Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Recent Advances in Metal Free Synthesis of N-unsubstituted 1,2,3-Triazoles

Author(s): Priyanuj Krishnann Hazarika, Roktopol Hazarika and Diganta Sarma*

Volume 21, Issue 1, 2024

Published on: 16 May, 2023

Page: [10 - 19] Pages: 10

DOI: 10.2174/1570179420666230322155524

Price: $65

Abstract

1, 2, 3-triazoles display enormous applications in the extensive fields of chemistry such as pharmaceuticals, ligands, conjectures, etc. Among these classes of compounds, the Nunsubstituted triazole emerges as a potent applicant for various fields of chemistry and therefore synthetic procedures for this molecular scaffold possess certain importance. Moreover, from an environmental perspective, metal-free organic synthesis gains tremendous attention as most of the metals are persistent in nature. In this review, we are going to discuss only the metal-free synthetic routes for the construction of N-unsubstituted 1,2,3-triazoles reported during the last decade.

Graphical Abstract

[1]
(a) Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075];
(b) Tron, G.C.; Pirali, T.; Billington, R.A.; Canonico, P.L.; Sorba, G.; Genazzani, A.A. Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev., 2008, 28(2), 278-308.
[http://dx.doi.org/10.1002/med.20107] [PMID: 17763363];
(c) Krivopalov, V.P.; Shkurko, O.P. 1,2,3-Triazole and its derivatives. Development of methods for the formation of the triazole ring. Russ. Chem. Rev., 2005, 74(4), 339-379.
[http://dx.doi.org/10.1070/RC2005v074n04ABEH000893];
(d) Hein, J.E.; Fokin, V.V. Copper-catalyzed azidealkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487];
(e) Decréau, R.A.; Collman, J.P.; Hosseini, A. Electrochemical applications. How click chemistry brought biomimetic models to the next level: electrocatalysis under controlled rate of electron transfer. Chem. Soc. Rev., 2010, 39(4), 1291-1301.
[http://dx.doi.org/10.1039/b901972n] [PMID: 20349534]
[2]
He, X-P.; Xie, J.; Tang, Y.; Li, J.; Chen, G-R. CuAAC click chemistry accelerates the discovery of novel chemical scaffolds as promising protein tyrosine phosphatases inhibitors. Curr. Med. Chem., 2012, 19(15), 2399-2405.
[http://dx.doi.org/10.2174/092986712800269245] [PMID: 22455590]
[3]
(a) Chabre, Y.M.; Roy, R. Curr. Top. Design and creativity in synthesis of multivalent neoglycoconjugates. Med. Chem., 2008, 8, 1237-1285.;
(b) Colombo, M.; Peretto, I. Chemistry strategies in early drug discovery: An overview of recent trends. Drug Discov. Today, 2008, 13(15-16), 677-684.
[http://dx.doi.org/10.1016/j.drudis.2008.03.007] [PMID: 18675762];
(c) Moumné, R.; Larue, V.; Seijo, B.; Lecourt, T.; Micouin, L.; Tisné, C. Tether influence on the binding properties of tRNALys3 ligands designed by a fragment-based approach. Org. Biomol. Chem., 2010, 8(5), 1154-1159.
[http://dx.doi.org/10.1039/b921232a] [PMID: 20165808]
[4]
(a) Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regiose-Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AIDANIE2596>3.0.CO;2-4] [PMID: 12203546];
(b) Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
[5]
(a) Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acidcatalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry, 2008, 14(30), 9143-9147.
[http://dx.doi.org/10.1002/chem.200801325] [PMID: 18767077];
(b) Thomas, J.; John, J.; Parekh, N.; Dehaen, W. A metal-free threecomponent reaction for the regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed., 2014, 53(38), 10155-10159.
[http://dx.doi.org/10.1002/anie.201403453] [PMID: 24989456];
(c) Ramasastry, S.S.V. Enamine/enolate-mediated organocatalytic azide–carbonyl [3+2] cycloaddition reactions for the synthesis of densely functionalized 1,2,3-triazoles. Angew. Chemie. Int. Ed., 2014, 53, 14310-14312.;
(d) Lima, C.G.S.; Ali, A.; van Berkel, S.S.; Westermann, B.; Paixão, M.W. Emerging approaches for the synthesis of triazoles: beyond metal-catalyzed and strain-promoted azide–alkyne cycloaddition. Chem. Commun., 2015, 51, 10784.;
(e) John, J.; Thomas, J.; Dehaen, W. Organocatalytic routes toward substituted 1,2,3-triazoles. Chem. Commun., 2015, 51, 10784-10796.;
(f) John, J.; Thomas, J.; Parekh, N.; Dehaen, W. Tandem organocatalyzed knoevenagel condensation/1,3-dipolar cycloaddition towards highly functionalized fused 1,2,3-triazoles. Eur. J. Org. Chem., 2015, 2015(22), 4922-4930.
[http://dx.doi.org/10.1002/ejoc.201500459];
(g) Thomas, J.; Goyvaerts, V.; Liekens, S.; Dehaen, W. Metal-free route for the synthesis of 4-acyl-1,2,3-triazoles from readily available building blocks. Chem. Eur. J., 2016, 22, 1-6.
[http://dx.doi.org/10.1002/chem.201601928]
[6]
RoHrig, U.F; Awad, L.; Grosdidier, A.; Larrieu, P.; Stroobant, V.; Colau, D.; Cerundolo, V.; Simpson, A.J.G; Vogel, P.; Van den Eynde, B.J Rational design of indoleamine 2,3-dioxygenase inhibitors. J. Med. Chem., 2010, 53, 1172-1189.
[7]
Kallander, L.S.; Lu, Q.; Chen, W.; Tomaszek, T.; Yang, G.; Tew, D.; Meek, T.D.; Hofmann, G.A.; Schulz-Pritchard, C.K.; Smith, W.W.; Janson, C.A.; Ryan, M.D.; Zhang, G.F.; Johanson, K.O.; Kirkpatrick, R.B.; Ho, T.F.; Fisher, P.W.; Mattern, M.R.; Johnson, R.K.; Hansbury, M.J.; Winkler, J.D.; Ward, K.W.; Veber, D.F.; Thompson, S.K. 4-Aryl-1,2,3-triazole: A novel template for a reversible methionine aminopeptidase 2 inhibitor, optimized to inhibit angiogenesis in vivo. J. Med. Chem., 2005, 48(18), 5644-5647.
[http://dx.doi.org/10.1021/jm050408c] [PMID: 16134930]
[8]
(a) Li, J.; Wang, D.; Zhang, Y.; Li, J.; Chen, B. A palladiumcatalyzed and ultrasonic promoted Sonogashira coupling/1,3-dipolar cycloaddition of acid chlorides, terminal acetylenes, and sodium azide in one pot enables an efficient synthesis of 4,5-disubstituted-1,2,3-(NH)-triazoles in excellent yields. Org. Lett., 2009, 11, 3024-3027.
[http://dx.doi.org/10.1021/ol901040d] [PMID: 19537825];
(b) Jin, T.; Kamijo, S.; Yamamoto, Y. Synthesis of 1-substituted tetrazoles via the acid-catalyzed [3+2] cycloaddition between isocyanides and trimethylsilyl azide. Tetrahedron Lett., 2004, 45(51), 9435-9437.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.103];
(c) Lu, L.H.; Wu, J.H.; Yang, C.H. Preparation of 1H-1,2,3-triazoles by cuprous ion mediated cycloaddition of terminal alkyne and sodium azide. J. Chin. Chem. Soc., 2008, 55(2), 414-417.
[http://dx.doi.org/10.1002/jccs.200800061]
[9]
Hu, Q.; Liu, Y.; Deng, X.; Li, Y.; Chen, Y. Aluminium(III) chloride-catalyzed three-component condensation of aromatic aldehydes, nitroalkanes and sodium azide forthe synthesis of 4-Aryl-NH-1,2,3-triazoles. Adv. Synth. Catal., 2016, 358, 1689-1693.
[http://dx.doi.org/10.1002/adsc.201600098]
[10]
(a) Payra, S.; Saha, A.; Banerjee, S. On Water Cu@g-C3N4 catalyzed synthesis of NH-1,2,3-triazoles via [2+3] cycloadditions of nitroolefins/alkynes and sodium azide. ChemCatChem, 2018, 10(23), 5468-5474.;
(b) Jin, T.; Kamijo, S.; Yamamoto, Y. Copper-catalyzed synthesis of n-unsubstituted 1,2,3-triazoles from nonactivated terminal alkynes. ARKIVOC, 2016, 5, 338-361.;
(c) Li, D.; Liu, L.; Tian, Y.; Ai, Y.; Tang, Z.; Sun, H.; Zhang, G. A flow strategy for the rapid, safe and scalable synthesis of N-H 1, 2, 3-triazoles via acetic acid mediated cycloaddition between nitroalkene and NaN3. Tetrahedron, 2017, 73(27-28), 3959-3965.
[http://dx.doi.org/10.1016/j.tet.2017.05.065]
[11]
Jewett, J.C.; Bertozzi, C.R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev., 2010, 39(4), 1272-1279.
[http://dx.doi.org/10.1039/b901970g] [PMID: 20349533]
[12]
(a) Burrows, C.J.; Muller, J.G. Oxidative nucleobase modifications leading to strand scission. Chem. Rev., 1998, 98(3), 1109-1152.
[http://dx.doi.org/10.1021/cr960421s] [PMID: 11848927];
(b) Speers, A.E.; Adam, G.C.; Cravatt, B.F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc., 2003, 125(16), 4686-4687.
[http://dx.doi.org/10.1021/ja034490h] [PMID: 12696868];
(c) Anjos, V.A.; da Silva-Júnior, F.M.R.; Souza, M.M. Cell damage induced by copper: An explant model to study anemone cells. Toxicol. In Vitro, 2014, 28(3), 365-372.
[http://dx.doi.org/10.1016/j.tiv.2013.11.013] [PMID: 24325972]
[13]
Chai, H.; Guo, R.; Yin, W.; Cheng, L.; Liu, R.; Chu, C. One-pot, three-component reaction using modified Julia reagents: A facile synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles in a wet organic solvent. ACS Comb. Sci., 2015, 17(3), 147-151.
[http://dx.doi.org/10.1021/co5001597] [PMID: 25629450]
[14]
Wu, L.; Wang, X.; Chen, Y.; Huang, Q.; Lin, Q.; Wu, M. 4-Aryl-NH-1,2,3-triazoles via multicomponent reaction of aldehydes, nitroalkanes, and sodium azide. Synlett, 2016, 27, 437-441.
[15]
Zhang, H.; Dong, D.; Wang, Z.L. Direct synthesis of n-unsubstituted 4-aryl-1,2,3-triazoles mediated by amberlyst-15. Synthesis, 2016, 48, 131-135.
[16]
Hui, R.; Zhao, M.; Chen, M.; Ren, Z.; Guan, Z. One-Pot Synthesis of 4-Aryl- NH -1,2,3-triazoles through three-component reaction of aldehydes, nitroalkanes and NaN 3. Chin. J. Chem., 2017, 35(12), 1808-1812.
[http://dx.doi.org/10.1002/cjoc.201700367]
[17]
Wu, G.L.; Wu, Q.P. Metal-free multicomponent reaction for synthesis of 4,5-disubstituted 1,2,3-(NH)-. Triazoles. Adv. Synth. Catal., 2018, 360(10), 1949-1953.
[http://dx.doi.org/10.1002/adsc.201701587]
[18]
Thomas, J.; Jana, S.; Liekens, S.; Dehaen, W. A single-step acid catalyzed reaction for rapid assembly of NH-1,2,3-triazoles. Chem. Commun., 2016, 52(59), 9236-9239.
[http://dx.doi.org/10.1039/C6CC03744E] [PMID: 27353974]
[19]
Garg, A.; Sarma, D.; Ali, A. A. Microwave assisted metal-free approach to access 1,2,3-triazoles through multicomponent synthesis. Curr. Res. Green Sustain. Chem., 2020.
[20]
Garg, A.; Hazarika, R.; Dutta, N.; Dutta, B.; Sarma, D. Bio-waste derived catalytic approach towards NH-1,2,3-triazole synthesis. ChemistrySelect, 2021, 6(29), 7266-7270.
[http://dx.doi.org/10.1002/slct.202101347]
[21]
Rodríguez-Florencio, J.; Martínez-Otero, D.; García-Eleno, M.A.; Cuevas-Yañez, E. Efficient, mild synthesis of N-unsubstituted 1,2,3-triazoles from methanolysis of 1-sulfonyl-1,2,3-triazoles. Synth. Commun., 2018, 48(17), 2189-2197.
[http://dx.doi.org/10.1080/00397911.2018.1484485]
[22]
Banert, K.; Hagedorn, M.; Hemeltjen, C.; Ihle, A.; Weigand, K.; Priebe, H. Synthesis of N-unsubstituted 1,2,3-triazoles via a cascade including propargyl azides, allenyl azides, and triazafulvenes. ARKIVOC, 2016, 2016(5), 338-361.
[http://dx.doi.org/10.24820/ark.5550190.p009.846]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy