Abstract
The exploration of synthetic methodologies that allow rapid access to a wide variety of N-heterocycles is of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drives more efficient drug discovery programs. β-Nitrostyrenes, as unique active intermediates, have been widely applied in synthetic organic chemistry because of their versatile utility as pharmaceutical agents and agrochemicals. In this review, we summarize the recent development and application of the elegant and efficient methods that enable the concise synthesis of N-heterocycles from β-nitrostyrenes and various partners in a step- and atom-economic manner, including cascade reactions, C-H activation, regio- and stereoselective syntheses, as well as other novel syntheses, which will potentially provide useful insights for further exploring and designing novel reactions.
Graphical Abstract
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[http://dx.doi.org/10.1021/cr020090l] [PMID: 15137795];
(b) Xu, J.; Stevenson, J. Drug-like index: A new approach to measure druglike compounds and their diversity. J. Chem. Inf. Comput. Sci., 2000, 40(5), 1177-1187.
[http://dx.doi.org/10.1021/ci000026+] [PMID: 11045811];
(c) Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014];
(d) Wang, Y.; Zhang, W.X.; Xi, Z. Carbodiimide-based synthesis of Nheterocycles: Moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem. Soc. Rev., 2020, 49(16), 5810-5849.
[http://dx.doi.org/10.1039/C9CS00478E] [PMID: 32658233]
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843];
(b) Eftekhari-Sis, B.; Zirak, M. Chemistry of α-oxoesters: A powerful tool for the synthesis of heterocycles. Chem. Rev., 2015, 115(1), 151-264.
[http://dx.doi.org/10.1021/cr5004216] [PMID: 25423283];
(c) Sharma, U.K.; Ranjan, P.; Van der Eycken, E.V.; You, S.L. Sequential and direct multicomponent reaction (MCR)-based dearomatization strategies. Chem. Soc. Rev., 2020, 49(23), 8721-8748.
[http://dx.doi.org/10.1039/D0CS00128G] [PMID: 33079105];
(d) Ramana Reddy, M.; Darapaneni, C.M.; Patil, R.D.; Kumari, H. Recent synthetic methodologies for imidazo[1,5- a]pyridines and related heterocycles. Org. Biomol. Chem., 2022, 20(17), 3440-3468.
[http://dx.doi.org/10.1039/D2OB00386D] [PMID: 35394477]
[http://dx.doi.org/10.1039/D0QO00510J];
(b) Meera, G.; Rohit, K.R.; Saranya, S.; Anilkumar, G. Microwave assisted synthesis of five membered nitrogen heterocycles. RSC Adv., 2020, 10(59), 36031-36041.
[http://dx.doi.org/10.1039/D0RA05150K] [PMID: 35517065];
(c) Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev., 2015, 44(11), 3505-3521.
[http://dx.doi.org/10.1039/C5CS00083A] [PMID: 25882084]
[http://dx.doi.org/10.1002/anie.201300646] [PMID: 23495148];
(b) Fioravanti, S.; Pellacani, L.; Tardella, P.A.; Vergari, M.C. Facile and highly stereoselective one-pot synthesis of either (E)- or (Z)-nitro alkenes. Org. Lett., 2008, 10(7), 1449-1451.
[http://dx.doi.org/10.1021/ol800224k] [PMID: 18302403];
(c) Motokura, K.; Tomita, M.; Tada, M.; Iwasawa, Y. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions. Chemistry, 2008, 14(13), 4017-4027.
[http://dx.doi.org/10.1002/chem.200702048] [PMID: 18351703];
(d) Alizadeh, A.; Khodaei, M.M.; Eshghi, A. Ambiphilic dual activation role of a task-specific ionic liquid: 2-hydroxyethylammonium formate as a recyclable promoter and medium for the green synthesis of β-nitrostyrenes. J. Org. Chem., 2010, 75(23), 8295-8298.
[http://dx.doi.org/10.1021/jo101696z] [PMID: 21047089];
(e) Bharathiraja, G.; Sakthivel, S.; Sengoden, M.; Punniyamurthy, T. A novel tandem sequence to pyrrole syntheses by 5-endo-dig cyclization of 1,3- enynes with amines. Org. Lett., 2013, 15(19), 4996-4999.
[http://dx.doi.org/10.1021/ol402305b] [PMID: 24032607];
(f) Palmieri, A.; Gabrielli, S.; Ballini, R. An improved, fully heterogeneous, diastereoselective synthesis of (Z)-α-bromonitroalkenes. Synlett, 2013, 24, 0114.;
(g) Zhang, M.; Hu, P.; Zhou, J.; Wu, G.; Huang, S.; Su, W. Pd-catalyzed multidehydrogenative cross-coupling between (hetero)arenes and nitroethane to construct β-aryl nitroethylenes. Org. Lett., 2013, 15(7), 1718-1721.
[http://dx.doi.org/10.1021/ol400507u] [PMID: 23528043];
(h) Stevens, T. Reaction of β -bromostyrene and dinitrogen tetroxide. A radical displacement. J. Org. Chem., 1960, 25(9), 1658.
[http://dx.doi.org/10.1021/jo01079a045];
(i) Mutkule, N.; Bugad, N.; Mokale, S.; Choudhari, V.; Ubale, M. Novel approach in the synthesis of imidazo [1, 2‐ a ] pyridine from phenyl acrylic acids. J. Heterocycl. Chem., 2020, 57(8), 3186-3192.
[http://dx.doi.org/10.1002/jhet.4026];
(j) Paul, N.; Maity, S.; Panja, S.; Maiti, D. Recent advances in the nitration of olefins. Chem. Rec., 2021, 21(10), 2896-2908.
[http://dx.doi.org/10.1002/tcr.202100217] [PMID: 34569706]
[http://dx.doi.org/10.1002/9783527621262.ch3]
[http://dx.doi.org/10.1039/C4RA08828J];
(b) Sukhorukov, A.Y. Nitro compounds as versatile building blocks for the synthesis of pharmaceutically relevant substances. Front Chem., 2020, 8, 595246.
[http://dx.doi.org/10.3389/fchem.2020.595246] [PMID: 33195101];
(c) Maria, F.P.A. Organocatalytic asymmetric nitro-michael reactions. Curr. Org. Synth., 2016, 13(5), 687-725.
[http://dx.doi.org/10.2174/1570179412666150914200843];
(d) Noble, A.; Anderson, J.C. Nitro-Mannich Reaction. Chem. Rev., 2013, 113(5), 2887-2939.
[http://dx.doi.org/10.1021/cr300272t] [PMID: 23461586];
(e) Sukhorukov, A.Y.; Sukhanova, A.A.; Zlotin, S.G. Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron, 2016, 72(41), 6191-6281.
[http://dx.doi.org/10.1016/j.tet.2016.07.067];
(f) Tabolin, A.A.; Sukhorukov, A.Y.; Ioffe, S.L. α-electrophilic reactivity of nitronates. Chem. Rec., 2018, 18(10), 1489-1500.
[http://dx.doi.org/10.1002/tcr.201800009] [PMID: 29667300]
(b) Perekalin, V.V.; Lipina, E.S.; Berestovitskaya, V.M.; Efremov, D.A. Nitroalkenes: conjugated nitro compounds; Wiley: Chichester, UK, 1994, p. 256.;
(c) Halimehjani, A.Z.; Namboothiri, I.N.N.; Hooshmand, S.E. Nitroalkenes in the synthesis of carbocyclic compounds. RSC Adv., 2014, 4(59), 31261.
[http://dx.doi.org/10.1039/C4RA04069D]
[http://dx.doi.org/10.1021/cr068373r] [PMID: 18072808];
(b) Halimehjani, A.Z.; Namboothiri, I.N.N.; Hooshmand, S.E.; Part, I.I. Part II: Nitroalkenes in the synthesis of heterocyclic compounds. RSC Adv., 2014, 4(93), 51794-51829.
[http://dx.doi.org/10.1039/C4RA08830A]
[http://dx.doi.org/10.1021/cr400215u] [PMID: 24304297];
(b) Lancianesi, S.; Palmieri, A.; Petrini, M. Synthetic approaches to 3-(2-nitroalkyl) indoles and their use to access tryptamines and related bioactive compounds. Chem. Rev., 2014, 114(14), 7108-7149.
[http://dx.doi.org/10.1021/cr400676v] [PMID: 24905229];
(c) Han, X.; Yuan, C.; Hou, B.; Liu, L.; Li, H.; Liu, Y.; Cui, Y. Chiral covalent organic frameworks: Design, synthesis and property. Chem. Soc. Rev., 2020, 49(17), 6248-6272.
[http://dx.doi.org/10.1039/D0CS00009D] [PMID: 32724943];
(d) Dybtsev, D.N.; Bryliakov, K.P. Asymmetric catalysis using metal-organic frameworks. Coord. Chem. Rev., 2021, 437, 213845.
[http://dx.doi.org/10.1016/j.ccr.2021.213845];
(e) Cao, W.; Feng, X.; Liu, X. Reversal of enantioselectivity in chiral metal complex-catalyzed asymmetric reactions. Org. Biomol. Chem., 2019, 17(27), 6538-6550.
[http://dx.doi.org/10.1039/C9OB01027K] [PMID: 31219126]
[http://dx.doi.org/10.2533/chimia.2012.913] [PMID: 23394275];
(b) Denmark, S.E.; Thorarensen, A. Tandem [4+2]/[3+2] cycloadditions of nitroalkenes. Chem. Rev., 1996, 96(1), 137-166.
[http://dx.doi.org/10.1021/cr940277f] [PMID: 11848747]
[http://dx.doi.org/10.1002/ajoc.201700520];
(b) Pookkandam Parambil, S.; Pulikkal Veettil, S.; Dehaen, W. The Synthesis of five-membered N-heterocycles by cycloaddition of nitroalkenes with (In)organic azides and other 1,3-dipoles. Synthesis, 2022, 54(4), 910-924.
[http://dx.doi.org/10.1055/a-1547-0196]
[http://dx.doi.org/10.1002/slct.202002563];
(b) Kesavan, V.; Vishwanath, M.; Prakash, M.; Vinayagam, P. Diastereoselective three-component cascade reaction to construct oxindole-fused spirotetrahydrofurochroman scaffolds for drug discovery. Synthesis, 2016, 48, 2671.
[http://dx.doi.org/10.1055/s-0035-1562516];
(c) Li, L.; Chen, Q.; Xiong, X.; Zhang, C.; Qian, J.; Shi, J.; An, Q.; Zhang, M. Synthesis of polysubstituted pyrroles via a gold(I)-catalyzed tandem three-component reaction at room temperature. Chin. Chem. Lett., 2018, 29(12), 1893-1896.
[http://dx.doi.org/10.1016/j.cclet.2018.09.004];
(d) Rostami, H.; Shiri, L. Fe3O4@SiO2-CPTMS-Guanidine-SO3H-catalyzed one-pot multicomponent synthesis of polysubstituted pyrrole derivatives under solvent-free conditions. Russ. J. Org. Chem., 2019, 55(8), 1204-1211.
[http://dx.doi.org/10.1134/S1070428019080207];
(e) Balu Atar, A.; Han, E.; Sohn, D.H.; Kang, J. A solvent and transition metal-free, highly efficient Brønsted acidic ionic liquid promoted one-potthree-component reactions for the synthesis of tetrasubstituted pyrroles. Synth. Commun., 2019, 49(9), 1181-1192.
[http://dx.doi.org/10.1080/00397911.2019.1593460];
(f) Lin, X.; Mao, Z.; Dai, X.; Lu, P.; Wang, Y. A straightforward one-pot multicomponent synthesis of polysubstituted pyrroles. Chem. Commun., 2011, 47(23), 6620-6622.
[http://dx.doi.org/10.1039/c1cc11363a] [PMID: 21562679];
(g) Aginagalde, M.; Bello, T.; Masdeu, C.; Vara, Y.; Arrieta, A.; Cossío, F.P. Formation of γ-oxoacids and 1H-pyrrol-2(5H)-ones from α,β-unsaturated ketones and ethyl nitroacetate. J. Org. Chem., 2010, 75(21), 7435-7438.
[http://dx.doi.org/10.1021/jo101388x] [PMID: 20886821];
(h) Chen, L.; Iwamoto, R.; Ukaji, Y.; Inomata, K. Total synthesis of doubly locked 5Za15Ea-Biliverdin derivative: A convergent synthesis of the E-anti dipyrrole component locked with a 7-membered ring. Chem. Lett., 2011, 40(6), 632-634.
[http://dx.doi.org/10.1246/cl.2011.632];
(i) Zheng, B.; Conlon, D.A.; Corbett, R.M.; Chau, M.; Hsieh, D.M.; Yeboah, A.; Hsieh, D.; Müslehiddinoğlu, J.; Gallagher, W.P.; Simon, J.N.; Burt, J. Development of a practical synthesis of a functionalized pyrrolo[2,1-f][1,2,4]triazine nucleus. Org. Proc. Res. Dev., 2012, 16(11), 1846-1853.
[http://dx.doi.org/10.1021/op300252n]
[http://dx.doi.org/10.1016/j.catcom.2014.12.026]
[http://dx.doi.org/10.1055/s-0033-1338526]
[http://dx.doi.org/10.1002/jhet.3733]
[http://dx.doi.org/10.1039/C8OB00736E] [PMID: 29722779]
[http://dx.doi.org/10.1039/C6RA21144E]
[http://dx.doi.org/10.1039/D1NJ05341H]
[http://dx.doi.org/10.1002/slct.201801931]
[http://dx.doi.org/10.1039/D0RA02525A] [PMID: 35517328];
(b) Bolous, M.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Maruoka, K.; Antharam, V.C.; Thangamani, S. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorg. Med. Chem. Lett., 2019, 29(16), 2059-2063.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.022] [PMID: 31320146]
[http://dx.doi.org/10.1007/s10593-017-2074-0];
(b) Liu, Q.; Zhao, K.; Zhi, Y.; Raabe, G.; Enders, D. Squaramide-catalyzed domino Michael/aza-Henry [3 + 2] cycloaddition: asymmetric synthesis of functionalized 5-trifluoromethyl and 3-nitro substituted pyrrolidines. Org. Chem. Front., 2017, 4(7), 1416-1419.
[http://dx.doi.org/10.1039/C7QO00161D]
[http://dx.doi.org/10.1039/C5OB00129C] [PMID: 25823420]
[http://dx.doi.org/10.1055/a-1533-6872]
[http://dx.doi.org/10.1039/C5OB01444A] [PMID: 26288376]
[http://dx.doi.org/10.1039/C8OB00304A] [PMID: 29561021]
[http://dx.doi.org/10.1039/C7OB01299C] [PMID: 28702602]
[http://dx.doi.org/10.1021/ol5027975] [PMID: 25343314]
[http://dx.doi.org/10.1021/ol503687w] [PMID: 25695309]
[http://dx.doi.org/10.1016/j.tet.2017.05.065]
[http://dx.doi.org/10.1016/j.bmc.2007.10.018] [PMID: 17980609];
(b) Yamashita, T.; Yasuda, K.; Kizu, H.; Kameda, Y.; Watson, A.A.; Nash, R.J.; Fleet, G.W.J.; Asano, N. New polyhydroxylated pyrrolidine, piperidine, and pyrrolizidine alkaloids from Scilla sibirica. J. Nat. Prod., 2002, 65(12), 1875-1881.
[http://dx.doi.org/10.1021/np020296h] [PMID: 12502331];
(c) Mochizuki, A.; Nakamoto, Y.; Naito, H.; Uoto, K.; Ohta, T. Design, synthesis, and biological activity of piperidine diamine derivatives as factor Xa inhibitor. Bioorg. Med. Chem. Lett., 2008, 18(2), 782-787.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.037] [PMID: 18039572]
[http://dx.doi.org/10.1016/j.bmcl.2007.05.012] [PMID: 17512730];
(b) Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.; Kim, H.S.; Wataya, Y.; Miura, M.; Takeshita, M.; Oshima, Y. New type of febrifugine analogues, bearing a quinolizidine moiety, show potent antimalarial activity against Plasmodium malaria parasite. J. Med. Chem., 1999, 42(16), 3163-3166.
[http://dx.doi.org/10.1021/jm990131e] [PMID: 10447961]
[http://dx.doi.org/10.1021/co4001502] [PMID: 24521510]
[http://dx.doi.org/10.1055/s-0034-1379044]
[http://dx.doi.org/10.1002/ejoc.201501618]
[http://dx.doi.org/10.1039/C6RA18630K]
[http://dx.doi.org/10.1002/ejoc.201800745] [PMID: 30220876]
[http://dx.doi.org/10.1039/C8OB02333F] [PMID: 30548050]
[http://dx.doi.org/10.1016/j.tetlet.2014.08.022]
[http://dx.doi.org/10.1016/j.tetlet.2018.08.024]
[http://dx.doi.org/10.1111/j.1527-3466.2002.tb00085.x] [PMID: 12397365]
[http://dx.doi.org/10.1007/s10593-014-1516-1]
[http://dx.doi.org/10.1055/s-0034-1379185]
[http://dx.doi.org/10.1039/C4RA14970J]
[http://dx.doi.org/10.1002/ajoc.202100776]
[http://dx.doi.org/10.1021/ol502218u] [PMID: 25140881]
[http://dx.doi.org/10.1039/C7RA02802D]
[http://dx.doi.org/10.3987/COM-21-14464]
[http://dx.doi.org/10.1039/C6NJ02365G]
[http://dx.doi.org/10.1055/s-1994-25637]
[http://dx.doi.org/10.1080/00397911.2019.1605445]
[http://dx.doi.org/10.1039/C5RA25540F]
[http://dx.doi.org/10.1016/j.tet.2015.09.033]
[http://dx.doi.org/10.1007/s00214-017-2133-8]
[http://dx.doi.org/10.1039/C8OB00588E] [PMID: 29808901]
[http://dx.doi.org/10.1002/ejoc.202000673]
[http://dx.doi.org/10.1039/D1OB01141C] [PMID: 34387294]
[http://dx.doi.org/10.1002/slct.201802759]
[http://dx.doi.org/10.1016/j.tet.2018.04.032]
[http://dx.doi.org/10.1016/j.tet.2016.09.017]
[http://dx.doi.org/10.1039/C8OB03126F] [PMID: 30672946];
(b) Motornov, V.A.; Tabolin, A.A.; Nenajdenko, V.G.; Ioffe, S.L. Copper-mediated oxidative [3+2]-annulation of nitroalkenes and ylides of 1,2-diazines: Assembly of functionalized pyrrolo[1,2-b]pyridazines. ChemistrySelect, 2021, 6(37), 9969-9974.
[http://dx.doi.org/10.1002/slct.202103189];
(c) Motornov, V.A.; Tabolin, A.A.; Ioffe, S.L. Oxidative [3+2]-annulation of nitroalkenes and azolium ylides in the presence of Cu(II): efficient synthesis of [5,5]-annulated N-fused heterocycles. New J. Chem., 2022, 46(9), 4134-4141.
[http://dx.doi.org/10.1039/D1NJ05332A]
[http://dx.doi.org/10.1055/s-0036-1588757]
[http://dx.doi.org/10.1016/j.tetlet.2020.152253]
[http://dx.doi.org/10.1039/C7GC03812G]
[http://dx.doi.org/10.1039/D0QO00591F]
[http://dx.doi.org/10.1039/C5RA14071D]
[http://dx.doi.org/10.1016/j.tetlet.2015.04.011]
[http://dx.doi.org/10.1016/j.tetlet.2016.11.072]