Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Phyto Pharmaceutical Advances on Black Turmeric as a Functional Herb

Author(s): Simranjeet Kaur, Pratik N. Chauhan*, Junaid Ul Hamid, Simran Kaur and Yashika Sharma

Volume 20, Issue 2, 2024

Published on: 13 June, 2023

Page: [131 - 142] Pages: 12

DOI: 10.2174/1573401319666230322092031

Price: $65

Abstract

Herbal medicine is one of humanity's oldest professions, and herbal medicine's therapeutic efficacy has been recognised since the dawn of time. In many parts of India, herbal treatments have been found to be effective in the treatment of malaria, diarrhoea, jaundice, diabetes, cough, fever, snakebite, miscarriages, and gonorrhoea. Curcuma caesia is a perennial herb with bluish-black rhizomes that is native to Northeast and Central India. In antioxidant, antiinflammatory, and human tumour cell proliferation, inhibitory effects of the rhizomes of indigenous Curcuma caesia were investigated in this work. According to Research, Inc., the global curcumin market was worth USD 46.6 million, with North America being the largest regional market and India being one of the largest curcumin producers. With a revenue-based compound yearly growth rate (CAGR) of 14.8% throughout the projection period, Europe is predicted to be the fastest-growing region, with the global market. Because of expanding scientific talent and a large network of biotechnology and food chemistry applications, curcumin quality and quantity are projected to improve in the future. The study emphasizes the importance of using the bioactive components of curcuma caesia in nanotechnology, liposomes, niosomes, micelles, and cyclodextrin.

Next »
Graphical Abstract

[1]
Mukunthan KS, Balaji B. Patel. TN.; Black turmeric database: A database of natural compounds from curcuma caesia roxb. Asian J Pharm Clin Res 2018; 11(3): 406-8.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i3.24204]
[2]
Pandey D, Gupta AK. Bioactive compound in Curcuma caesia (Roxb.) from Bastar and its spectral analysis by HPLC, UV-Visible, FT-IR, NMR and ESI-MS. Int J Pharm Sci Res 2019; 10(1): 139-47.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.10(1).139-47]
[3]
Mahanta BP, Sut D, Kemprai P, Paw M, Lal M, Haldar S. A 1 H NMR spectroscopic method for the analysis of thermolabile chemical markers from the essential oil of black turmeric (Curcuma caesia) rhizome: Application in post‐harvest analysis. Phytochem Anal 2020; 31(1): 28-36.
[http://dx.doi.org/10.1002/pca.2863] [PMID: 31243828]
[4]
Grover M, Shah K, Khullar G, Gupta J, Behl T. Investigation of the utility of Curcuma caesia in the treatment of diabetic neuropathy. J Pharm Pharmacol 2019; 71(5): 725-32.
[http://dx.doi.org/10.1111/jphp.13075] [PMID: 30767224]
[5]
Pakkirisamy M, Kalakandan SK, Ravichandran K. Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of Curcuma caesia Roxb (Black Turmeric). Pharmacogn J 2017; 9(6): 952-6.
[http://dx.doi.org/10.5530/pj.2017.6.149]
[6]
Lakshmi DVN, Muthukumar P, Layek A, Nayak PK. Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renew Energy 2018; 120: 23-34.
[http://dx.doi.org/10.1016/j.renene.2017.12.053]
[7]
Chitra R, Janaki D, Jansirani P. Influence of bio-stimulants on growth and rhizome yield of black turmeric (Curcuma caesia). Int J Chem Stud 2020; 8(4): 2304-7.
[http://dx.doi.org/10.22271/chemi.2020.v8.i4z.9980]
[8]
Mohan Kumar AB, Vasundhara M, Shyamalamma S, Doreswamy C, Anil VS. DUS descriptor characterization of black turmeric (Curcuma caesia Roxb.) genotypes. IJCS 2020; 8(4): 2656-64.
[http://dx.doi.org/10.22271/chemi.2020.v8.i4ae.10042]
[9]
Abubakar AS, Pudake RN. Sterilization procedure and callus regeneration in black turmeric (Curcuma caesia). Agricult Sci Digest Res J 2019; 6(49): 96-101.
[http://dx.doi.org/10.18805/ag.D-4714]
[10]
Venugopal AR, Rinu KA, Joseph DH. Medicinal properties of black turmeric: A review. Innoriginal Int J Sci 2017; 4(3): 2-5.
[11]
Mukunthan KS, Anil Kumar NV, Balaji S, Trupti NP. Analysis of essential oil constituents in rhizome of Curcuma caesia Roxb. from South India. J Essent Oil-Bear Plants 2014; 17(4): 647-51.
[http://dx.doi.org/10.1080/0972060X.2014.884781]
[12]
Baghel SS, Baghel RS, Sharma K, Sikarwar I. Pharmacological activities of Curcuma caesia. Int J Green Pharm 2013; 7(1): 1.
[http://dx.doi.org/10.4103/0973-8258.111590]
[13]
Pathan AR, Vadnere GP, Sabu M. Curcuma caesia almost untouched drug: An updated ethnopharmacological review. Inventi Rapid: Planta Activa 2013; 2013(4): 01-4.
[14]
Pathan A, Vadnere G. Phytochemical investigations of indigenous herb: curcuma caesia rhizomes. Neuro pharmc J 2017; 2(2)
[http://dx.doi.org/10.37881/1.221]
[15]
Hait M, Bhardwaj AK, Kashyap NK, Vaishnav MM. Physicochemical and phytochemical evaluation on non-areal part of Curcuma caesia. Pharma Innov J 2019; 8(5): 514-7.
[16]
Karmakar I, Saha P, Sarkar N, Bhattacharya S, Haldar PK. Neuropharmacological assessment of Curcuma caesia rhizome in experimental animal models. Orient Pharm Exp Med 2011; 11(4): 251-5.
[http://dx.doi.org/10.1007/s13596-011-0032-4]
[17]
Behar N, Tiwari KL, Jadhav SK. A review on non-conventional turmeric: Curcuma caesia Roxb. Curr Trends Biotechnol Pharm 2014; 8(1): 91-101.
[18]
Zain NE. In vitro propagation of Curcuma caesia Roxb 2021. Available from: https://ir.unimas.my/id/eprint/7539/
[19]
Sharma P. Evaluation for extraction, phytochemical analysis and hepatoprotective potential of plant extract of curcuma caesia. World J Pharm Res 2021; 10(12): 2208-21.
[20]
Nair MG, Yunbao L, Subhra SR, Roger HCN, Yanjun Z. Functional food quality of Curcuma caesia, Curcuma zedoaria and Curcuma aeruginosa endemic to Northeastern India. Plant Foods Hum Nutr 2013; 68: 72-7.
[http://dx.doi.org/10.1007/s11130-013-0333-5] [PMID: 23359084]
[21]
Prithul JA. In vitro assessment of cholinesterase inhibitory and antioxidant activities of root and Rhizome of Curcuma Caesia (L) for the treatment of neurodegenerative disorder 2017.
[22]
Paliwal P, Pancholi SS, Patel R. Pharmacognostic parameters for evaluation of the rhizomes of Curcuma caesia. J Adv Pharm Technol Res 2011; 2(1): 56-61.
[http://dx.doi.org/10.4103/2231-4040.79811] [PMID: 22171294]
[23]
Pandey AK, Chowdhury AR. Volatile constituents of the rhizome oil ofCurcuma caesia Roxb. from central India. Flavour Fragrance J 2003; 18(5): 463-5.
[http://dx.doi.org/10.1002/ffj.1255]
[24]
Dennis VJ. Black Turmeric (Curcuma caesia Roxb): A high value medicinal herb. 2021; 2(2) Available from: https://justagriculture.in/files/newsletter/2021/october/040.pdf
[25]
Devi HP, Mazumder PB, Devi LP. Antioxidant and antimutagenic activity of Curcuma caesia Roxb. rhizome extracts. Toxicol Rep 2015; 2: 423-8.
[http://dx.doi.org/10.1016/j.toxrep.2014.12.018] [PMID: 28962377]
[26]
Reenu J, Azeez S, Bhageerathy C. In vitro antioxidant potential in sequential extracts of Curcuma caesia ro xb. rhizomes. indian J Pharm Sci 2015; 77(1): 41-8.
[http://dx.doi.org/10.4103/0250-474X.151596] [PMID: 25767317]
[27]
Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Turmeric and curcumin: Biological actions and medicinal applications. Curr Sci 2004; 87(1): 44-53.
[28]
Onwueme IC, Charles WB. Tropical root and tuber crops: Production, perspectives and future prospects. Food & Agriculture Org 1994.
[29]
Sarangthem K, Haokip MJ. Bioactive components in Curcuma caesia Roxb. grown in Manipur. Bioscan 2010; 5(1): 113-5.
[30]
Ghosh R, Bhowmik R, Nath R, Roy R. Curcumin: A systematic review. Int J Pharm Sci Rev Res 2022; 77(2): 144-8.
[http://dx.doi.org/10.47583/ijpsrr.2021.v70i02.016]
[31]
Jalip IS. Suprihatin, Wiryanti I, Sinaga E. Antioxidant activity and total flavonoids content of curcuma rhizome extract. Available from: http://repository.unas.ac.id/id/eprint/252
[32]
Bhutia PH, Sharangi AB. Promising Curcuma species suitable for hill regions towards maintaining biodiversity. J Pharmacogn Phytochem 2017; 6(6): 726-31.
[33]
Verma D, Srivastava S, Singh V, Rawat AK. Pharmacognostic evaluation of Curcuma caesia Roxb. rhizome. Nat Prod Sci 2010; 16(2): 107-10.
[34]
Jain A, Parihar DK. In vitro antioxidant and antidiabetic activity of regional chemotypes of three Curcuma species from Chhattisgarh. Res Rev J Herb Sci 2018; 7: 13-22.
[35]
Jose S, Thomas TD. Comparative phytochemical and anti-bacterial studies of two indigenous medicinal plants Curcuma caesia Roxb. and Curcuma aeruginosa Roxb. Int J 2014; 8: 65-71.
[36]
Borah A, Paw M, Gogoi R, et al. Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: An endangered medicinal plant of North East India. Ind Crops Prod 2019; 129: 448-54.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.035]
[37]
Lawand RV, Gandhi SV. Comparison of Curcuma caesia Roxb. with other commonly used Curcuma species by HPTLC. J Pharmacogn Phytochem 2013; 2(4): 126-31.
[38]
Ozaki Y, Liang OB. Cholagogic action of the essential oil obtained from Curcuma xanthorrhiza Roxb. Pharmacogn Mag 1988; 42(4): 257-63.
[39]
Lee HS. Antiplatelet property of Curcuma longa L. rhizomederived ar-turmerone. Bioresour Technol 2006; 97(12): 1372-6.
[http://dx.doi.org/10.1016/j.biortech.2005.07.006] [PMID: 16112857]
[40]
Kamazeri TSAT, Samah OA, Taher M, Susanti D, Qaralleh H. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pac J Trop Med 2012; 5(3): 202-9.
[http://dx.doi.org/10.1016/S1995-7645(12)60025-X] [PMID: 22305785]
[41]
Wong KC, Chong TC, Chee SG. Essential oil of Curcuma mangga Val. and van Zijp rhizomes. J Essent Oil Res 1999; 11(3): 349-51.
[http://dx.doi.org/10.1080/10412905.1999.9701151]
[42]
Ciftci O, Ozdemir I, Tanyildizi S, Yildiz S, Oguzturk H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced oxidative stress in rats liver. Toxicol Ind Health 2011; 27(5): 447-53.
[http://dx.doi.org/10.1177/0748233710388452] [PMID: 21245202]
[43]
Xu P, Li Y, Du SY, Lu Y, Bai J, Guo Q. Comparative pharmacokinetics of borneol in cerebral ischemia-reperfusion and sham-operated rats. J Zhejiang Univ Sci B 2014; 15(1): 84-91.
[http://dx.doi.org/10.1631/jzus.B1300141] [PMID: 24390748]
[44]
Thakre AD, Mulange SV, Kodgire SS, Zore GB, Karuppayil SM. Effects of cinnamaldehyde, ocimene, camphene, curcumin and farnesene on Candida albicans. Adv Microbiol 2016; 6(9): 627-43.
[http://dx.doi.org/10.4236/aim.2016.69062]
[45]
Elias L, Harini A, Hegde PL. Curcuma angustifolia Roxb (Tavaksheeri): A review. J Pharmacogn Phytochem 2015; 4(2): 241-3.
[46]
Jantan I, Ahmad AS, Ali NAM, Ahmad AR, Ibrahim H. Chemical composition of the rhizome oils of four Curcuma species from Malaysia. J Essent Oil Res 1999; 11(6): 719-23.
[http://dx.doi.org/10.1080/10412905.1999.9712004]
[47]
Al-Amin M, Eltayeb NM, Khairuddean M, Salhimi SM. Bioactive chemical constituents from Curcuma caesia Roxb. rhizomes and inhibitory effect of curcuzederone on the migration of triplenegative breast cancer cell line MDA-MB-231. Nat Prod Res 2021; 35(18): 3166-70.
[http://dx.doi.org/10.1080/14786419.2019.1690489] [PMID: 31726856]
[48]
Dewangan MK, Dwivedi C, Sivna PL, et al. Medicinal value of curcuma cassia Roxb: An overview. Earth J 2014; 3(4): 1-9.
[49]
Sahu R, Saxena J. A brief review on medicinal value of Curcuma caecia. Int J Pharm Life Sci 2013; 5(4): 2664-6.
[50]
Mahmud SN, Mahmud S, Hasan MK, et al. A survey on medicinal plants usage by folk medicinal practitioners in different villages of Jhenaigati Upazila, Sherpur district. Bangladesh. J Pharmacogn Phytochem 2016; 5(4): 167-80.
[51]
Sharmeen JB, Shanoo S, Fawzi MM. Ethnomedicinal uses of plant species from the himalayas in ethnobiology of mountain communities in Asia. Cham: Springer 2021; pp. 125-62.
[52]
Sahu B, Kenwat R, Chandrakar S. Medicinal value of Curcuma cassia Roxb: An overview. Int J Pharma Bio Sci 2016; 4(6): 69-74.
[http://dx.doi.org/10.20510/ukjpb/4/i6/134671]
[53]
Pharmaceutical and Nano Sciences
[54]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[55]
Joint FAO/WHO expert committee on food additives, joint FAO/WHO expert committee on food additives. meeting, world health organization. evaluation of certain food additives and contaminants: fifty-seventh report of the joint FAO/WHO expert committee on food additives. World Health Organization 2002.
[56]
Slika L, Patra D. A short review on chemical properties, stability and nano-technological advances for curcumin delivery. Expert Opin Drug Deliv 2020; 17(1): 61-75.
[http://dx.doi.org/10.1080/17425247.2020.1702644] [PMID: 31810374]
[57]
Pradhan P, Dasila K, Singh M. Uses of ethnomedicinal plants by the people living around kitam bird wildlife sanctuary. Acta Ecological Sinica 2021; 42(4): 259-68.
[http://dx.doi.org/10.1016/j.chnaes.2021.09.020]
[58]
Kouhi M, Prabhakaran MP, Ramakrishna S. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends Food Sci Technol 2020; 103: 248-63.
[http://dx.doi.org/10.1016/j.tifs.2020.05.025]
[59]
Cai ZM, Peng JQ, Chen Y, et al. 1,8-Cineole: A review of source, biological activities, and application. J Asian Nat Prod Res 2021; 23(10): 938-54.
[http://dx.doi.org/10.1080/10286020.2020.1839432] [PMID: 33111547]
[60]
Uritu CM, Mihai CT, Stanciu GD, et al. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res Manag 2018; 2018: 1-44.
[http://dx.doi.org/10.1155/2018/7801543] [PMID: 29854039]
[61]
Naz S, Jabeen S, Ilyas S, Manzoor F, Aslam F, Ali A. Antibacterial activity of Curcuma longa varieties against different strains of bacteria. Pak J Bot 2010; 42(1): 455-62.
[62]
Sharma A, Sharma MS. Treasure of medicinal value-black turmeric. Des Eng 2021; pp. 7003-9.
[63]
Singh WR, Singh HB, Devi SS, Singh WN, Singh NM, Devi YP. Conservation of Curcuma caesia by in vitro techniques. Helix 2015; 2: 708-13.
[64]
Zhu J, Lower-Nedza AD, Hong M, et al. Chemical composition and antimicrobial activity of three essential oils from Curcuma wenyujin. Nat Prod Commun 2013; 8(4): 1934578X1300800430..
[http://dx.doi.org/10.1177/1934578X1300800430]
[65]
Singh R, Chandra R, Bose M, Luthra PM. Antibacterial activity of Curcuma longa rhizome extract on pathogenic bacteria. Curr Sci 2002; 83(6): 737-40.
[66]
Kaur R, Kaur B, Suttee A, Kalsi V. Comparative assessment of in vitro antimicrobial activity of Curcuma caesia roxb. and Curcuma amada roxb. Asian J Pharm Clin Res 2018; 11(14): 94-7.
[http://dx.doi.org/10.22159/ajpcr.2018.v11s2.28591]
[67]
Mazumder PB, Devi HP. Methanolic extract of curcuma caesia roxb. prevents the toxicity caused by cyclophosphamide to bone marrow cells, liver and kidney of mice. Pharmacognosy Res 2016; 8(1): 43-9.
[http://dx.doi.org/10.4103/0974-8490.171106] [PMID: 26941535]
[68]
Salehi M, Movahedpour A, Tayarani A, et al. Therapeutic potentials of curcumin in the treatment of non‐small‐cell lung carcinoma. Phytother Res 2020; 34(10): 2557-76.
[http://dx.doi.org/10.1002/ptr.6704] [PMID: 32307773]
[69]
Villota H, Röthlisberger S, Pedroza-Díaz J. Modulation of the canonical Wnt signaling pathway by dietary polyphenols, an opportunity for colorectal cancer chemoprevention and treatment. Nutr Cancer 2022; 74(2): 384-404.
[PMID: 33596716]
[70]
Cobos E, Portillo-Salido E. “Bedside-to-bench” behavioral outcomes in animal models of pain: Beyond the evaluation of reflexes. Curr Neuropharmacol 2013; 11(6): 560-91.
[http://dx.doi.org/10.2174/1570159X113119990041] [PMID: 24396334]
[71]
Sawant SB, Bihani G, Mohod S, Bodhankar S. Evaluation of analgesic and anti-inflammatory activity of methanolic extract of curcuma caesia roxb. rhizomes in laboratory animals. Int J Pharm Pharm Sci 2014; 6(2): 243-7.
[72]
Smith MD, Woodhead JH, Handy LJ, et al. Preclinical comparison of mechanistically different antiseizure, antinociceptive, and/or antidepressant drugs in a battery of rodent models of nociceptive and neuropathic pain. Neurochem Res 2017; 42(7): 1995-2010.
[http://dx.doi.org/10.1007/s11064-017-2286-9] [PMID: 28508174]
[73]
Conaghan PG, Cook AD, Hamilton JA, Tak PP. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol 2019; 15(6): 355-63.
[http://dx.doi.org/10.1038/s41584-019-0221-y] [PMID: 31068673]
[74]
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2020; 60(6): 887-939.
[http://dx.doi.org/10.1080/10408398.2018.1552244] [PMID: 30632782]
[75]
Lindler BN, Long KE, Taylor NA, Lei W. Use of herbal medications for treatment of osteoarthritis and rheumatoid arthritis. Medicines 2020; 7(11): 67.
[http://dx.doi.org/10.3390/medicines7110067] [PMID: 33126603]
[76]
Pourhabibi-Zarandi F, Shojaei-Zarghani S, Rafraf M. Curcumin and rheumatoid arthritis: A systematic review of literature. Int J Clin Pract 2021; 75(10): e14280.
[http://dx.doi.org/10.1111/ijcp.14280] [PMID: 33914984]
[77]
Kumar LD, Karthik R, Gayathri N, Sivasudha T. Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis. Biomed Pharmacother 2016; 79: 52-61.
[http://dx.doi.org/10.1016/j.biopha.2016.02.001] [PMID: 27044812]
[78]
Shang W, Zhao LJ, Dong XL, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients viathe suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep 2016; 14(4): 3620-6.
[http://dx.doi.org/10.3892/mmr.2016.5674] [PMID: 27572279]
[79]
Özgüçlü E, Çetin A, Çetin M, Calp E. Additional effect of pulsed electromagnetic field therapy on knee osteoarthritis treatment: a randomized, placebo-controlled study. Clin Rheumatol 2010; 29(8): 927-31.
[http://dx.doi.org/10.1007/s10067-010-1453-z] [PMID: 20473540]
[80]
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An evidence-based systematic review of human knee post-traumatic osteoarthritis (PTOA): Timeline of clinical presentation and disease markers, comparison of knee joint PTOA models and early disease implications. Int J Mol Sci 2021; 22(4): 1996.
[http://dx.doi.org/10.3390/ijms22041996] [PMID: 33671471]
[81]
Shrivastava AK, Pandey A. Inflammation and rheumatoid arthritis. J Physiol Biochem 2013; 69(2): 335-47.
[http://dx.doi.org/10.1007/s13105-012-0216-5] [PMID: 23385669]
[82]
Scrivo R, Vasile M, Müller-Ladner U, Neumann E, Valesini G. Rheumatic diseases and obesity: Adipocytokines as potential comorbidity biomarkers for cardiovascular diseases. Mediators Inflamm 2013 2013.
[http://dx.doi.org/10.1155/2013/808125]
[83]
Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C. The CD40/CD40 ligand system: Linking inflammation with atherothrombosis. J Am Coll Cardiol 2009; 54(8): 669-77.
[http://dx.doi.org/10.1016/j.jacc.2009.03.076] [PMID: 19679244]
[84]
Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 2013; 10(9): 3886-907.
[http://dx.doi.org/10.3390/ijerph10093886] [PMID: 23985773]
[85]
Reid MB, Li YP. Tumor necrosis factor-α and muscle wasting: A cellular perspective. Respir Res 2001; 2(5): 269-72.
[http://dx.doi.org/10.1186/rr67] [PMID: 11686894]
[86]
Kruk J, Aboul-Enein HY. Reactive oxygen and nitrogen species in carcinogenesis: implications of oxidative stress on the progression and development of several cancer types. Mini Rev Med Chem 2017; 17(11): 904-19.
[PMID: 28245782]
[87]
Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 2014; 559: 91-9.
[http://dx.doi.org/10.1016/j.abb.2014.06.006] [PMID: 24946050]
[88]
Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Critical Re.™ Eukary. Gene Exp. 2010; 20(2)
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10]
[89]
Gasparini C, Feldmann M. NF-κB as a target for modulating inflammatory responses. Curr Pharm Des 2012; 18(35): 5735-45.
[http://dx.doi.org/10.2174/138161212803530763] [PMID: 22726116]
[90]
Salehi E, Mashayekh M, Taheri F, et al. Curcumin can be acts as effective agent for prevent or treatment of alcohol-induced toxicity in hepatocytes: An illustrated mechanistic review. Iran J Pharm Res 2021; 20(1): 418-36.
[PMID: 34400970]
[91]
Zhong W, Qian K, Xiong J, Ma K, Wang A, Zou Y. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling. Biomed Pharmacother 2016; 83: 302-13.
[http://dx.doi.org/10.1016/j.biopha.2016.06.036] [PMID: 27393927]
[92]
Tarafdar JC, Sharma S, Raliya R. Nanotechnology: Interdisciplinary science of applications. Afr J Biotechnol 2013; 12(3)
[93]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019; 25(1): 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[94]
Giese B, Klaessig F, Park B, et al. Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep 2018; 8(1): 1565.
[http://dx.doi.org/10.1038/s41598-018-19275-4] [PMID: 29371617]
[95]
Wydra S, Hüsing B, Jäger A, Lerch C, Pullmann L, Fischer P. Deliverable D 2.2: PROGRESS value chain analysis.
[96]
Bai F, Diao J, Wang Y, et al. A new water-soluble nanomicelle formed through self-assembly of pectin–curcumin conjugates: preparation, characterization, and anticancer activity evaluation. J Agric Food Chem 2017; 65(32): 6840-7.
[http://dx.doi.org/10.1021/acs.jafc.7b02250] [PMID: 28721737]
[97]
Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C. Curcumincyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B Biointerfaces 2014; 117: 520-7.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.005] [PMID: 24698148]
[98]
Kumar A, Singam A, Swaminathan G, et al. Combinatorial therapy using RNAi and curcumin nano-architectures regresses tumors in breast and colon cancer models. Nanoscale 2022; 14(2): 492-505.
[http://dx.doi.org/10.1039/D1NR04411G] [PMID: 34913453]
[99]
Gera M, Sharma N, Ghosh M, et al. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget 2017; 8(39): 66680-98.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[100]
Kabir MT, Rahman MH, Akter R, et al. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 2021; 11(3): 392.
[http://dx.doi.org/10.3390/biom11030392] [PMID: 33800000]
[101]
Sharifi S, Fathi N, Memar MY, et al. Anti‐microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother Res 2020; 34(8): 1926-46.
[http://dx.doi.org/10.1002/ptr.6658] [PMID: 32166813]
[102]
Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014; 35(10): 3365-83.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[103]
Juanes-Gusano D, Santos M, Reboto V, Alonso M, Rodríguez-Cabello JC. Self‐assembling systems comprising intrinsically disordered protein polymers like elastin‐like recombinamers. J Pept Sci 2022; 28(1): e3362.
[http://dx.doi.org/10.1002/psc.3362] [PMID: 34545666]
[104]
Pardeshi CV, Handa M, Shukla R. New insights into nanoparticulate carriers for direct nose‐to‐brain drug delivery. nanoengineering of biomaterials. Drug Deliv 2022; 1: 261-307.
[105]
Szafraniec MJ, Toporkiewicz M, Gamian A. Zinc-substituted pheophorbide a is a safe and efficient antivascular photodynamic agent. Pharmaceuticals 2022; 15(2): 235.
[http://dx.doi.org/10.3390/ph15020235] [PMID: 35215347]
[106]
Maretti E, Molinari S, Battini R, et al. Design, characterization, and in vitro assays on muscle cells of endocannabinoid-like molecule loaded lipid nanoparticles for a therapeutic anti-inflammatory approach to sarcopenia. Pharmaceutics 2022; 14(3): 648.
[http://dx.doi.org/10.3390/pharmaceutics14030648] [PMID: 35336022]
[107]
Mahmoudi A, Kesharwani P, Majeed M, Teng Y, Sahebkar A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf B Biointerfaces 2022; 215: 112481.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112481] [PMID: 35453063]
[108]
Dizaj MS, Alipour M, Abdolahinia DE, et al. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36(3): 1156-81.
[http://dx.doi.org/10.1002/ptr.7389] [PMID: 35129230]
[109]
Hussain Y, Alam W, Ullah H, et al. Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics 2022; 11(3): 322.
[http://dx.doi.org/10.3390/antibiotics11030322] [PMID: 35326785]
[110]
Chamani S, Moossavi M, Naghizadeh A, et al. Immunomodulatory effects of curcumin in systemic autoimmune diseases. Phytother Res 2022; 36(4): 1616-32.
[http://dx.doi.org/10.1002/ptr.7417] [PMID: 35302258]
[111]
Amekyeh H, Alkhader E, Sabra R, Billa N. Prospects of curcumin nanoformulations in cancer management. Molecules 2022; 27(2): 361.
[http://dx.doi.org/10.3390/molecules27020361] [PMID: 35056675]
[112]
Kangarlou S, Ramezanpour S, Balalaie S, Mohammadi RS, Haririan I. Curcumin-loaded nanoliposomes linked to homing peptides for integrin targeting and neuropilin-1-mediated internalization. Pharm Biol 2017; 55(1): 277-85.
[http://dx.doi.org/10.1080/13880209.2016.1261301] [PMID: 27937055]
[113]
Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int J Pharm 2022; 617: 121622.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121622] [PMID: 35227805]
[114]
Samiei M, Moghaddam AF, Abdolahinia DE, Ahmadian E, Sharifi S, Dizaj MS. Influence of curcumin nanocrystals on the early osteogenic differentiation and proliferation of dental pulp stem cells. J Nanomater 2022; 2022: 1-8.
[http://dx.doi.org/10.1155/2022/8517543]
[115]
Leung MH, Harada T, Kee TW. Delivery of curcumin and medicinal effects of the copper(II)-curcumin complexes. Curr Pharm Des 2013; 19(11): 2070-83.
[PMID: 23116313]
[116]
Feng J, Wu S, Wang H, Liu S. Stability of trianionic curcumin enhanced by gemini alkyl O -Glucosides and alkyl trimethyl ammonium halides mixed micelles. Colloids Surf A Physicochem Eng Asp 2016; 504: 190-200.
[http://dx.doi.org/10.1016/j.colsurfa.2016.05.076]
[117]
Alinezhad V, Alinezhad H, Ataee R, Ataie A. Utilization of curcumine and nanocurcumine compounds in cancer therapy. Pharmaceut Biomed Res 2017; 3(3): 1-11.
[http://dx.doi.org/10.29252/pbr.3.3.1]
[118]
Jain M, Marfatia A, Imam N, et al. Ionic liquid-based catanionic vesicles: A de novo system to judiciously improve the solubility, stability and antimicrobial activity of curcumin. J Mol Liq 2021; 341: 117396.
[http://dx.doi.org/10.1016/j.molliq.2021.117396]
[119]
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149: 112862.
[http://dx.doi.org/10.1016/j.biopha.2022.112862] [PMID: 35339826]
[120]
Leung MH. Spectroscopic investigations on the molecular motions and solution chemistry of the medicinal pigment curcumin. Available from: https://digital.library.adelaide.edu.au/dspace/bitstream/ 2440/92552/3/02whole.pdf
[121]
Shah PB. Development and evaluation of desoximetasone loadedniosomes for topical drug delivery using quality by design (QbD) approach. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/65321/
[122]
Dichello GA, Sarker DK. Encapsulation of lethal, functional, and therapeutic medicinal nanoparticles and quantum dots for the improved diagnosis and treatment of infection. In: Nanostructures for Antimicrobial Therapy. Elsevier 2017; pp. 597-622.
[http://dx.doi.org/10.1016/B978-0-323-46152-8.00027-5]
[123]
Gayathri S. Novel niosomal drug delivery system of etoposide for targeting different types of cancer. Available from: http://repository-tnmgrmu.ac.in/1182/
[124]
Sandeep S. Development and characterisation of nonionic surafactant vesicles (niosomes) for ocular delivery of diclofenac sodium. Available from: http://repository-tnmgrmu.ac.in/3353/
[125]
Jantarat C. Bioavailability enhancement techniques of herbal medicine: A case example of curcumin. Int J Pharm Pharm Sci 2013; 5: 493-500.
[126]
Sharma V, Anandhakumar S, Sasidharan M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery. Mater Sci Eng C 2015; 56: 393-400.
[http://dx.doi.org/10.1016/j.msec.2015.06.049] [PMID: 26249606]
[127]
Mandal S, Banerjee C, Ghosh S, Kuchlyan J, Sarkar N. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: A comparative study of different microenvironments. J Phys Chem B 2013; 117(23): 6957-68.
[http://dx.doi.org/10.1021/jp403724g] [PMID: 23682632]
[128]
Roy A, Pyne A, Pal P, Dhara S, Sarkar N. Effect of vitamin E and a long-chain alcohol n -Octanol on the carbohydrate-based nonionic amphiphile sucrose monolaurate-formulation of newly developed niosomes and application in cell imaging. ACS Omega 2017; 2(11): 7637-46.
[http://dx.doi.org/10.1021/acsomega.7b00744] [PMID: 30023559]
[129]
Morin-Crini N, Fourmentin S, Fenyvesi É, et al. 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review. Environ Chem Lett 2021; 19(3): 2581-617.
[http://dx.doi.org/10.1007/s10311-020-01156-w]
[130]
Crini G, French AD, Kainuma K, Jane J, Szente L. Contributions of dexter french (1918-1981) to cycloamylose/cyclodextrin and starch science. Carbohydr Polym 2021; 257: 117620.
[http://dx.doi.org/10.1016/j.carbpol.2021.117620] [PMID: 33541648]
[131]
Wu H, Li X, Ji H, Svensson B, Bai Y. Improved production of gamma-cyclodextrin from high-concentrated starch using enzyme pretreatment under swelling condition. Carbohydr Polym 2022; 284: 119124.
[http://dx.doi.org/10.1016/j.carbpol.2022.119124] [PMID: 35287887]
[132]
Li X, Bai Y, Ji H, Jin Z. The binding mechanism between cyclodextrins and pullulanase: A molecular docking, isothermal titration calorimetry, circular dichroism and fluorescence study. Food Chem 2020; 321: 126750.
[http://dx.doi.org/10.1016/j.foodchem.2020.126750] [PMID: 32278273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy