Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

In silico Validation of Pseudomonas aeruginosa Exotoxin A Domain I Interaction with the Novel Human scFv Antibody

Author(s): Zahra Shadman, Samaneh Ghasemali, Safar Farajnia*, Mojtaba Mortazavi, Atefeh Biabangard, Saeed Khalili and Leila Rahbarnia

Volume 23, Issue 5, 2023

Published on: 18 April, 2023

Article ID: e290323215113 Pages: 7

DOI: 10.2174/1871526523666230329104537

Price: $65

Abstract

Background: Pseudomonas (P.) aeruginosa is one of the leading causes of nosocomial infections. The pathogenicity of P. aeruginosa is related to its inherent antimicrobial resistance and the diverse virulence factors of this bacterium. Owing to the specific role of exotoxin A in P. aeruginosa pathogenesis, it is known as a promising therapeutic candidate to develop antibodies as an alternative to antibiotics.

Objective: The present study aimed to validate the interaction between a single-chain fragment variable (scFv) antibody identified from an scFv phage library against domain I exotoxin A by bioinformatic tools.

Methods: For this, several bioinformatics tools, including Ligplot, Swiss PDB viewer (SPDBV), PyMOL, I-TASSER, Gromacs, and ClusPro servers were used to evaluate the interaction of scFv antibody with P. aeruginosa exotoxin A. The I-TASSER server was utilized to predict the function and structure of proteins. The interaction of two proteins was analyzed using ClusPro tools. The best docking results were further analyzed with Ligplot, Swiss PDB viewer, and PyMOL. Consequently, molecular dynamics simulation was utilized to predict the stability of the secondary structure of the antibody and the binding energy of the scFv antibody to the domain I of exotoxin A.

Results: As a result, we demonstrated that data from computational biology could provide proteinprotein interaction information between scFv antibody/domain I exotoxin A and offers new insights into antibody development and therapeutic expansion.

Conclusion: In summary, a recombinant human scFv capable of neutralizing P. aeruginosa exotoxin A is recommended as a promising treatment for infections caused by P. aeruginosa.

Graphical Abstract

[1]
Michalska M, Wolf P. Pseudomonas exotoxin A: Optimized by evolution for effective killing. Front Microbiol 2015; 6: 963.
[http://dx.doi.org/10.3389/fmicb.2015.00963] [PMID: 26441897]
[2]
Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2013; 41(1): 1-20.
[http://dx.doi.org/10.1093/nar/gks1039] [PMID: 23143271]
[3]
Domenighini M, Rappuoli R. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol 1996; 21(4): 667-74.
[http://dx.doi.org/10.1046/j.1365-2958.1996.321396.x] [PMID: 8878030]
[4]
Akbari B, Farajnia S, Zarghami N, et al. Construction, expression, and activity of a novel immunotoxin comprising a humanized antiepidermal growth factor receptor scFv and modified Pseudomonas aeruginosa exotoxin A. Anticancer Drugs 2017; 28(3): 263-70.
[http://dx.doi.org/10.1097/CAD.0000000000000452] [PMID: 27861173]
[5]
Weidle UH, Tiefenthaler G, Schiller C, Weiss EH, Georges G, Brinkmann U. Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics Proteomics 2014; 11(1): 25-38.
[6]
Mazor R, Pastan I. Immunogenicity of immunotoxins containing Pseudomonas exotoxin A: causes, consequences, and mitigation. Front Immunol 2020; 11: 1261.
[http://dx.doi.org/10.3389/fimmu.2020.01261] [PMID: 32695104]
[7]
Heiat M, Hashemi Yeganeh H, Alavian SM, Rezaie E. Immunotoxins immunotherapy against hepatocellular carcinoma: A promising prospect. Toxins 2021; 13(10): 719.
[http://dx.doi.org/10.3390/toxins13100719] [PMID: 34679012]
[8]
Fancher KM, Lally-Montgomery ZC. Moxetumomab pasudotox: A first-in-class treatment for hairy cell leukemia. J Oncol Pharm Pract 2019; 25(6): 1467-72.
[http://dx.doi.org/10.1177/1078155219838041] [PMID: 30917739]
[9]
Shadman Z, Farajnia S, Pazhang M, et al. Isolation and characterizations of a novel recombinant scFv antibody against exotoxin A of Pseudomonas aeruginosa. BMC Infect Dis 2021; 21(1): 300.
[http://dx.doi.org/10.1186/s12879-021-05969-0] [PMID: 33761869]
[10]
Rasafar N, Barzegar A, Mehdizadeh Aghdam E. Design and development of high affinity dual anticancer peptide-inhibitors against p53-MDM2/X interaction. Life Sci 2020; 245: 117358.
[http://dx.doi.org/10.1016/j.lfs.2020.117358] [PMID: 32001262]
[11]
Rasafar N, Barzegar A, Mehdizadeh Aghdam E. Structure-based designing efficient peptides based on p53 binding site residues to disrupt p53-MDM2/X interaction. Sci Rep 2020; 10(1): 11449.
[http://dx.doi.org/10.1038/s41598-020-67510-8] [PMID: 32651397]
[12]
Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5(4): 725-38.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[13]
Wu S, Zhang Y. LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Res 2007; 35(10): 3375-82.
[http://dx.doi.org/10.1093/nar/gkm251] [PMID: 17478507]
[14]
Vriend G. WHAT IF A molecular modeling and drug design program. J Mol Graph 1990; 8(1): 52-6.
[http://dx.doi.org/10.1016/0263-7855(90)80070-V ] [PMID: 2268628]
[15]
Tina KG, Bhadra R, Srinivasan N. Srinivasan NJNar. PIC: protein interactions calculator. Nucleic Acids Res 2007; 35((Web Server)): W473-6.
[http://dx.doi.org/10.1093/nar/gkm423] [PMID: 17584791 ]
[16]
Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 1999; 112: 531-52.
[http://dx.doi.org/10.1385/1-59259-584-7:531] [PMID: 10027275]
[17]
Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 2011; 51(10): 2778-86.
[http://dx.doi.org/10.1021/ci200227u]
[18]
Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997; 18(15): 2714-23.
[http://dx.doi.org/10.1002/elps.1150181505] [PMID: 9504803]
[19]
DeLano WL. Pymol: An open-source molecular graphics tool CCP4 Newsl. Protein Crystallogr 2002; p. 40.
[20]
Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004; 25(13): 1656-76.
[http://dx.doi.org/10.1002/jcc.20090] [PMID: 15264259]
[21]
Berendsen Herman JC, Postma Johan PM, van Gunsteren Wilfred F. Hermans Jan. Interaction models for water in relation to protein hydration. Intermolecular Forces Nature 1981; 11(1): 331-42.
[22]
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph 1996; 14(1): 33-8.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[23]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[24]
Kaplan W, Littlejohn TG. Swiss-pdb viewer (deep view). Brief Bioinform 2001; 2(2): 195-7.
[http://dx.doi.org/10.1093/bib/2.2.195]
[25]
Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein–protein docking. Nat Protoc 2017; 12(2): 255-78.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[26]
London N, Movshovitz-Attias D, Schueler-Furman O. The structural basis of peptide-protein binding strategies. Structure 2010; 18(2): 188-99.
[http://dx.doi.org/10.1016/j.str.2009.11.012] [PMID: 20159464]
[27]
Baghban R, Ghasemali S, Farajnia S, et al. Design and in silico evaluation of a novel cyclic disulfide-rich anti-VEGF peptide as a potential antiangiogenic drug. Int J Pept Res Ther 2021; 27(4): 2245-56.
[http://dx.doi.org/10.1007/s10989-021-10250-8]
[28]
Nygaard M, Kragelund BB, Papaleo E, Lindorff-Larsen K. An efficient method for estimating the hydrodynamic radius of disordered protein conformations. Biophys J 2017; 113(3): 550-7.
[http://dx.doi.org/10.1016/j.bpj.2017.06.042] [PMID: 28793210]
[29]
Horcajada JP, Montero M, Oliver A, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 2019; 32(4): e00031-19.
[http://dx.doi.org/10.1128/CMR.00031-19] [PMID: 31462403]
[30]
Kumar A, Purohit R. Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutat Res 2012; 738-739: 28-37.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.08.005] [PMID: 22974711]
[31]
Kumar A, Rajendran V, Sethumadhavan R, Purohit R. Evidence of colorectal cancer-associated mutation in MCAK: A computational report. Cell Biochem Biophys 2013; 67(3): 837-51.
[http://dx.doi.org/10.1007/s12013-013-9572-1] [PMID: 23564489]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy