Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Mini-Review Article

A Review of Pharmacotherapeutic Potentials of Black seeds (Nigella sativa) in the Management of Monkeypox Infection

Author(s): Naina Mohamed Pakkir Maideen, Rajkapoor Balasubramanian*, Sudha Muthusamy, Kamalakannan Dhanabalan and Abdussalam A. Sughir

Volume 10, Issue 2, 2024

Published on: 05 May, 2023

Article ID: e300323215155 Pages: 8

DOI: 10.2174/2215083810666230330083215

Price: $65

Abstract

Around 3500 laboratory-confirmed cases of monkeypox infection, from 42 non-endemic countries have been reported to World Health Organization (WHO), during the current multicountry monkeypox outbreak. As of now, patients with monkeypox infection are managed symptomatically with supportive care. Hence, our current review focuses on the analysis of the pharmacotherapeutic potentials of black seeds (N. sativa). The literature was searched in web-based databases including web of science, Medline/PMC/PubMed, Embase, EBSCO, Google Scholar, Science Direct, and reference lists to identify relevant publications. Several clinical, animal, in-vivo, in-vitro, and in-silico studies have confirmed the antiviral efficacy of N. sativa against various viruses. In addition, previous research have demonstrated the analgesic, anti-inflammatory, antibacterial, antioxidant, and immunomodulatory effects of Black seeds (N. sativa), which would help to alleviate the signs, symptoms, and complications associated with monkeypox infection. In consequence, black seeds (N. sativa) could be added as an adjuvant therapy along with repurposed/ investigational antiviral drugs and supportive care in the management of patients with monkeypox infection in early stages to prevent inflammatory conditions and secondary bacterial infections. The safety and efficacy of Black seeds (N. sativa) in the management of monkeypox infection would further be established by future randomized controlled clinical trials.

[1]
Bunge EM, Hoet B, Chen L, et al. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl Trop Dis 2022; 16(2): e0010141.
[http://dx.doi.org/10.1371/journal.pntd.0010141] [PMID: 35148313]
[2]
World Health Organization Monkeypox outbreak at a glance Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON396 (Accessed on: 28 June 2022)
[3]
Alkhalil A, Hammamieh R, Hardick J, Ichou MA, Jett M, Ibrahim S. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions. Virol J 2010; 7(1): 173.
[http://dx.doi.org/10.1186/1743-422X-7-173] [PMID: 20667104]
[4]
Kieser Q, Noyce RS, Shenouda M, Lin YCJ, Evans DH. Cytoplasmic factories, virus assembly, and DNA replication kinetics collectively constrain the formation of poxvirus recombinants. PLoS One 2020; 15(1): e0228028.
[http://dx.doi.org/10.1371/journal.pone.0228028] [PMID: 31945138]
[5]
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses 2020; 12(11): 1257.
[http://dx.doi.org/10.3390/v12111257] [PMID: 33167496]
[6]
Bragazzi NL, Kong JD, Mahroum N, et al. Epidemiological trends and clinical features of the ongoing monkeypox epidemic: A preliminary pooled data analysis and literature review. J Med Virol 2022; 95(1): e27931.
[7]
Brown K, Leggat P. Human monkeypox: Current state of knowledge and implications for the future. Trop Med Infect Dis 2016; 1(1): 8.
[http://dx.doi.org/10.3390/tropicalmed1010008] [PMID: 30270859]
[8]
Likos AM, Sammons SA, Olson VA, et al. A tale of two clades: Monkeypox viruses. J Gen Virol 2005; 86(10): 2661-72.
[http://dx.doi.org/10.1099/vir.0.81215-0] [PMID: 16186219]
[9]
Hobson G, Adamson J, Adler H, et al. Family cluster of three cases of monkeypox imported from Nigeria to the United Kingdom, May 2021. Euro Surveill 2021; 26(32): 2100745.
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.32.2100745] [PMID: 34387184]
[10]
Huhn GD, Bauer AM, Yorita K, et al. Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin Infect Dis 2005; 41(12): 1742-51.
[http://dx.doi.org/10.1086/498115] [PMID: 16288398]
[11]
Adler H, Gould S, Hine P, et al. Clinical features and management of human monkeypox: A retrospective observational study in the UK. Lancet Infect Dis 2022; 22(8): 1153-62.
[http://dx.doi.org/10.1016/S1473-3099(22)00228-6] [PMID: 35623380]
[12]
Mahase E. Monkeypox: What do we know about the outbreaks in Europe and North America? BMJ 2022; 377: o1274.
[13]
okyay Bayrak E, Kaya E, et al. Another epidemic in the shadow of COVID-19 pandemic: A review of Monkeypox. Eurasian J Med Oncol 2022; 6(2): 95-.
[http://dx.doi.org/10.14744/ejmo.2022.2022]
[14]
Pal M, Mengstie F, Kandi V. Epidemiology, diagnosis, and control of monkeypox disease: A comprehensive review. Am J Infect Dis Micro 2017; 5(2): 94-9.
[15]
Petersen E, Abubakar I, Ihekweazu C, et al. Monkeypox-Enhancing public health preparedness for an emerging lethal human zoonotic epidemic threat in the wake of the smallpox post-eradication era. Int J Infect Dis 2019; 78: 78-84.
[http://dx.doi.org/10.1016/j.ijid.2018.11.008] [PMID: 30453097]
[16]
Petersen BW, Kabamba J, McCollum AM, et al. Vaccinating against monkeypox in the Democratic Republic of the Congo. Antiviral Res 2019; 162: 171-7.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.004] [PMID: 30445121]
[17]
Petersen E, Kantele A, Koopmans M, et al. Human monkeypox: Epidemiologic and clinical characteristics, diagnosis, and prevention. Infect Dis Clin North Am 2019; 33(4): 1027-43.
[PMID: 30981594]
[18]
Shanmugaraj B, Phoolcharoen W, Khorattanakulchai N. Emergence of monkeypox: Another concern amidst COVID-19 crisis. Asian Pac J Trop Med 2022; 15(5): 193-5.
[http://dx.doi.org/10.4103/1995-7645.346081]
[19]
Adalja A, Inglesby T. A novel international monkeypox outbreak. Ann Intern Med 2022; 175(8): 1175-6.
[http://dx.doi.org/10.7326/M22-1581] [PMID: 35605243]
[20]
Maideen NMP. Prophetic medicine-Nigella sativa (Black cumin seeds) – potential herb for COVID-19? J Pharmacopuncture 2020; 23(2): 62-70.
[http://dx.doi.org/10.3831/KPI.2020.23.010] [PMID: 32685234]
[21]
Maideen NMP. Potential of black seeds (Nigella sativa) in the management of COVID-19 among children. IJMDAT 2021; 4: e366.
[22]
Kooti W, Hasanzadeh-Noohi Z, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin J Nat Med 2016; 14(10): 732-45.
[http://dx.doi.org/10.1016/S1875-5364(16)30088-7] [PMID: 28236403]
[23]
Maideen NMP, Balasubramanian R, Ramanathan S. Nigella sativa (black seeds), a potential herb for the pharmacotherapeutic management of hypertension-A review. Curr Cardiol Rev 2021; 17(4): e230421187786.
[http://dx.doi.org/10.2174/1573403X16666201110125906] [PMID: 33172379]
[24]
Maideen NMP. Antidiabetic activity of Nigella sativa (black seeds) and its active constituent (thymoquinone): A review of human and experimental animal studies. Chonnam Med J 2021; 57(3): 169-75.
[http://dx.doi.org/10.4068/cmj.2021.57.3.169] [PMID: 34621636]
[25]
Maideen NMP. Effects of Nigella sativa (black seeds) supplementation on plasma lipid profile in human subjects-A review. Curr Nutrac 2022; 3(1): e021221198487.
[http://dx.doi.org/10.2174/2665978602666211202102631]
[26]
Hossain MS, Sharfaraz A, Dutta A, et al. A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomed Pharmacother 2021; 143: 112182.
[http://dx.doi.org/10.1016/j.biopha.2021.112182] [PMID: 34649338]
[27]
Basurra RS, Wang SM, Alhoot MA. Nigella sativa (black seed) as a natural remedy against viruses. J Pure Appl Microbiol 2021; 15(1): 29-41.
[http://dx.doi.org/10.22207/JPAM.15.1.26]
[28]
Ashraf S, Ashraf S, Ashraf M, et al. Honey and Nigella sativa against COVID-19 in Pakistan (HNS-COVID-PK): A multi-center placebo-controlled randomized clinical trial. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.10.30.20217364]
[29]
Koshak AE, Koshak EA, Mobeireek AF, et al. Nigella sativa for the treatment of COVID-19: An open-label randomized controlled clinical trial. Complement Ther Med 2021; 61: 102769.
[http://dx.doi.org/10.1016/j.ctim.2021.102769] [PMID: 34407441]
[30]
Bencheqroun H, Ahmed Y, Kocak M, et al. A randomized, double-blind, placebo-controlled, multicenter study to evaluate the safety and efficacy of thymoquinone formula (TQF) for treating outpatient SARS-CoV-2. Pathogens 2022; 11(5): 551.
[http://dx.doi.org/10.3390/pathogens11050551] [PMID: 35631072]
[31]
Ashraf S, Ashraf S, Akmal R, et al. Prophylactic potential of honey and Nigella sativa L. against hospital and community-based SARS-CoV-2 spread: A structured summary of a study protocol for a randomised controlled trial. Trials 2021; 22(1): 618.
[http://dx.doi.org/10.1186/s13063-021-05510-3] [PMID: 34526081]
[32]
Bouchentouf S, Missoum N. Identification of compounds from Nigella sativa as new potential inhibitors of ChemRxiv 2019.
[33]
Khan SL, Siddiqui FA, Jain SP, Sonwane GM. Discovery of potential inhibitors of SARS-CoV-2 (COVID-19) Main Protease (Mpro) from Nigella sativa (black seed) by molecular docking study. Coronaviruses 2021; 2(3): 384-402.
[http://dx.doi.org/10.2174/2666796701999200921094103]
[34]
Pandey P, Khan F, Mazumder A, Rana AK, Srivastava Y. Inhibitory potential of dietary phytocompounds of Nigella sativa against key targets of novel coronavirus (COVID-19). Indian J Pharm Educ Res 2021; 55(1): 190-7.
[http://dx.doi.org/10.5530/ijper.55.1.21]
[35]
Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn 2021; 39(12): 4225-33.
[http://dx.doi.org/10.1080/07391102.2020.1775129] [PMID: 32462996]
[36]
Rizvi SMD, Hussain T, Moin A, et al. Identifying the most potent dual-targeting compound(s) against 3CLprotease and NSP15 exonuclease of SARS-CoV-2 from Nigella sativa: Virtual screening via physicochemical properties, docking and dynamic simulation analysis. Processes 2021; 9(10): 1814.
[http://dx.doi.org/10.3390/pr9101814]
[37]
Duru CE, Duru IA, Adegboyega AE. In silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. Bull Natl Res Cent 2021; 45(1): 57.
[http://dx.doi.org/10.1186/s42269-021-00517-x] [PMID: 33727782]
[38]
Mir SA, Firoz A, Alaidarous M, et al. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi J Biol Sci 2022; 29(1): 394-401.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.002] [PMID: 34518755]
[39]
Baig A, Srinivasan H. SARS-CoV-2 inhibitors from Nigella sativa. Appl Biochem Biotechnol 2022; 194(3): 1051-90.
[http://dx.doi.org/10.1007/s12010-021-03790-8] [PMID: 35102539]
[40]
Jakhmola Mani R, Sehgal N, Dogra N, Saxena S, Pande Katare D. Deciphering underlying mechanism of SARS-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: In silico study. J Biomol Struct Dyn 2022; 40(6): 2417-29.
[http://dx.doi.org/10.1080/07391102.2020.1839560] [PMID: 33111624]
[41]
Maiti S, Banerjee A, Nazmeen A, Kanwar M, Das S. Active-site molecular docking of nigellidine with nucleocapsid–NSP2–MPro of COVID-19 and to human IL1R–IL6R and strong antioxidant role of Nigella sativa in experimental rats. J Drug Target 2022; 30(5): 511-21.
[http://dx.doi.org/10.1080/1061186X.2020.1817040] [PMID: 32875925]
[42]
Xu H, Liu B, Xiao Z, et al. Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells. Infect Dis Ther 2021; 10(1): 483-94.
[http://dx.doi.org/10.1007/s40121-021-00400-2] [PMID: 33532909]
[43]
Esharkawy ER, Almalki F, Hadda TB. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg Chem 2022; 120: 105587.
[http://dx.doi.org/10.1016/j.bioorg.2021.105587] [PMID: 35026560]
[44]
Onifade AA, Jewell AP, Onifade AB. Virologic and immunologic outcome of treatment of HIV infectionwith A herbal concoction, Α-Zam, among clients seeking herbal remedy in Nigeria. Afr J Tradit Complement Altern Med 2011; 8(1): 37-44.
[45]
Onifade AA, Jewell AP, Okesina AB, Ajadi TA, Rahamon SK. 5-month herbal therapy and complete sero-reversion with recovery in an adult HIV/AIDS patient. Sci Rep 2012; 1: 124.
[http://dx.doi.org/10.4172/scientificreports.124]
[46]
Onifade AA, Jewell AP, Ajadi TA, Rahamon SK, Ogunrin OO. Effectiveness of a herbal remedy in six HIV patients in Nigeria. J Herb Med 2013; 3(3): 99-103.
[http://dx.doi.org/10.1016/j.hermed.2013.04.006]
[47]
Onifade AA, Jewell AP, Adedeji WA. Nigella sativa concoction induced sustained seroreversion in HIV patient. Afr J Tradit Complement Altern Med 2013; 10(5): 332-5.
[48]
Onifade AA, Jewell AP. Does Nigella sativa concoction cure HIV infection? J Infect Dis 2014; 2014(113): 264-9.
[49]
Onifade AA, Jewell AP, Okesina AB. Seronegative conversion of an HIV positive subject treated with Nigella sativa and honey. Afr J Infect Dis 2015; 9(2): 47-50.
[50]
Maideen NM. Miracle herb to cure HIV- Black seeds (Nigella sativa): A review. Int J Med Rev 2021; 8(3): 116-21.
[51]
Barakat EM, El Wakeel LM, Hagag RS. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J Gastroenterol 2013; 19(16): 2529-36.
[52]
Abdel-Moneim A, Morsy BM, Mahmoud AM, Abo-Seif MA, Zanaty MI. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt. EXCLI J 2013; 12: 943-55.
[PMID: 27298610]
[53]
Khan AU, Tipu MY, Shafee M, et al. In-ovo antiviral effect of Nigella sativa extract against Newcastle Disease Virus in experimentally infected chicken embryonated eggs. Pak Vet J 2018; 38(4): 434-7.
[http://dx.doi.org/10.29261/pakvetj/2018.075]
[54]
Sökmen A. Antiviral and cytotoxic activities of extracts from the cell cultures and respective parts of some Turkish medicinal plants. Turk J Biol 2001; 25: 343-50.
[55]
Zihlif MA, Mahmoud IS, Ghanim MT, et al. Thymoquinone efficiently inhibits the survival of EBV-infected B cells and alters EBV gene expression. Integr Cancer Ther 2013; 12(3): 257-63.
[http://dx.doi.org/10.1177/1534735412458827] [PMID: 23089554]
[56]
Salem ML, Hossain MS. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol 2000; 22(9): 729-40.
[http://dx.doi.org/10.1016/S0192-0561(00)00036-9] [PMID: 10884593]
[57]
Umar S, Munir MT, Subhan S, et al. Withdrawn: Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. J Saudi Soc Agric Sci 2016.
[http://dx.doi.org/10.1016/j.jssas.2016.09.004]
[58]
Umar S, Rehman A, Younus M, et al. Effects of Nigella sativa on immune responses and pathogenesis of avian influenza (H9N2) virus in turkeys. J Appl Poult Res 2016; 25(1): 95-103.
[http://dx.doi.org/10.3382/japr/pfv070]
[59]
Mohamed EF. Inhibition of Broad bean mosaic virus (BBMV) using extracts of Nigella (Nigella sativa L.) and Zizyphus (Zizyphus spina-christi Mill.) plants. J Am Sci 2011; 7(12): 727-34.
[60]
Elbeshehy EKF. Inhibitor activity of different medicinal plants extracts from Thuja orientalis, Nigella sativa L., Azadirachta indica and Bougainvillea spectabilis against Zucchini yellow mosaic virus (ZYMV) infecting Citrullus lanatus. Biotechnol Biotechnol Equip 2017; 31(2): 270-9.
[http://dx.doi.org/10.1080/13102818.2017.1279572]
[61]
Aqil K, Khan MR, Aslam A, et al. In vitro Antiviral Activity of Nigella sativa against Peste des Petits Ruminants (PPR) Virus. Pak J Zool 2018; 50(6): 2223-8.
[http://dx.doi.org/10.17582/journal.pjz/2018.50.6.2223.2228]
[62]
Maurya S, Marimuthu P, Singh A, Rao GP, Singh G. Antiviral activity of essential oils and acetone extracts of medicinal plants against papaya ring spot virus. J Essent Oil-Bear Plants 2005; 8(3): 233-8.
[http://dx.doi.org/10.1080/0972060X.2005.10643452]
[63]
Abdel-Fattah AFM, Matsumoto K, Watanabe H. Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. Eur J Pharmacol 2000; 400(1): 89-97.
[http://dx.doi.org/10.1016/S0014-2999(00)00340-X] [PMID: 10913589]
[64]
Al-Ghamdi MS. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J Ethnopharmacol 2001; 76(1): 45-8.
[http://dx.doi.org/10.1016/S0378-8741(01)00216-1] [PMID: 11378280]
[65]
Al-Naggar TB, Gómez-Serranillos MP, Carretero ME, Villar AM. Neuropharmacological activity of Nigella sativa L. extracts. J Ethnopharmacol 2003; 88(1): 63-8.
[http://dx.doi.org/10.1016/S0378-8741(03)00157-0] [PMID: 12902052]
[66]
Bashir MU, Qureshi HJ. Analgesic effect of Nigella sativa seeds extract on experimentally induced pain in albino mice. J Coll Physicians Surg Pak 2010; 20(7): 464-7.
[PMID: 20642947]
[67]
De Sousa DP, Nóbrega FFF, Santos CCMP, et al. Antinociceptive activity of thymoquinone and its structural analogues: A structure-activity relationship study. Trop J Pharm Res 2012; 11(4): 605-10.
[http://dx.doi.org/10.4314/tjpr.v11i4.11]
[68]
Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother 2021; 138: 111492.
[http://dx.doi.org/10.1016/j.biopha.2021.111492] [PMID: 33743334]
[69]
Fatima Shad K, Soubra W, Cordato DJ. The role of thymoquinone, a major constituent of Nigella sativa, in the treatment of inflammatory and infectious diseases. Clin Exp Pharmacol Physiol 2021; 48(11): 1445-53.
[http://dx.doi.org/10.1111/1440-1681.13553] [PMID: 34297870]
[70]
Velagapudi R, El-Bakoush A, Lepiarz I, Ogunrinade F, Olajide OA. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 2017; 435(1-2): 149-62.
[http://dx.doi.org/10.1007/s11010-017-3064-3] [PMID: 28551846]
[71]
Mohamed A, Shoker A, Bendjelloul F, et al. Improvement of experimental allergic encephalomyelitis (EAE) by thymoquinone; an oxidative stress inhibitor. Biomed Sci Instrum 2003; 39: 440-5.
[PMID: 12724933]
[72]
Mohamed A, Afridi DM, Garani O, Tucci M. Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis. Biomed Sci Instrum 2005; 41: 388-93.
[PMID: 15850137]
[73]
Fahmy HM, Noor NA, Mohammed FF, Elsayed AA, Radwan NM. Nigella sativa as an anti-inflammatory and promising remyelinating agent in the cortex and hippocampus of experimental autoimmune encephalomyelitis-induced rats. J Basic Appl Zool 2014; 67(5): 182-95.
[http://dx.doi.org/10.1016/j.jobaz.2014.08.005]
[74]
Noor NA, Fahmy HM, Mohammed FF, Elsayed AA, Radwan NM. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats. Int J Clin Exp Pathol 2015; 8(6): 6269-86.
[PMID: 26261504]
[75]
Hayat K, Asim MBR, Nawaz M, Li M, Zhang L, Sun N. Ameliorative effect of thymoquinone on ovalbumin-induced allergic conjunctivitis in Balb/c mice. Curr Eye Res 2011; 36(7): 591-8.
[http://dx.doi.org/10.3109/02713683.2011.573898] [PMID: 21604966]
[76]
Elkadery AAS, Elsherif EA, Ezz Eldin HM, Fahmy IAF, Mohammad OS. Efficient therapeutic effect of Nigella sativa aqueous extract and chitosan nanoparticles against experimentally induced Acanthamoeba keratitis. Parasitol Res 2019; 118(8): 2443-54.
[http://dx.doi.org/10.1007/s00436-019-06359-x] [PMID: 31144032]
[77]
Mahdy A, Gheita T. Beneficial effects of Nigella sativa seed oil as adjunct therapy in rheumatoid arthritis. J Egypt Soc Toxicol 2009; 41: 31-7.
[78]
Gheita TA, Kenawy SA. Effectiveness of Nigella sativa oil in the management of rheumatoid arthritis patients: a placebo controlled study. Phytother Res 2012; 26(8): 1246-8.
[http://dx.doi.org/10.1002/ptr.3679] [PMID: 22162258]
[79]
Hadi V, Kheirouri S, Alizadeh M, Khabbazi A, Hosseini H. Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Avicenna J Phytomed 2016; 6(1): 34-43.
[PMID: 27247920]
[80]
Kheirouri S, Hadi V, Alizadeh M. Immunomodulatory effect of Nigella sativa oil on T lymphocytes in patients with rheumatoid arthritis. Immunol Invest 2016; 45(4): 271-83.
[http://dx.doi.org/10.3109/08820139.2016.1153649] [PMID: 27100726]
[81]
Kooshki A, Forouzan R, Rakhshani MH, Mohammadi M. Effect of topical application of Nigella sativa oil and oral acetaminophen on pain in elderly with knee osteoarthritis: A crossover clinical trial. Electron Physician 2016; 8(11): 3193-7.
[http://dx.doi.org/10.19082/3193] [PMID: 28344755]
[82]
Salimzadeh A, Ghourchian A, Choopani R, Hajimehdipoor H, Kamalinejad M, Abolhasani M. Effect of an orally formulated processed black cumin, from Iranian traditional medicine pharmacopoeia, in relieving symptoms of knee osteoarthritis: A prospective, randomized, double-blind and placebo-controlled clinical trial. Int J Rheum Dis 2017; 20(6): 691-701.
[http://dx.doi.org/10.1111/1756-185X.13066] [PMID: 28378356]
[83]
Azizi F, Ghorat F, Hassan Rakhshani M, Rad M. Comparison of the effect of topical use of Nigella sativa oil and diclofenac gel on osteoarthritis pain in older people: A randomized, double-blind, clinical trial. J Herb Med 2019; 16: 100259.
[http://dx.doi.org/10.1016/j.hermed.2019.100259]
[84]
Dolatkhah N, Amirtaheri Afshar A, Sharifi S, Rahbar M, Toopchizadeh V, Hashemian M. The effects of topical and oral Nigella sativa oil on clinical findings in knee osteoarthritis: A double-blind, randomized controlled trial. J Herb Med 2022; 33: 100562.
[http://dx.doi.org/10.1016/j.hermed.2022.100562]
[85]
Rezaeian A, Amoushahi Khouzani S. Effect of Nigella sativa nasal spray on the treatment of chronic rhinosinusitis without a nasal polyp. Allergy Rhinol 2018; 9.
[http://dx.doi.org/10.1177/2152656718800059] [PMID: 30370173]
[86]
Nemati S, Masroorchehr M, Elahi H, Kamalinejad M, Ebrahimi SM, Akbari M. Effects of Nigella sativa extract on Chronic Rhinosinusitis: A randomized double blind study. Indian J Otolaryngol Head Neck Surg 2021; 73(4): 455-60.
[http://dx.doi.org/10.1007/s12070-020-02296-9] [PMID: 34722227]
[87]
Ansari MA, Ahmed SP, Haider SA, Ansari NL. Nigella sativa: A non-conventional herbal option for the management of seasonal allergic rhinitis. Pak J Pharmacol 2006; 23(2): 31-5.
[88]
Mohamed Alsamarai A, Abdulsatar M, Hamed Ahmed Alobaidi A. Evaluation of topical black seed oil in the treatment of allergic rhinitis. Antiinflamm Antiallergy Agents Med Chem 2014; 13(1): 75-82.
[89]
Kavandi H, Hajialilo M, Khabbazi A. Efficacy of Nigella sativa seeds oil in patients with Behcet’s disease: A double-blind randomized controlled trial. Avicenna J Phytomed 2018; 8(6): 498-503.
[PMID: 30456197]
[90]
Amizadeh S, Rashtchizadeh N, Khabbazi A, et al. Effect of Nigella sativa oil extracts on inflammatory and oxidative stress markers in Behcet’s disease: A randomized, double-blind, placebo-controlled clinical trial. Avicenna J Phytomed 2020; 10(2): 181-9.
[PMID: 32257890]
[91]
Forouzanfar F, Bazzaz BS, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iran J Basic Med Sci 2014; 17(12): 929-38.
[PMID: 25859296]
[92]
Dera AA, Ahmad I, Rajagopalan P, et al. Synergistic efficacies of thymoquinone and standard antibiotics against multi-drug resistant isolates. Saudi Med J 2021; 42(2): 196-204.
[http://dx.doi.org/10.15537/smj.2021.2.25706] [PMID: 33563739]
[93]
Kaatabi H, Bamosa AO, Badar A, et al. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: Placebo controlled participant blinded clinical trial. PLoS One 2015; 10(2): e0113486.
[http://dx.doi.org/10.1371/journal.pone.0113486] [PMID: 25706772]
[94]
Hadi S, Mirmiran P, Daryabeygi-Khotbesara R, Hadi V. Effect of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress among people with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled trial. Prog Nutr 2018; 20: 127-33.
[95]
Namazi N, Mahdavi R, Alizadeh M, Farajnia S. Oxidative stress responses to Nigella sativa oil concurrent with a low‐calorie diet in obese women: A randomized, double‐blind controlled clinical trial. Phytother Res 2015; 29(11): 1722-8.
[http://dx.doi.org/10.1002/ptr.5417] [PMID: 26179113]
[96]
Nikkhah-Bodaghi M, Darabi Z, Agah S, Hekmatdoost A. The effects of Nigella sativa on quality of life, disease activity index, and some of inflammatory and oxidative stress factors in patients with ulcerative colitis. Phytother Res 2019; 33(4): 1027-32.
[http://dx.doi.org/10.1002/ptr.6296] [PMID: 30666747]
[97]
El-Shanshory M, Hablas NM, Aboonq MS, et al. Nigella sativa improves anemia, enhances immunity and relieves iron overload-induced oxidative stress as a novel promising treatment in children having beta-thalassemia major. J Herb Med 2019; 16: 100245.
[http://dx.doi.org/10.1016/j.hermed.2018.11.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy