Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

A Mini-review on Recent Advances in Synthesis of Dihydropyrano [3, 2-c] Chromenes using Magnetic Nanocatalysts

Author(s): Diksha B. Wahul and Santosh S. Katkar*

Volume 21, Issue 1, 2024

Published on: 01 June, 2023

Page: [20 - 36] Pages: 17

DOI: 10.2174/1570179420666230327144202

Price: $65

Abstract

The development of an active, selective, and long-term selective catalyst for the synthesis of biologically active heterocycles is still challenging. However, magnetic nanocatalysts have divergent applications like high efficiency, selectivity, consumption, and reusability. The current review explores a detailed survey of the latest information on synthetic methods of Pyrano [3, 2-c] chromene derivatives using different magnetic nanocatalysts. Numerous studies on the synthesis of these practical compounds have been stimulated by the special qualities and wide-ranging applications of pyrano coumarins and the nanoparticles were tested for their catalytic effectiveness in a one-pot, three-component reaction involving aldehydes, malononitrile, and 4-hydroxycoumarin for the synthesis of dihydropyrano [3, 2-c] chromenes (coumarins).

Graphical Abstract

[1]
Wohlgemuth, R. The locks and keys to industrial biotechnology. N. Biotechnol., 2009, 25(4), 204-213.
[http://dx.doi.org/10.1016/j.nbt.2009.01.002] [PMID: 19429540]
[2]
Butyl-3-Methylimidazolium Bromide as a Green and Neutral Reaction Media for Catalyst Free Synt. J. Chem. Chem. Sci., 2017, 7(11), 942-946.
[3]
Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[4]
Saranya, S.; Aneeja, T.; Neetha, M.; Anilkumar, G. Recent advances in the iron‐catalysed multicomponent reactions. Appl. Organomet. Chem., 2020, 34(12), 1-22.
[http://dx.doi.org/10.1002/aoc.5991]
[5]
Das, S. Recent applications of ninhydrin in multicomponent reactions. RSC Advances, 2020, 10(32), 18875-18906.
[http://dx.doi.org/10.1039/D0RA02930K] [PMID: 35518326]
[6]
Nikoorazm, M.; Mohammadi, M.; Khanmoradi, M. Zirconium@guanine@MCM‐41 nanoparticles: An efficient heterogeneous mesoporous nanocatalyst for one‐pot, multi‐component tandem Knoevenagel condensation–Michael addition–cyclization Reactions. Appl. Organomet. Chem., 2020, 34(8), 1-20.
[http://dx.doi.org/10.1002/aoc.5704]
[7]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[8]
Nikoorazm, M.; Tahmasbi, B.; Gholami, S.; Moradi, P. Copper and nickel immobilized on cytosine@MCM‐41: As highly efficient, reusable and organic–inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Appl. Organomet. Chem., 2020, 34(11), 1-20.
[http://dx.doi.org/10.1002/aoc.5919]
[9]
Ghorbani-Choghamarani, A.; Tahmasbi, B.; Hudson, R.H.E.; Heidari, A. Supported Organometallic Palladium Catalyst into Mesoporous Channels of Magnetic MCM-41 Nanoparticles for Phosphine-Free C–C Coupling Reactions. Microporous Mesoporous Mater., 2018, 2019(284), 366-377.
[10]
Ghorbani-Choghamarani, A.; Tahmasbi, B.; Moradi, Z. S- Benzylisothiourea complex of palladium on magnetic nanoparticles: A highly efficient and reusable nanocatalyst for synthesis of polyhydroquinolines and Suzuki reaction. Appl. Organomet. Chem., 2017, 31(8), e3665.
[http://dx.doi.org/10.1002/aoc.3665]
[11]
Ghorbani-Choghamarani, A.; Zolfigol, M.A.; Hajjami, M.; Goudarziafshar, H.; Nikoorazm, M.; Yousefi, S.; Tahmasbi, B. Nano aluminium nitride as a solid source of ammonia for the preparation of hantzsch 1,4-dihydropyridines and bis-(1,4-dihydropyridines) in water via one pot multicomponent reaction. J. Braz. Chem. Soc., 2011, 22(3), 525-531.
[http://dx.doi.org/10.1590/S0103-50532011000300016]
[12]
Deng, Q.; Shen, Y.; Zhu, H.; Tu, T. A magnetic nanoparticle-supported N-heterocyclic carbene-palladacycle: An efficient and recyclable solid molecular catalyst for Suzuki–Miyaura cross-coupling of 9-chloroacridine. Chem. Commun., 2017, 53(97), 13063-13066.
[http://dx.doi.org/10.1039/C7CC06958H] [PMID: 29165443]
[13]
Zhang, M.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun., 2017, 88, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2016.09.028]
[14]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem., 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[15]
Gao, G.; Di, J.Q.; Zhang, H.Y.; Mo, L.P.; Zhang, Z.H. A magnetic metal organic framework material as a highly efficient and recyclable catalyst for synthesis of cyclohexenone derivatives. J. Catal., 2020, 387, 39-46.
[http://dx.doi.org/10.1016/j.jcat.2020.04.013]
[16]
Madhu, G.; Sudhakar, M.; Santosh Kumar, K.; Rajashekher Reddy, G.; Sravani, A.; Ramakrishna, K.; Prasad Rao, C. Synthesis of pyrazole-substituted chromene analogues with selective anti-leukemic activity. Russ. J. Gen. Chem., 2017, 87(10), 2421-2428.
[http://dx.doi.org/10.1134/S1070363217100243]
[17]
Ghorbani-Choghamarani, A.; Moradi, P.; Tahmasbi, B. Ni–S-methylisothiourea complexes supported on boehmite nanoparticles and their application in the synthesis of 5-substituted tetrazoles. RSC Advances, 2016, 6(61), 56638-56646.
[http://dx.doi.org/10.1039/C6RA08026J]
[18]
Shiri, L.; Tahmasbi, B. Tribromide ion immobilized on magnetic nanoparticles as an efficient catalyst for the rapid and chemoselective oxidation of sulfides to sulfoxides. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(1), 53-57.
[http://dx.doi.org/10.1080/10426507.2016.1224878]
[19]
Moradi, P.; Hajjami, M. Magnetization of graphene oxide nanosheets using nickel magnetic nanoparticles as a novel support for the fabrication of copper as a practical, selective, and reusable nanocatalyst in C–C and C–O coupling reactions. RSC Advances, 2021, 11(42), 25867-25879.
[http://dx.doi.org/10.1039/D1RA03578A] [PMID: 35479448]
[20]
Nikoorazm, M.; Moradi, P.; Noori, N.; Azadi, G. l-Arginine complex of copper on modified core–shell magnetic nanoparticles as reusable and organic–inorganic hybrid nanocatalyst for the chemoselective oxidation of organosulfur compounds. J. Indian Chem. Soc., 2021, 18(2), 467-478.
[http://dx.doi.org/10.1007/s13738-020-02040-8]
[21]
Saha, M.; Pal, A.K. Palladium (0) nanoparticles: A novel and reusable catalyst for the synthesis of various pyran derivatives. Adv. Nanopart., 2012, 1(3), 61-70.
[http://dx.doi.org/10.4236/anp.2012.13009]
[22]
Ali, T.E.S.; Ibrahim, M.A.; El-Gohary, N.M.; El-Kazak, A.M. 3-Formylchromones as diverse building blocks in heterocycles synthesis. Eur. J. Chem., 2013, 4(3), 311-328.
[http://dx.doi.org/10.5155/eurjchem.4.3.311-328.815]
[23]
Hlrano, M.; Kamei, H. The Journal of Antibiotics 1989, 43(7), 763-770.
[24]
Shitole, B.V.; Shitole, N.V.; Shingare, M.S.; Kakde, G.K. An efficient one pot three-component synthesis of dihydropyrano[3, 2-c] chromenes using ammonium metavanadate as catalyst. Current Chemistry Letters, 2016, 5, 137-144.
[http://dx.doi.org/10.5267/j.ccl.2016.9.001]
[25]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Nadri, H.; Vafadarnejad, F.; Amini, M. Synthesis and characterization of novel phthalimide-pyrano[3,2- c]chromene and Phthalimide-pyrano-2-one Hybrids. J. Heterocycl. Chem., 2018, 55(7), 1678-1684.
[http://dx.doi.org/10.1002/jhet.3204]
[26]
Benzekri, Z.; Serrar, H.; Boukhris, S.; Sallek, B.; Souizi, A. Snail shell as a new natural and reusable catalyst for synthesis of 4H-Pyrans derivatives. Current Chemistry Letters, 2016, 5, 99-108.
[http://dx.doi.org/10.5267/j.ccl.2016.4.001]
[27]
Castellano, S.; Santoriello, M.; Campiglia, P.; Cardillo, G.; Bertamino, A.; Gomez-Monterrey, I.; Novellino, E.; Sbardella, G. A regioselective approach toward the synthesis of pharmacologically important quinone-containing heterocyclic systems. Tetrahedron Lett., 2009, 50(49), 6869-6871.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.123]
[28]
Montaghami, A.; Montazeri, N. An efficient method for the one-pot, three-component synthesis of 3,4-dihydropyrano[c]chromenes Catalyzed by nano Al2O3. Orient. J. Chem., 2014, 30(3), 1361-1364.
[http://dx.doi.org/10.13005/ojc/300355]
[29]
Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28(6), 517-520.
[http://dx.doi.org/10.1016/0223-5234(93)90020-F]
[30]
Costa, M.; Dias, T.A.; Brito, A.; Proença, F. Biological importance of structurally diversified chromenes. Eur. J. Med. Chem., 2016, 123, 487-507.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.057] [PMID: 27494166]
[31]
Fokialakis, N.; Magiatis, P.; Chinou, I.; Mitaku, S.; Tillequin, F. Megistoquinones I and II, two quinoline alkaloids with antibacterial activity from the bark of Sarcomelicope megistophylla. Chem. Pharm. Bull., 2002, 50(3), 413-414.
[http://dx.doi.org/10.1248/cpb.50.413] [PMID: 11911210]
[32]
Environnement, L. Design, synthesis, structural analysis and antimalarial activity of ferroquine derivatives: Investigation of the mechanisms of action. 2009.
[33]
Núñez-Vergara, L.J.; Squella, J.A.; Navarrete-Encina, P.A.; Vicente-García, E.; Preciado, S.; Lavilla, R. Chromenopyridines: Promising scaffolds for medicinal and biological chemistry. Curr. Med. Chem., 2011, 18(31), 4761-4785.
[http://dx.doi.org/10.2174/092986711797535272] [PMID: 21919849]
[34]
Faroughi Niya, H.; Hazeri, N.; Rezaie Kahkhaie, M.; Maghsoodlou, M.T. Preparation and characterization of MNPs–PhSO3H as a heterogeneous catalyst for the synthesis of benzo[b]pyran and pyrano[3, 2-c]chromenes. Res. Chem. Intermed., 2020, 46(3), 1685-1704.
[http://dx.doi.org/10.1007/s11164-019-04056-z]
[35]
Chen, K.; He, G.; Tang, Q.; Yousif, Q.A. One-pot access to diverse functionalized pyran annulated heterocyclic systems using SCMNPs@BPy-SO3H as a novel magnetic nanocatalyst. Bull. Chem. React. Eng. Catal., 2020, 15(2), 348-366.
[http://dx.doi.org/10.9767/bcrec.15.2.6693.348-366]
[36]
Farahi, M.; Karami, B.; Keshavarz, R.; Khosravian, F. Nano-Fe 3 O 4 @SiO 2 -supported boron sulfonic acid as a novel magnetically heterogeneous catalyst for the synthesis of pyrano coumarins. RSC Advances, 2017, 7(74), 46644-46650.
[http://dx.doi.org/10.1039/C7RA08253C]
[37]
Khaleghi-Abbasabadi, M.; Azarifar, D. Magnetic Fe3O4-supported sulfonic acid-functionalized graphene oxide (Fe3O4@GO-naphthalene-SO3H): A novel and recyclable nanocatalyst for green one-pot synthesis of 5-oxo-dihydropyrano[3, 2-c]chromenes and 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3, 2-c]quinolin-5-ones. Res. Chem. Intermed., 2019, 45(4), 2095-2118.
[http://dx.doi.org/10.1007/s11164-018-03722-y]
[38]
Mohammadi, P.; Sheibani, H. Synthesis and characterization of Fe 3 O 4 @SiO 2 – guanidine-poly acrylic acid nanocatalyst and using it for one-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes in water. Mater. Chem. Phys., 2018, 2019(228), 140-146.
[39]
Lati, M.P.; Shirini, F.; Alinia-Asli, M.; Rezvani, M.A. Fe 3 O 4 @SiO 2 -Sultone: A Novel and Recyclable Magnetic Nanocatalyst for the Efficient Synthesis of 3,4 Dihydropyrano[ c]Chromenes and 2-Amino-4 H -Chromene Derivatives. J. Nanosci. Nanotechnol., 2020, 20(2), 973-982.
[http://dx.doi.org/10.1166/jnn.2020.16890] [PMID: 31383094]
[40]
Fadavipoor, E.; Badri, R.; Kiasat, A.; Sanaeishoar, H. Copper oxide nanoparticles supported on ionic liquid-modified magnetic nanoparticles: A novel magnetically recyclable catalyst for the synthesis of 3,4-dihydropyrano[c]chromene derivatives. Polycycl. Aromat. Compd., 2020, 40(4), 1084-1096.
[http://dx.doi.org/10.1080/10406638.2018.1526809]
[41]
Mohammadi, R.; Esmati, S.; Gholamhosseini-Nazari, M.; Teimuri-Mofrad, R. Novel ferrocene substituted benzimidazolium based ionic liquid immobilized on magnetite as an efficient nano-catalyst for the synthesis of pyran derivatives. J. Mol. Liq., 2019, 275, 523-534.
[http://dx.doi.org/10.1016/j.molliq.2018.11.042]
[42]
Teimuri-Mofrad, R.; Esmati, S.; Tahmasebi, S.; Gholamhosseini-Nazari, M. Bisferrocene-containing ionic liquid supported on silica coated Fe 3 O 4: A novel nanomagnetic catalyst for the synthesis of dihydropyrano[2,3- c]coumarin derivatives. J. Organomet. Chem., 2018, 870, 38-50.
[http://dx.doi.org/10.1016/j.jorganchem.2018.06.007]
[43]
Shahabi Nejad, M.; Sheibani, H. Multi-layer functionalized poly(2-vinylpyridinium) ionic liquid immobilized on magnetic nanoparticles: Highly recoverable and magnetically separable brønsted acid catalyst. Catal. Lett., 2018, 148(1), 125-133.
[http://dx.doi.org/10.1007/s10562-017-2219-x]
[44]
Ma, W.; Ebadi, A.G. sabil, M.; Javahershenas, R.; Jimenez, G. One-pot synthesis of 2-amino-4 H -chromene derivatives by MNPs@Cu as an effective and reusable magnetic nanocatalyst. RSC Advances, 2019, 9(23), 12801-12812.
[http://dx.doi.org/10.1039/C9RA01679A] [PMID: 35520803]
[45]
Kamalzare, M.; Bayat, M.; Maleki, A. Green and efficient three-component synthesis of 4H-pyran catalysed by CuFe 2 O 4 @starch as a magnetically recyclable bionanocatalyst. R. Soc. Open Sci., 2020, 7(7), 200385.
[http://dx.doi.org/10.1098/rsos.200385] [PMID: 32874634]
[46]
Ebrahimiasl, H.; Azarifar, D.; Mohammadi, M.; Keypour, H. Mahmood abadi, M. Synthesis of Fe3O4-supported Schiff base Cu (II) complex: A novel efficient and recyclable magnetic nanocatalyst for one-pot three-component synthesis of quinolin-5-one, chromene-3-carbonitrile and phthalazine-5,10-dione derivatives. Res. Chem. Intermed., 2021, 47(2), 683-707.
[http://dx.doi.org/10.1007/s11164-020-04293-7]
[47]
Gupta, A.; Jamatia, R.; Pal, A.K. Ferrite-supported glutathione: An efficient, green nano-organocatalyst for the synthesis of pyran derivatives. New J. Chem., 2015, 39(7), 5636-5642.
[http://dx.doi.org/10.1039/C5NJ00657K]
[48]
Safaiee, M.; Zolfigol, M.A.; Afsharnadery, F.; Baghery, S. Synthesis of a novel dendrimer core of oxo-vanadium phthalocyanine magnetic nano particles: As an efficient catalyst for the synthesis of 3,4-dihydropyrano[c]chromenes derivatives under green condition. RSC Advances, 2015, 5(124), 102340-102349.
[http://dx.doi.org/10.1039/C5RA18723K]
[49]
Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Nowroozi Dodeji, F. A green one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using a Fe 3 O 4 @SiO 2 –imid–PMA n magnetic nanocatalyst under ultrasonic irradiation or reflux conditions. RSC Advances, 2015, 5(34), 26625-26633.
[http://dx.doi.org/10.1039/C5RA01021G]
[50]
Gholamhosseini-Nazari, M.; Esmati, S.; Safa, K.D.; Khataee, A.; Teimuri-Mofrad, R. Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2: A novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation. Res. Chem. Intermed., 2019, 45(4), 1841-1862.
[http://dx.doi.org/10.1007/s11164-018-3704-6]
[51]
Davarpanah, J.; Kiasat, A.R.; Noorizadeh, S.; Ghahremani, M. Nano magnetic double-charged diazoniabicyclo[2.2.2]octane dichloride silica hybrid: Synthesis, characterization, and application as an efficient and reusable organic–inorganic hybrid silica with ionic liquid framework for one-pot synthesis of pyran annulated heterocyclic compounds in water. J. Mol. Catal. Chem., 2013, 376, 78-89.
[http://dx.doi.org/10.1016/j.molcata.2013.04.020]
[52]
Azizi, K.; Heydari, A. A simple, green, one-pot synthesis of magnetic-nanoparticle-supported proline without any source of supplemental linkers and application as a highly efficient base catalyst. RSC Advances, 2014, 4(13), 6508-6512.
[http://dx.doi.org/10.1039/c3ra46419a]
[53]
Khoobi, M.; Ma’mani, L.; Rezazadeh, F.; Zareie, Z.; Foroumadi, A.; Ramazani, A.; Shafiee, A. One-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes using inorganic–organic hybrid magnetic nanocatalyst in water. J. Mol. Catal. Chem., 2012, 359, 74-80.
[http://dx.doi.org/10.1016/j.molcata.2012.03.023]
[54]
Matloubi Moghaddam, F.; Eslami, M.; Hoda, G. Cysteic acid grafted to magnetic graphene oxide as a promising recoverable solid acid catalyst for the synthesis of diverse 4H-chromene. Sci. Rep., 2020, 10(1), 20968.
[http://dx.doi.org/10.1038/s41598-020-77872-8] [PMID: 33262479]
[55]
Khoobi, M.; Delshad, T.M.; Vosooghi, M.; Alipour, M.; Hamadi, H.; Alipour, E.; Hamedani, M.P. Sadat ebrahimi, S.E.; Safaei, Z.; Foroumadi, A.; Shafiee, A. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst. J. Magn. Magn. Mater., 2015, 375, 217-226.
[http://dx.doi.org/10.1016/j.jmmm.2014.09.044]
[56]
Hojati, S.F.; Amiri, A. MoeiniEghbali, N.; Mohamadi, S. Polypyrrole/Fe 3 O 4 /CNT as a recyclable and highly efficient catalyst for one-pot three-component synthesis of pyran derivatives. Appl. Organomet. Chem., 2018, 32(4), e4235.
[http://dx.doi.org/10.1002/aoc.4235]
[57]
Azarifar, D.; Badalkhani, O.; Abbasi, Y.; Hasanabadi, M. Urea-functionalized silica-coated Fe3−x Ti x O4 magnetic nanoparticles: As highly efficient and recyclable heterogeneous nanocatalyst for synthesis of 4H-chromene and 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives. J. Indian Chem. Soc., 2017, 14(2), 403-418.
[http://dx.doi.org/10.1007/s13738-016-0989-5]
[58]
Maleki, A.; Movahed, H.; Ravaghi, P.; Kari, T. Facile in situ synthesis and characterization of a novel PANI/Fe 3 O 4 /Ag nanocomposite and investigation of catalytic applications. RSC Advances, 2016, 6(101), 98777-98787.
[http://dx.doi.org/10.1039/C6RA18185F]
[59]
Azarifar, D. Tadayoni, M.; Ghaemi, M. γ-Fe 2 O 3 @Cu 3 Al-LDH-TUD as a new Amphoteric, Highly Efficient and Recyclable Heterogeneous Catalyst for the Solvent-free Synthesis of Dihydropyrano[3,2- c]pyrazoles and dihydropyrano[3,2- c]chromens. Appl. Organomet. Chem., 2018, 32(4), e4293.
[http://dx.doi.org/10.1002/aoc.4293]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy