Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Flexible Electronics for Individuals: Epitomized Survey

Author(s): Smita Wagholikar* and Preeti Mulay*

Volume 18, Issue 3, 2024

Published on: 27 April, 2023

Article ID: e270323215015 Pages: 9

DOI: 10.2174/1872212118666230327152622

Price: $65

Abstract

The current scenario reveals a growing demand for foldable and flexible materials that are well-suited for curved screen surfaces in wearable devices and acclimatize with the environment. The development of eco-designed electronic devices for energy storage, optoelectronics and more applications employing biopolymers or carbon-based substrates was preferred on account of being economical and readily available. The present study explores the recent trends in flexible, transient and green electronics engaging biopolymers like cellulose, chitosan, silk, paper and others to substitute silicon-based electronics. Nanoparticles blended with eco-friendly substrates, nanofibers and nano-sized natural polymers are observed to receive attention in soft electronics and robotics. The study mentions recent patents in this sector and the analysis based on the SCOPUS database highlights the leading authors, countries and keywords which are widely used in this research.

Graphical Abstract

[1]
Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang, Z. Dai, K. Ji, H. Jiang, X. Chen, and Y. Long, "Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics", Adv. Funct. Mater., vol. 29, no. 1, p. 1806220, 2019.
[http://dx.doi.org/10.1002/adfm.201806220]
[2]
A. Ehsani, H. Parsimehr, H. Nourmohammadi, R. Safari, and S. Doostikhah, "Environment- friendly electrodes using biopolymer chitosan/poly ortho aminophenol with enhanced electrochemical behavior for use in energy storage devices", Polym. Compos., vol. 40, no. 12, pp. 4629-4637, 2019.
[http://dx.doi.org/10.1002/pc.25330]
[3]
Z. Peng, Y. Zou, S. Xu, W. Zhong, and W. Yang, "High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels", ACS Appl. Mater. Interfaces, vol. 10, no. 26, pp. 22190-22200, 2018.
[http://dx.doi.org/10.1021/acsami.8b05171] [PMID: 29882652]
[4]
R. Zamora-Sequeira, I. Ardao, R. Starbird, and C.A. García-González, "Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications", Carbohydr. Polym., vol. 189, pp. 304-312, 2018.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.040] [PMID: 29580413]
[5]
E. Vargun, K. Ozaltin, H. Fei, E. Harea, J. Vil, J. Vilčáková, N. Kazantseva, and PJ. Saha, "Biodegradable porous polylactic acid film as a separator for supercapacitors", J. Appl. Polym. Sci., vol. 137, no. 42, p. 49270, 2020.
[http://dx.doi.org/10.1002/app.49270]
[6]
H. Tao, S.W. Hwang, B. Marelli, B. An, J.E. Moreau, M. Yang, M.A. Brenckle, S. Kim, D.L. Kaplan, J.A. Rogers, and F.G. Omenetto, "Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement", Proc. Natl. Acad. Sci. USA, vol. 111, no. 49, pp. 17385-17389, 2014.
[http://dx.doi.org/10.1073/pnas.1407743111] [PMID: 25422476]
[7]
S. B Aziz, A. S Marf, E.M.A. Dannoun, M.A. Brza, and R.M. Abdullah, "The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes", Polymers, vol. 12, no. 10, p. 2184, 2020.
[http://dx.doi.org/10.3390/polym12102184] [PMID: 32987807]
[8]
R. Li, L. Wang, D. Kong, and L. Yin, "Recent progress on biodegradable materials and transient electronics", Bioact. Mater., vol. 3, no. 3, pp. 322-333, 2018.
[http://dx.doi.org/10.1016/j.bioactmat.2017.12.001] [PMID: 29744469]
[9]
A.A. Menazea, and M.K. Ahmed, "Wound healing activity of Chitosan/Polyvinyl Alcohol embedded by gold nanoparticles prepared by nanosecond laser ablation", J. Mol. Struct., vol. 1217, p. 128401, 2020.
[http://dx.doi.org/10.1016/j.molstruc.2020.128401]
[10]
S.V. Costa, P. Pingel, S. Janietz, and A.F. Nogueira, "Inverted organic solar cells using nanocellulose as substrate", J. Appl. Polym. Sci., vol. 133, no. 28, 2016.
[http://dx.doi.org/10.1002/app.43679]
[11]
M. Irimia-Vladu, "“Green” electronics: biodegradable and biocompatible materials and devices for sustainable future", Chem. Soc. Rev., vol. 43, no. 2, pp. 588-610, 2014.
[http://dx.doi.org/10.1039/C3CS60235D] [PMID: 24121237]
[12]
H. Zhu, Z. Fang, C. Preston, Y. Li, and L. Hu, "Transparent paper: Fabrications, properties, and device applications", Energy Environ. Sci., vol. 7, no. 1, pp. 269-287, 2014.
[http://dx.doi.org/10.1039/C3EE43024C]
[13]
Y. Jung, J. Min, J. Choi, J. Bang, S. Jeong, K.R. Pyun, J. Ahn, Y. Cho, S. Hong, S. Hong, J. Lee, and S.H. Ko, "Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring", Appl. Mater. Today, vol. 29, p. 101589, 2022.
[http://dx.doi.org/10.1016/j.apmt.2022.101589]
[14]
H. Zhu, F. Shen, W. Luo, S. Zhu, M. Zhao, B. Natarajan, J. Dai, L. Zhou, X. Ji, R.S. Yassar, T. Li, and L. Hu, "Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries", Nano Energy, vol. 33, pp. 37-44, 2017.
[http://dx.doi.org/10.1016/j.nanoen.2017.01.021]
[15]
S. Cao, P. Liu, M. Miao, J. Fang, and X. Feng, "TEMPO- oxidized nanofibrillated cellulose assisted exfoliation of MoS2/graphene composites for flexible paper- anodes", Chem. Asian J., vol. 17, no. 14, p. 202200257, 2022.
[16]
J.K. Kim, D.H. Kim, S.H. Joo, B. Choi, A. Cha, K.M. Kim, T.H. Kwon, S.K. Kwak, S.J. Kang, and J. Jin, "Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries", ACS Nano, vol. 11, no. 6, pp. 6114-6121, 2017.
[http://dx.doi.org/10.1021/acsnano.7b02085] [PMID: 28505417]
[17]
C.C. Satam, C.W. Irvin, A.W. Lang, J.C.R. Jallorina, M.L. Shofner, J.R. Reynolds, and J.C. Meredith, "Spray-coated multilayer cellulose nanocrystal-chitin nanofiber films for barrier applications", ACS Sustain. Chem.& Eng., vol. 6, no. 8, pp. 10637-10644, 2018.
[http://dx.doi.org/10.1021/acssuschemeng.8b01536]
[18]
J. Yang, H. Xie, H. Chen, Z. Shi, T. Wu, Q. Yang, and C. Xiong, "Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca 2+", J. Mater. Chem. A Mater. Energy Sustain., vol. 6, no. 4, pp. 1403-1411, 2018.
[http://dx.doi.org/10.1039/C7TA08188J]
[19]
X. Li, M. Li, J. Xu, J. You, Z. Yang, and C. Li, "Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation", Nat. Commun., vol. 10, no. 1, p. 3514, 2019.
[http://dx.doi.org/10.1038/s41467-019-11466-5] [PMID: 31383861]
[20]
A. Hashim, and Q. Hadi, "Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors", J. Mater. Sci. Mater. Electron., vol. 29, no. 13, pp. 11598-11604, 2018.
[http://dx.doi.org/10.1007/s10854-018-9257-z]
[21]
K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, A.R. Polu, D. Ponnamma, M.A-A. AlMaadeed, and K. Chidambaram, "Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications", J. Mater. Sci. Mater. Electron., vol. 28, no. 1, pp. 973-986, 2017.
[http://dx.doi.org/10.1007/s10854-016-5616-9]
[22]
Y. Kuang, C. Chen, J. Cheng, G. Pastel, T. Li, J. Song, F. Jiang, Y. Li, Y. Zhang, S-H. Jang, G. Chen, T. Li, and L. Hu, "Selectively aligned cellulose nanofibers towards high-performance soft actuators", Extreme Mech. Lett., vol. 29, p. 100463, 2019.
[http://dx.doi.org/10.1016/j.eml.2019.100463]
[23]
H. Yang, Y. Liu, L. Kong, L. Kang, and F. Ran, "Biopolymer-based carboxylated chitosan hydrogel film crosslinked by HCl as gel polymer electrolyte for all-solid-sate supercapacitors", J. Power Sources, vol. 426, pp. 47-54, 2019.
[http://dx.doi.org/10.1016/j.jpowsour.2019.04.023]
[24]
Y.A. Salman, O.G. Abdullah, R.R. Hanna, and S.B. Aziz, "Conductivity and electrical properties of chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate", Int. J. Electrochem. Sci., vol. 13, no. 4, pp. 3185-3199, 2018.
[http://dx.doi.org/10.20964/2018.04.25]
[25]
J.M. Hadi, S.B. Aziz, M.M. Nofal, S.A. Hussen, M.H. Hamsan, M.A. Brza, R.T. Abdulwahid, M.F.Z. Kadir, and H.J. Woo, "Electrical, dielectric property and electrochemical performances of plasticized silver ion-conducting chitosan-based polymer nanocomposites", Membranes, vol. 10, no. 7, p. 151, 2020.
[http://dx.doi.org/10.3390/membranes10070151] [PMID: 32668644]
[26]
G. Feng, Y. Zhao, and J. Jiang, "Lightweight flexible indium-free oxide TFTs with AND logic function employing chitosan biopolymer as self-supporting layer", Solid-State Electron., vol. 153, pp. 16-22, 2019.
[http://dx.doi.org/10.1016/j.sse.2018.12.015]
[27]
J. Ye, Y. Cheng, L. Sun, M. Ding, C. Wu, D. Yuan, X. Zhao, C. Xiang, and C. Jia, "A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery", J. Membr. Sci., vol. 572, pp. 110-118, 2019.
[http://dx.doi.org/10.1016/j.memsci.2018.11.009]
[28]
C. Qian, J. Sun, J. Yang, and Y. Gao, "Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics", RSC Adv., vol. 5, no. 19, pp. 14567-14574, 2015.
[http://dx.doi.org/10.1039/C4RA13240H]
[29]
R.S. Aga, J.P. Lombardi, C.M. Bartsch, and E.M. Heckman, "Performance of a printed photodetector on a paper substrate", IEEE Photonics Technol. Lett., vol. 26, no. 3, pp. 305-308, 2014.
[http://dx.doi.org/10.1109/LPT.2013.2292830]
[30]
L. Qin, Q. Tao, L. Liu, J. Jiang, X. Liu, M. Fahlman, L. Hou, J. Rosen, and F. Zhang, "Flexible solid- state asymmetric supercapacitors with enhanced performance enabled by free- standing mxene−biopolymer nanocomposites and hierarchical Graphene−RuOx paper electrodes", Batter. Supercaps, vol. 3, no. 7, pp. 604-610, 2020.
[http://dx.doi.org/10.1002/batt.202000044]
[31]
M.J. Park, and J.S. Lee, "Foldable and biodegradable energy-storage devices on copy papers", Adv. Electron. Mater., vol. 5, no. 1, p. 1800411, 2019.
[http://dx.doi.org/10.1002/aelm.201800411]
[32]
M.G. Say, I. Sahalianov, R. Brooke, L. Migliaccio, E.D. Głowacki, M. Berggren, M.J. Donahue, and I. Engquist, "Ultrathin paper microsupercapacitors for electronic skin applications", Adv. Mater. Technol., vol. 7, no. 8, p. 2101420, 2022.
[http://dx.doi.org/10.1002/admt.202101420]
[33]
B. Kulyk, M. Matos, B.F.R. Silva, A.F. Carvalho, A.J.S. Fernandes, D.V. Evtuguin, E. Fortunato, and F.M. Costa, "Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors", Diamond Related Materials, vol. 123, p. 108855, 2022.
[http://dx.doi.org/10.1016/j.diamond.2022.108855]
[34]
B.W. Du, S.Y. Hu, R. Singh, T.T. Tsai, C.C. Lin, and F.H. Ko, "Eco-friendly and biodegradable biopolymer chitosan/Y2O3 composite materials in flexible organic thin-film transistors", Materials, vol. 10, no. 9, p. 1026, 2017.
[http://dx.doi.org/10.3390/ma10091026] [PMID: 28869517]
[35]
A.C.C. Arantes, L.E. Silva, D.F. Wood, C.G. Almeida, G.H.D. Tonoli, J.E. Oliveira, J.P. Silva, T.G. Williams, W.J. Orts, and M.L. Bianchi, "Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics", Carbohydr. Polym., vol. 207, pp. 100-107, 2019.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.081] [PMID: 30599989]
[36]
M. Cocchi, M. Bertoldo, M. Seri, P. Maccagnani, C. Summonte, S. Buoso, G. Belletti, F. Dinelli, and R. Capelli, "Fully recyclable oleds built on a flexible biopolymer substrate", ACS Sustain. Chem. Eng., vol. 9, no. 38, pp. 12733-12737, 2021.
[http://dx.doi.org/10.1021/acssuschemeng.1c03374]
[37]
A. Dolatshahi-Pirouz, F.B. Kadumudi, and M. Mehrali, "Protein-based water insoluble and bendable polymer with ionic conductivity", U.S. Patent 11427709, 2022.
[38]
L. Hu, M. Zhu, T. Li, A.S. Gong, and S.O.N.G. Jianwei, "Transparent wood composite, systems and method of fabrication", U.S. Patent Application No. 16/074,148, 2021.
[39]
V.K. Yadavalli, and R.K. Pal, "Flexible, biodegradable, and biocompatible supercapacitors", U.S. Patent No. 10,655,024, 2020.
[40]
J.A. Rogers, S.W. Hwang, and X. Huang, "Processing techniques for silicon-based transient devices", US Patent20180286820, 2018.
[41]
F. Omenetto, D.L. Kaplan, and J. Amsden, "Silk transistor devices", U.S. Patent 20140093902, 2014.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy