Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Biomarkers for Diabetic Nephropathy with a Focus on Kidney Injury Molecule-1 (KIM-1)

Author(s): Fatemeh Khonsha, Mohammad Valilo, Hamid-Reza Nejabati, Mohammad Rahmati-Yamchi and Ali Mota*

Volume 20, Issue 1, 2024

Published on: 11 May, 2023

Article ID: e280323215071 Pages: 9

DOI: 10.2174/1573399819666230328151108

Price: $65

Abstract

Diabetic Nephropathy (DN), with an increasing rate of mortality and morbidity, is considered the main cause of End-Stage Renal Disease (ESRD). A wide spectrum of biomarkers exist for early detection of DN, but they suffer from low specificity and sensitivity, indicating the urgent demand for finding more effective biomarkers. Also, the pathophysiology of tubular damage and its relation to DN are not yet completely understood. Kidney Injury Molecule-1 (KIM-1) is a protein that is expressed at substantially low contents in the kidney under physiological conditions. A number of reports have demonstrated the close relationship between urine and tissue KIM-1 levels and kidney disorders. KIM-1 is known as a biomarker for diabetic nephropathy and renal injury. In this study, we aim to review the potential clinical and pathological roles of KIM-1 in diabetic nephropathy.

[1]
Valencia WM, Florez H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ 2017; 356: i6505.
[http://dx.doi.org/10.1136/bmj.i6505] [PMID: 28096078]
[2]
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China. N Engl J Med 2016; 375(9): 905-6.
[http://dx.doi.org/10.1056/NEJMc1602469] [PMID: 27579659]
[3]
Samsu N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int 2021; 2021: 1497449.
[http://dx.doi.org/10.1155/2021/1497449]
[4]
Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, et al. Inflammatory targets in diabetic nephropathy. J Clin Med 2020; 9(2): 458.
[http://dx.doi.org/10.3390/jcm9020458] [PMID: 32046074]
[5]
Mihanfar A, Rahmati-Yamchi M, Mota A, Abediazar S, Pilehvar-Soltanahmadi Y, Zarghami N. Serum levels of vaspin and its correlation with nitric oxide in type 2 diabetic patients with nephropathy. Curr Diabetes Rev 2018; 14(2): 162-7.
[http://dx.doi.org/10.2174/1573399813666170530103216] [PMID: 28554309]
[6]
Umanath K, Lewis JB. Update on diabetic nephropathy: Core curriculum 2018. Am J Kidney Dis 2018; 71(6): 884-95.
[http://dx.doi.org/10.1053/j.ajkd.2017.10.026] [PMID: 29398179]
[7]
Keating ST, van Diepen JA, Riksen NP, El-Osta A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia 2018; 61(1): 6-20.
[http://dx.doi.org/10.1007/s00125-017-4490-1] [PMID: 29128937]
[8]
Roelofs JJ, Vogt L. Diabetic nephropathy: Pathophysiology and clinical aspects. Springer International Publishing 2018.
[9]
Sulaiman MK. Diabetic nephropathy: Recent advances in pathophysiology and challenges in dietary management. Diabetol Metab Syndr 2019; 11(1): 7.
[http://dx.doi.org/10.1186/s13098-019-0403-4] [PMID: 30679960]
[10]
Rossing P, Persson F, Frimodt-Møller M. Prognosis and treatment of diabetic nephropathy: Recent advances and perspectives. Nephrol Ther 2018; 14(S1): S31-7.
[http://dx.doi.org/10.1016/j.nephro.2018.02.007] [PMID: 29606261]
[11]
Colombo M, Valo E, McGurnaghan SJ, et al. Biomarker panels associated with progression of renal disease in type 1 diabetes. Diabetologia 2019; 62(9): 1616-27.
[http://dx.doi.org/10.1007/s00125-019-4915-0] [PMID: 31222504]
[12]
Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol 2015; 224(1): R15-30.
[http://dx.doi.org/10.1530/JOE-14-0437] [PMID: 25349246]
[13]
Gnudi L, Coward RJM, Long DA. Diabetic nephropathy: Perspective on novel molecular mechanisms. Trends Endocrinol Metab 2016; 27(11): 820-30.
[http://dx.doi.org/10.1016/j.tem.2016.07.002] [PMID: 27470431]
[14]
Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies for hyperglycaemia-induced diabetic complications: From animal models to clinical trials. Nat Rev Drug Discov 2009; 8(5): 417-30.
[http://dx.doi.org/10.1038/nrd2476] [PMID: 19404313]
[15]
Goycheva P, Gadjeva V, Popov B. Mini-review oxidative stress and its complications in diabetes. Trakia J Sci 2006; 4(1): 1-8.
[16]
Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345(12): 861-9.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[17]
Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345(12): 851-60.
[http://dx.doi.org/10.1056/NEJMoa011303] [PMID: 11565517]
[18]
Ruggenenti P, Cravedi P, Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol 2010; 6(6): 319-30.
[http://dx.doi.org/10.1038/nrneph.2010.58] [PMID: 20440277]
[19]
Har R, Scholey JW, Daneman D, et al. The effect of renal hyperfiltration on urinary inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Diabetologia 2013; 56(5): 1166-73.
[http://dx.doi.org/10.1007/s00125-013-2857-5] [PMID: 23412605]
[20]
Luis-Rodríguez D, Martínez-Castelao A, Górriz JL, De-Álvaro F, Navarro-González JF. Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World J Diabetes 2012; 3(1): 7-18.
[http://dx.doi.org/10.4239/wjd.v3.i1.7] [PMID: 22253941]
[21]
Navarro-González JF, Mora-Fernández C, de Fuentes MM, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011; 7(6): 327-40.
[http://dx.doi.org/10.1038/nrneph.2011.51] [PMID: 21537349]
[22]
Hills CE, Squires PE. The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev 2011; 22(3): 131-9.
[http://dx.doi.org/10.1016/j.cytogfr.2011.06.002] [PMID: 21757394]
[23]
Tervaert TWC, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010; 21(4): 556-63.
[http://dx.doi.org/10.1681/ASN.2010010010] [PMID: 20167701]
[24]
Sanchez AP, Zhao J, You Y, Declèves AE, Diamond-Stanic M, Sharma K. Role of the USF1 transcription factor in diabetic kidney disease. Am J Physiol Renal Physiol 2011; 301(2): F271-9.
[http://dx.doi.org/10.1152/ajprenal.00221.2011] [PMID: 21543418]
[25]
Sharma D, Bhattacharya P, Kalia K, Tiwari V. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract 2017; 128: 91-108.
[http://dx.doi.org/10.1016/j.diabres.2017.04.010] [PMID: 28453961]
[26]
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017; 12(12): 2032-45.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[27]
Saran R, Robinson B, Abbott KC, et al. US renal data system 2017 annual data report: Epidemiology of kidney disease in the United States. Am J Kidney Dis 2018; 71(3): A7.
[http://dx.doi.org/10.1053/j.ajkd.2018.01.002] [PMID: 29477157]
[28]
Amutha A, Anjana RM, Venkatesan U, et al. Incidence of complications in young-onset diabetes: Comparing type 2 with type 1 (the young diab study). Diabetes Res Clin Pract 2017; 123: 1-8.
[http://dx.doi.org/10.1016/j.diabres.2016.11.006] [PMID: 27912129]
[29]
Abe T, Ogawa S, Tomioka Y. Marker for determining diabetic nephropathy 2018. Google Patents
[30]
Satirapoj B. Tubulointerstitial biomarkers for diabetic nephropathy. J Diabetes Res 2018; 2018: 2852398.
[http://dx.doi.org/10.1155/2018/2852398] [PMID: 29577044]
[31]
Kim SS, Song SH, Kim IJ, et al. Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care 2013; 36(3): 656-61.
[http://dx.doi.org/10.2337/dc12-0849] [PMID: 23093662]
[32]
Satirapoj B, Aramsaowapak K, Tangwonglert T, Supasyndh O. Novel tubular biomarkers predict renal progression in type 2 diabetes mellitus: A prospective cohort study. J Diabetes Res 2016; 2016: 3102962.
[http://dx.doi.org/10.1155/2016/3102962] [PMID: 27672664]
[33]
Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2004; 15(12): 3073-82.
[http://dx.doi.org/10.1097/01.ASN.0000145013.44578.45] [PMID: 15579510]
[34]
Viau A, El Karoui K, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 2010; 120(11): 4065-76.
[http://dx.doi.org/10.1172/JCI42004] [PMID: 20921623]
[35]
Bolignano D, Lacquaniti A, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 2009; 4(2): 337-44.
[http://dx.doi.org/10.2215/CJN.03530708] [PMID: 19176795]
[36]
Yang YH, He XJ, Chen SR, Wang L, Li EM, Xu LY. Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study. Endocrine 2009; 36(1): 45-51.
[http://dx.doi.org/10.1007/s12020-009-9187-x] [PMID: 19390997]
[37]
Graciano ML, Cavaglieri RC, Dellê H, et al. Intrarenal renin-angiotensin system is upregulated in experimental model of progressive renal disease induced by chronic inhibition of nitric oxide synthesis. J Am Soc Nephrol 2004; 15(7): 1805-15.
[http://dx.doi.org/10.1097/01.ASN.0000131528.00773.A9] [PMID: 15213268]
[38]
Kim SS, Song SH, Kim IJ, et al. Clinical implication of urinary tubular markers in the early stage of nephropathy with type 2 diabetic patients. Diabetes Res Clin Pract 2012; 97(2): 251-7.
[http://dx.doi.org/10.1016/j.diabres.2012.02.019] [PMID: 22440044]
[39]
Suzaki Y, Ozawa Y, Kobori H. Intrarenal oxidative stress and augmented angiotensinogen are precedent to renal injury in Zucker diabetic fatty rats. Int J Biol Sci 2006; 3(1): 40-6.
[PMID: 17200690]
[40]
Miyata K, Ohashi N, Suzaki Y, Katsurada A, Kobori H. Sequential activation of the reactive oxygen species/angiotensinogen/renin-angiotensin system axis in renal injury of type 2 diabetic rats. Clin Exp Pharmacol Physiol 2008; 35(8): 922-7.
[http://dx.doi.org/10.1111/j.1440-1681.2008.04938.x] [PMID: 18430060]
[41]
Satirapoj B, Siritaweesuk N, Supasyndh O. Urinary angiotensinogen as a potential biomarker of diabetic nephropathy. Clin Kidney J 2014; 7(4): 354-60.
[http://dx.doi.org/10.1093/ckj/sfu059] [PMID: 25852909]
[42]
Satirapoj B, Wang Y, Chamberlin MP, et al. Periostin: novel tissue and urinary biomarker of progressive renal injury induces a coordinated mesenchymal phenotype in tubular cells. Nephrol Dial Transplant 2012; 27(7): 2702-11.
[http://dx.doi.org/10.1093/ndt/gfr670] [PMID: 22167593]
[43]
Takeshita S, Kikuno R, Tezuka K, Amann E. Osteoblast-specific factor 2: Cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 1993; 294(1): 271-8.
[http://dx.doi.org/10.1042/bj2940271] [PMID: 8363580]
[44]
Wantanasiri P, Satirapoj B, Charoenpitakchai M, Aramwit P. Periostin: A novel tissue biomarker correlates with chronicity index and renal function in lupus nephritis patients. Lupus 2015; 24(8): 835-45.
[http://dx.doi.org/10.1177/0961203314566634] [PMID: 25593049]
[45]
Satirapoj B, Witoon R, Ruangkanchanasetr P, Wantanasiri P, Charoenpitakchai M, Choovichian P. Urine periostin as a biomarker of renal injury in chronic allograft nephropathy. Transplant Proc 2014; 46(1): 135-40.
[http://dx.doi.org/10.1016/j.transproceed.2013.07.069] [PMID: 24507039]
[46]
Wada T, Furuichi K, Sakai N, et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int 2000; 58(4): 1492-9.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00311.x] [PMID: 11012884]
[47]
Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int 2000; 58(2): 684-90.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00214.x] [PMID: 10916091]
[48]
Morii T, Fujita H, Narita T, et al. Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J Diabetes Complications 2003; 17(1): 11-5.
[http://dx.doi.org/10.1016/S1056-8727(02)00176-9] [PMID: 12505750]
[49]
Ichimura T, Bonventre JV, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 1998; 273(7): 4135-42.
[http://dx.doi.org/10.1074/jbc.273.7.4135] [PMID: 9461608]
[50]
Waanders F, van Timmeren MM, Stegeman CA, Bakker SJ, van Goor H. Kidney injury molecule-1 in renal disease. J Pathol 2010; 220(1): 7-16.
[http://dx.doi.org/10.1002/path.2642]
[51]
Silberstein E, Dveksler G, Kaplan GG. Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1. J Virol 2001; 75(2): 717-25.
[http://dx.doi.org/10.1128/JVI.75.2.717-725.2001] [PMID: 11134285]
[52]
Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK, Umetsu DT. The costimulatory role of TIM molecules. Immunol Rev 2009; 229(1): 259-70.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00772.x] [PMID: 19426227]
[53]
Benli E, Ayyildiz SN, Cirrik S, Noyan T, Ayyildiz A, Cirakoglu A. Early term effect of ureterorenoscopy (URS) on the Kidney: research measuring NGAL, KIM-1, FABP and CYS C levels in urine. Int Braz J Urol 2017; 43(5): 887-95.
[http://dx.doi.org/10.1590/s1677-5538.ibju.2016.0638] [PMID: 28792192]
[54]
Peralta CA, Katz R, Bonventre JV, et al. Associations of urinary levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) with kidney function decline in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis 2012; 60(6): 904-11.
[http://dx.doi.org/10.1053/j.ajkd.2012.05.014] [PMID: 22749388]
[55]
Bhavsar NA, Köttgen A, Coresh J, Astor BC. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) as predictors of incident CKD stage 3: The Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis 2012; 60(2): 233-40.
[http://dx.doi.org/10.1053/j.ajkd.2012.02.336] [PMID: 22542304]
[56]
van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJL, van Goor H, Stegeman CA. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 2007; 212(2): 209-17.
[http://dx.doi.org/10.1002/path.2175] [PMID: 17471468]
[57]
Ichimura T, Brooks CR, Bonventre JV. Kim-1/Tim-1 and immune cells: Shifting sands. Kidney Int 2012; 81(9): 809-11.
[http://dx.doi.org/10.1038/ki.2012.11] [PMID: 22499138]
[58]
Ichimura T, Asseldonk EJP, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 2008; 118(5): 1657-68.
[http://dx.doi.org/10.1172/JCI34487] [PMID: 18414680]
[59]
Bonventre JV. Kidney injury molecule-1 (KIM-1): A urinary biomarker and much more. Nephrol Dial Transplant 2009; 24(11): 3265-8.
[http://dx.doi.org/10.1093/ndt/gfp010] [PMID: 19318357]
[60]
Ismail OZ, Zhang X, Wei J, et al. Kidney injury molecule-1 protects against Gα12 activation and tissue damage in renal ischemia-reperfusion injury. Am J Pathol 2015; 185(5): 1207-15.
[http://dx.doi.org/10.1016/j.ajpath.2015.02.003] [PMID: 25759266]
[61]
Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000; 407(6805): 784-8.
[http://dx.doi.org/10.1038/35037722] [PMID: 11048729]
[62]
Bangstad HJ, Seljeflot I, Berg TJ, Hanssen KF. Renal tubulointerstitial expansion is associated with endothelial dysfunction and inflammation in type 1 diabetes. Scand J Clin Lab Invest 2009; 69(1): 138-44.
[http://dx.doi.org/10.1080/00365510802444080] [PMID: 18846477]
[63]
Vaidya VS, Ozer JS, Dieterle F, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 2010; 28(5): 478-85.
[http://dx.doi.org/10.1038/nbt.1623] [PMID: 20458318]
[64]
Vaidya VS, Niewczas MA, Ficociello LH, et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase. Kidney Int 2011; 79(4): 464-70.
[http://dx.doi.org/10.1038/ki.2010.404] [PMID: 20980978]
[65]
Hamideh D, Raj V, Harrington T, et al. Albuminuria correlates with hemolysis and NAG and KIM-1 in patients with sickle cell anemia. Pediatr Nephrol 2014; 29(10): 1997-2003.
[http://dx.doi.org/10.1007/s00467-014-2821-8] [PMID: 24890337]
[66]
Nielsen SE, Schjoedt KJ, Astrup AS, et al. Neutrophil Gelatinase-Associated Lipocalin (NGAL) and kidney injury molecule 1 (KIM1) in patients with diabetic nephropathy: A cross-sectional study and the effects of lisinopril. Diabet Med 2010; 27(10): 1144-50.
[http://dx.doi.org/10.1111/j.1464-5491.2010.03083.x] [PMID: 20854382]
[67]
Sundaram N, Bennett M, Wilhelm J, et al. Biomarkers for early detection of sickle nephropathy. Am J Hematol 2011; 86(7): 559-66.
[http://dx.doi.org/10.1002/ajh.22045] [PMID: 21630304]
[68]
Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int 2002; 62(1): 237-44.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00433.x] [PMID: 12081583]
[69]
Sabbisetti VS, Waikar SS, Antoine DJ, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol 2014; 25(10): 2177-86.
[http://dx.doi.org/10.1681/ASN.2013070758] [PMID: 24904085]
[70]
Sabbisetti VS, Ito K, Wang C, Yang L, Mefferd SC, Bonventre JV. Novel assays for detection of urinary KIM-1 in mouse models of kidney injury. Toxicol Sci 2013; 131(1): 13-25.
[http://dx.doi.org/10.1093/toxsci/kfs268] [PMID: 23019274]
[71]
Luo Q, Chen M, Sun F, et al. KIM-1 and NGAL as biomarkers of nephrotoxicity induced by gentamicin in rats. Mol Cell Biochem 2014; 397(1-2): 53-60.
[http://dx.doi.org/10.1007/s11010-014-2171-7] [PMID: 25087119]
[72]
Humphreys BD, Xu F, Sabbisetti V, et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 2013; 123(9): 4023-35.
[http://dx.doi.org/10.1172/JCI45361] [PMID: 23979159]
[73]
Nozaki Y, Kinoshita K, Yano T, et al. Estimation of kidney injury molecule-1 (Kim-1) in patients with lupus nephritis. Lupus 2014; 23(8): 769-77.
[http://dx.doi.org/10.1177/0961203314526292] [PMID: 24598218]
[74]
van Timmeren MM, Vaidya VS, van Ree RM, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation 2007; 84(12): 1625-30.
[http://dx.doi.org/10.1097/01.tp.0000295982.78039.ef] [PMID: 18165774]
[75]
Abulezz S. KIM-1 expression in kidney allograft biopsies: Improving the gold standard. Kidney Int 2008; 73(5): 522-3.
[http://dx.doi.org/10.1038/sj.ki.5002772] [PMID: 18274540]
[76]
Malyszko J, Koc-Zorawska E, Malyszko JS, Mysliwiec M. Kidney injury molecule-1 correlates with kidney function in renal allograft recipients. Transplant Proc 2010; 42(10): 3957-9.
[http://dx.doi.org/10.1016/j.transproceed.2010.10.005] [PMID: 21168598]
[77]
Zhang PL, Rothblum LI, Han WK, Blasick TM, Potdar S, Bonventre JV. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int 2008; 73(5): 608-14.
[http://dx.doi.org/10.1038/sj.ki.5002697] [PMID: 18160964]
[78]
Nogare A, Dalpiaz T, Veronese F, Gonçalves L, Manfro R. Noninvasive analyses of kidney injury molecule-1 messenger RNA in kidney transplant recipients with graft dysfunction. Transplant Proc 2012; 44(8): 2297-9.
[http://dx.doi.org/10.1016/j.transproceed.2012.07.047] [PMID: 23026578]
[79]
Nogare AL, Veronese FV, Carpio VN, et al. Kidney injury molecule-1 expression in human kidney transplants with interstitial fibrosis and tubular atrophy. BMC Nephrol 2015; 16(1): 19.
[http://dx.doi.org/10.1186/s12882-015-0011-y] [PMID: 25884518]
[80]
Song L, Xue L, Yu J, Zhao J, Zhang W, Fu Y. Kidney injury molecule-1 expression is closely associated with renal allograft damage. Bosn J Basic Med Sci 2013; 13(3): 170-4.
[http://dx.doi.org/10.17305/bjbms.2013.2357] [PMID: 23988168]
[81]
Schröppel B, Krüger B, Walsh L, et al. Tubular expression of KIM-1 does not predict delayed function after transplantation. J Am Soc Nephrol 2010; 21(3): 536-42.
[http://dx.doi.org/10.1681/ASN.2009040390] [PMID: 20019169]
[82]
Morrissey JJ, London AN, Lambert MC, Kharasch ED. Sensitivity and specificity of urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 for the diagnosis of renal cell carcinoma. Am J Nephrol 2011; 34(5): 391-8.
[http://dx.doi.org/10.1159/000330851] [PMID: 21912102]
[83]
Shalabi A, Abassi Z, Awad H, et al. Urinary NGAL and KIM-1: Potential association with histopathologic features in patients with renal cell carcinoma. World J Urol 2013; 31(6): 1541-5.
[http://dx.doi.org/10.1007/s00345-013-1043-1] [PMID: 23430218]
[84]
Betz BB, Jenks SJ, Cronshaw AD, et al. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. Kidney Int 2016; 89(5): 1125-35.
[http://dx.doi.org/10.1016/j.kint.2016.01.015] [PMID: 27083286]
[85]
Tian L, Tesch G, Nikolic-Paterson D. Establishing equivalent diabetes in male and female nos3 deficient mice results in similar onset of diabetic kidney disease. Physiol Rep 2019; 4(7): S287.
[86]
Kaul A, Behera MA, Rai MK, et al. Neutrophil gelatinase-associated lipocalin: As a predictor of early diabetic nephropathy in Type 2 diabetes mellitus. Indian J Nephrol 2018; 28(1): 53-60.
[http://dx.doi.org/10.4103/ijn.IJN_96_17] [PMID: 29515302]
[87]
El-Ashmawy NE, El-Zamarany EA, Khedr NF, Abd El-Fattah AI, Eltoukhy SA. Kidney injury molecule-1 (Kim-1): An early biomarker for nephropathy in type II diabetic patients. Int J Diabetes Dev Ctries 2015; 35(S3): 431-8.
[http://dx.doi.org/10.1007/s13410-015-0403-3]
[88]
Hosohata K, Ando H, Takeshita Y, et al. Urinary Kim-1 is a sensitive biomarker for the early stage of diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty rats. Diab Vasc Dis Res 2014; 11(4): 243-50.
[http://dx.doi.org/10.1177/1479164114531299] [PMID: 24821754]
[89]
Khan FA, Fatima SS, Khan GM, Shahid S. Evaluation of kidney injury molecule-1 as a disease progression biomarker in diabetic nephropathy. Pak J Med Sci 2019; 35(4): 992-6.
[PMID: 31372130]
[90]
El-Attar H, Khalil G, Gaber E. Human Kidney Injury Molecule-1 (Kim-1) level as an early marker for diabetic nephropathy in egyptian type 2 diabetic patients. Journal of Renal Medicine 2017; 1(1): 3.
[91]
Siddiqui K, Joy SS, Al-Rubeaan K. Association of urinary monocyte chemoattractant protein-1 (MCP-1) and kidney injury molecule-1 (KIM-1) with risk factors of diabetic kidney disease in type 2 diabetes patients. Int Urol Nephrol 2019; 51(8): 1379-86.
[http://dx.doi.org/10.1007/s11255-019-02201-6] [PMID: 31250339]
[92]
Khot V, Yadav KJ. Prediction of renal injury risk by expressions of KIM-1 and NGAL in Type 2 Diabetic Nephropathy. J Adv Med Med Res 2016; 17(9): 1-8.
[93]
Satirapoj B, Pooluea P, Nata N, Supasyndh O. Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy: A prospective cohort study. J Diabetes Complications 2019; 33(9): 675-81.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.05.013] [PMID: 31227289]
[94]
Hwang S, Lee EJ, Jang HR, Lee JE, Huh W, Kim Y-G, et al. MP333 the tissue expressions of tubular injury marker, ngal and KIM-1. Nephrology Dialysis Transplantation 2017; 32(S3): iii548.
[http://dx.doi.org/10.1093/ndt/gfx169.MP333]
[95]
de Carvalho JAM, Tatsch E, Hausen BS, et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin Biochem 2016; 49(3): 232-6.
[http://dx.doi.org/10.1016/j.clinbiochem.2015.10.016] [PMID: 26519090]
[96]
Nowak N, Skupien J, Niewczas MA, et al. Increased plasma kidney injury molecule-1 suggests early progressive renal decline in non-proteinuric patients with type 1 diabetes. Kidney Int 2016; 89(2): 459-67.
[http://dx.doi.org/10.1038/ki.2015.314] [PMID: 26509588]
[97]
Panduru NM, Sandholm N, Forsblom C, et al. Kidney injury molecule-1 and the loss of kidney function in diabetic nephropathy: a likely causal link in patients with type 1 diabetes. Diabetes Care 2015; 38(6): 1130-7.
[http://dx.doi.org/10.2337/dc14-2330] [PMID: 25784666]
[98]
Ghasemi H, Einollahi B, Kheiripour N, Hosseini-Zijoud S-R, Farhadian Nezhad M. Protective effects of curcumin on diabetic nephropathy via attenuation of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression and alleviation of oxidative stress in rats with type 1 diabetes. Iran J Basic Med Sci 2019; 22(4): 376-83.
[PMID: 31168341]
[99]
Oraby MA, El-Yamany MF, Safar MM, Assaf N, Ghoneim HA. Dapagliflozin attenuates early markers of diabetic nephropathy in fructose-streptozotocin-induced diabetes in rats. Biomed Pharmacother 2019; 109: 910-20.
[http://dx.doi.org/10.1016/j.biopha.2018.10.100] [PMID: 30551545]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy