), 9-13.
[8]
Sathish, M.; Balaji, R.; Aruna, A.; Niraimahi, V.; Manikandan, G.; Bose, M. Preliminary phytochemical and cytotoxic property on leaves of Abrus precatorius Linn. J Her Medi Toxicol., 2010, 4(1), 21-24.
[9]
Anam, E.M. Anti-inflammatory activity of compounds isolated from the aerial parts of Abrus precatorius (Fabaceae). Phytomedicine, 2001, 8(1), 24-27.
[http://dx.doi.org/10.1078/0944-7113-00001] [PMID: 11292235]
[10]
Nicoletti, M. HPTLC fingerprint: A modern approach for the analytical determination of botanicals. Rev. Bras. Farmacogn., 2011, 21(5), 818-823.
[http://dx.doi.org/10.1590/S0102-695X2011005000131]
[11]
Hostettmann, K.; Wolfender, J.L.; Terreaux, C. Modern screening techniques for plant extracts. Pharm. Biol., 2001, 39(sup1)(Suppl.1), 18-32.
[http://dx.doi.org/10.1076/phbi.39.s1.18.0008] [PMID: 21554168]
[12]
Poyner, D.R.; Andrew, D.P.; Brown, D.; Bose, C.; Hanley, M.R. Pharmacological characterization of a receptor for calcitonin gene-related peptide on rat, L6 myocytes. Br. J. Pharmacol., 1992, 105(2), 441-447.
[http://dx.doi.org/10.1111/j.1476-5381.1992.tb14272.x] [PMID: 1313730]
[13]
Van valen, F.; Peichot, G.; Jurghens, H. Calcitonin gene-related peptide receptors are linked to cyclic adenosine monophosphate production in SK-N-MC neuroblastoma cells. Neurosci. Lett., 1990, 119, 195-198.
[http://dx.doi.org/10.1016/0304-3940(90)90832-T] [PMID: 2177866]
[14]
Naduchamy, K.P.; Parthasarathy, V. A review of the potential receptors of migraine with a special emphasis on CGRP to develop an ideal antimigraine drug. Curr. Mol. Pharmacol., 2020, 14(1), 11-26.
[http://dx.doi.org/10.2174/1874467213999200824124532] [PMID: 32838728]
[15]
Kreutter, D.; Orena, S.J.; Andrews, K.M. Suppression of insulin-stimulated glucose transport in L6 myocytes by calcitonin gene-related peptide. Biochem. Biophys. Res. Commun., 1989, 164(1), 461-467.
[http://dx.doi.org/10.1016/0006-291X(89)91742-7] [PMID: 2553019]
[16]
Pittner, R.A.; Wolfe-Lopez, D.; Young, A.A.; Beaumont, K. Different pharmacological characteristics in L6 and C2C12 muscle cells and intact rat skeletal muscle for amylin, CGRP and calcitonin. Br. J. Pharmacol., 1996, 117(5), 847-852.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15270.x] [PMID: 8851500]
[17]
Doods, H.; Hallermayer, G.; Wu, D.; Entzeroth, M.; Rudolf, K.; Engel, W.; Eberlein, W. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br. J. Pharmacol., 2000, 129(3), 420-423.
[http://dx.doi.org/10.1038/sj.bjp.0703110] [PMID: 10711339]
[18]
Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/253875] [PMID: 24782905]
[19]
Ali, A.M.A.; El-Nour, M.E.M.; Yagi, S.M. Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J. Genet. Eng. Biotechnol., 2018, 16(2), 677-682.
[http://dx.doi.org/10.1016/j.jgeb.2018.03.003] [PMID: 30733788]
[20]
Arivukkarasu, R.; Rajasekaran, A. Detection of flavonoids, phenolic acids and xanthones in commercial herbal formulations by HPTLC technique. Res. J. Pharmacog. Phytochem., 2015, 7(1), 13.
[http://dx.doi.org/10.5958/0975-4385.2015.00004.7]
[21]
Verma, D.; Tiwari, S.S.; Srivastava, S.; Rawat, A.K.S. Pharmacognostical evaluation and phytochemical standardization of Abrus precatorius L. Seeds. Nat. Prod. Sci., 2011, 17(1), 51-57.
[22]
Nassir, Z.S.; Khadem, E.J. Phytochemical investigations of Iraqi Abrus precatorius Linn. Plant. Iraqi J. Pharm Sci., 2018, 27(1)
[http://dx.doi.org/10.31351/vol27iss1pp30-38]
[23]
Gökbulut, A. Determınatıon of Hıspıdulın in the flowers of Inula vıscosa (L.) Aıton usıng HPLC and HPTLC methods. Turk. J. Pharm. Sci., 2016, 13(2), 159-166.
[http://dx.doi.org/10.5505/tjps.2016.47955]
[24]
Vila-Real, H.; Alfaia, A.J.; Bronze, M.R.; Calado, A.R.T.; Ribeiro, M.H.L. Enzymatic synthesis of the flavone glucosides, prunin and isoquercetin, and the aglycones, naringenin and Quercetin, with selective α-L-Rhamnosidase and β-D-Glucosidase activities of naringinase. Enzyme Research, 2011, 2011, 692618.
[http://dx.doi.org/10.4061/2011/692618]
[25]
Duke, J.A. Handbook of phytochemical constituents of GRAS herbs and other economic plants; CRC Press: Boca Raton, 1992.
[26]
Gupta, R.C. Placental toxicity. In: Veterinary toxicology-Basic and clinical principles; Gupta, R.C., Ed.; Elsevier: USA, 2012; pp. 319-336.
[27]
Wang, W.; Yang, R.; Zhang, M.; Li, J.; Peng, J.; Xu, M.; Zhao, Y.; Li, H.; Pan, X. Glycitin suppresses cartilage destruction of osteoarthritis in mice. Inflammation, 2020, 43(4), 1312-1322.
[http://dx.doi.org/10.1007/s10753-020-01210-3] [PMID: 32222871]
[28]
Kitanaka, S.; Takido, M. Studies on the constituents in the roots of Cassia obtusifolia L. and the antimicrobial activities of constituents of the roots and the seeds. Yakugaku Zasshi, 1986, 106(4), 302-306.
[http://dx.doi.org/10.1248/yakushi1947.106.4_302] [PMID: 3525811]
[29]
Muhammad, N.; Saeed, M.; Khan, H.; Adhikari, A.; Khan, K.M. Muscle relaxant and sedative-hypnotic activities of extract of Viola betonicifolia in animal models supported by its isolated compound, 4-Hydroxy Coumarin. J. Chem., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/326263]
[30]
Yang, W.; Luo, Y.; Tang, R.; Zhang, H.; Ye, Y.; Xiang, L.; Qi, J. Neuritogenic monoglyceride derived from the constituent of a marine fish for activating the PI3K/ERK/CREB signalling pathways in PC12 cells. Int. J. Mol. Sci., 2013, 14(12), 24200-24210.
[http://dx.doi.org/10.3390/ijms141224200] [PMID: 24351811]
[31]
Sastry, V.M.V.S.; Rao, G.R.K. Dioctyl phthalate, and antibacterial compound from the marine brown alga - Sargassum wightii. J. Appl. Phycol., 1995, 7, 185-186.
[http://dx.doi.org/10.1007/BF00693066]
[32]
Saraf, A. Chromatographic fingerprint profile of alkaloids of Abrus precatorius Linn. by HPTLC. European J. Acad. Essays, 2015, 2(2), 65-69.
[33]
Gul, M.Z.; Chandrasekaran, S.; Manulatha, K.; Bhat, M.Y.; Maurya, R.; Qureshi, I.A.; Ghazi, I.A. Antiproliferative and apoptosis inducing effects of Abrus precatorius against human monocytic leukaemia (THP-1) cell line. Indian J Pharm Sci., 2018, 80(2), 307-317.
[34]
Li, R.; Li, J.; Cai, L.; Hu, C.; Zhang, L. Suppression of adjuvant arthritis by hesperidin in rats and its mechanisms. J. Pharm. Pharmacol., 2010, 60(2), 221-228.
[http://dx.doi.org/10.1211/jpp.60.2.0011] [PMID: 18237470]
[35]
Wang, L.; Tu, Y.C.; Lian, T.W.; Hung, J.T.; Yen, J.H.; Wu, M.J. Distinctive antioxidant and antiinflammatory effects of flavonols. J. Agric. Food Chem., 2006, 54(26), 9798-9804.
[http://dx.doi.org/10.1021/jf0620719] [PMID: 17177504]
[36]
Jun, M.; Hong, J.; Jeong, W.S.; Ho, C.T. Suppression of arachidonic acid metabolism and nitric oxide formation by kudzu isoflavones in murine macrophages. Mol. Nutr. Food Res., 2005, 49(12), 1154-1159.
[http://dx.doi.org/10.1002/mnfr.200500103] [PMID: 16254887]
[37]
Shafi Sofi, M.; Sateesh, M.K.; Bashir, M.; Harish, G.; Lakshmeesha, T.R.; Vedashree, S.; Vedamurthy, A.B. Cytotoxic and proapoptotic effects of Abrus precatorius L. on human metastatic breast cancer cell line, MDA-MB-231. Cytotechnology, 2013, 65(3), 407-417.
[http://dx.doi.org/10.1007/s10616-012-9494-6] [PMID: 23081723]
[38]
Lébri, M.; Tilaoui, M.; Bahi, C.; Achibat, H.; Akhramez, S.; Fofié, Y.B.N.; Gnahoué, G.; Lagou, S.M.; Zirihi, G.N.; Coulibaly, A.; Zyad, A.; Hafid, A.; Khouili, M. Phytochemical analysis and in vitro anticancer effect of aqueous extract of Abrus precatorius Linn. Pharma Chem., 2015, 7(8), 112-117.
[39]
Gul, M.Z.; Ahmad, F.; Kondapi, A.K.; Qureshi, I.A.; Ghazi, I.A. Antioxidant and antiproliferative activities of Abrus precatorius leaf extracts - an in vitro study. BMC Complement. Altern. Med., 2013, 13(1), 53.
[http://dx.doi.org/10.1186/1472-6882-13-53] [PMID: 23452983]
[40]
Hata, Y.; Ebrahimi, S.N.; De Mieri, M.; Zimmermann, S.; Mokoka, T.; Naidoo, D.; Fouche, G.; Maharaj, V.; Kaiser, M.; Brun, R.; Potterat, O.; Hamburger, M. Antitrypanosomal isoflavan quinones from Abrus precatorius. Fitoterapia, 2014, 93, 81-87.
[http://dx.doi.org/10.1016/j.fitote.2013.12.015] [PMID: 24382449]
[41]
Saganuwan, S.; Onyeyili, P.; Ameh, I.; Nwodo, N.; Brun, R. in vitro antiplasmodial, antitrypanosomal, antileishmanial and cytotoxic activities of various fractions of Abrus precatorius leaf. Int. J. Trop. Dis. Health, 2015, 5(3), 221-229.
[http://dx.doi.org/10.9734/IJTDH/2015/13683]
[42]
Bhutia, S.K.; Mallick, S.K.; Stevens, S.M.; Prokai, L.; Vishwanatha, J.K.; Maiti, T.K. Induction of mitochondria-dependent apoptosis by Abrus agglutinin derived peptides in human cervical cancer cell. Toxicol. in vitro, 2008, 22(2), 344-351.
[http://dx.doi.org/10.1016/j.tiv.2007.09.016] [PMID: 18024076]
[43]
Suryavanshi, S.; Raina, P.; Deshpande, R.; Kaul-Ghanekar, R. Nardostachys jatamansi root extract modulates the growth of IMR-32 and SK-N-MC neuroblastoma cell lines through MYCN mediated regulation of MDM2 and p53. Pharmacogn. Mag., 2017, 13(49), 21-24.
[http://dx.doi.org/10.4103/0973-1296.197645] [PMID: 28216878]
[44]
Chae, K-h.; Song, Y-k.; Lim, H-H. The protective effect of paeoniae radix extract against 1-methyl-4-phenylpyridium-induced apoptosis on SK-N-MC neuroblastoma cells. Korean J. Orient. Med., 2005, 26(4), 74-86.
[45]
Kim, B.C.; Kim, Y.S.; Lee, J.W.; Seo, J.H.; Ji, E.S.; Lee, H.; Park, Y.I.; Kim, C.J. Protective effect of coriolus versicolor cultivated in citrus extract against nitric oxide-induced apoptosis in human neuroblastoma SK-N-MC cells. Exp. Neurobiol., 2011, 20(2), 100-109.
[http://dx.doi.org/10.5607/en.2011.20.2.100] [PMID: 22110367]
[46]
Choi, D.J.; Kim, S.L.; Choi, J.W.; Park, Y.I. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells. Life Sci., 2014, 109(1), 57-64.
[http://dx.doi.org/10.1016/j.lfs.2014.05.020] [PMID: 24928367]
[47]
Kim, K.; Lee, S.; Kang, I.; Kim, J.H. Momordica charantia ethanol extract attenuates H2O2-induced cell death by its antioxidant and anti-apoptotic properties in human neuroblastoma SK-N-MC cells. Nutrients, 2018, 10(10), 1368.
[http://dx.doi.org/10.3390/nu10101368] [PMID: 30249986]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy