Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Mini-Review Article

Nanoparticle: A Unique Strategy for Antifungal Agents

Author(s): Sudha Vishwakarma* and Geeta Bhagwat

Volume 11, Issue 4, 2023

Published on: 28 April, 2023

Page: [315 - 323] Pages: 9

DOI: 10.2174/2211738511666230321123017

Price: $65

conference banner
Abstract

Nanomaterials are emerging as an innovative and efficient instrument for the transport and cellular translocation of therapeutic compounds, namely, biopharmaceuticals. The use of nanoparticles as drug carriers in the healthcare industry, for instance, in several applications, with drug delivery being among the most significant. These nanomaterials are adaptable and have qualities that are good for delivering compounds that are biologically active. The creation of different nanoparticles as a drug delivery system has led to the development of a variety of nanoparticulate drug delivery systems to reduce toxicity, reduce the dosing system, and increase the viability of the drug. The objectives of this review are to provide an overview of the recent advances in nanotechnology in Antifungal treatment and to overcome the problems associated with antifungal agents.

Next »
[1]
Mohanraj VJ, Chen Y. Nanoparticles - A review. Trop J Pharm Res 2007; 5.
[2]
Lin W. Introduction: Nanoparticles in medicine. Chem Rev 2015; 115(19): 10407-9.
[http://dx.doi.org/10.1021/acs.chemrev.5b00534] [PMID: 26463639]
[3]
Özdemir O, Kopac T. Cytotoxicity and biocompatibility of root canal sealers: A review on recent studies. J Appl Biomater Funct Mater 2022; 20.
[http://dx.doi.org/10.1177/22808000221076325] [PMID: 35164598]
[4]
Özdemir O, Kopac T. Recent progress on the applications of nanomaterials and nano-characterization techniques in endodontics: A review. Materials (Basel) 2022; 15(15): 5109.
[http://dx.doi.org/10.3390/ma15155109] [PMID: 35897542]
[5]
Pandhurnekar HC, Pandhurnekar CP, Sharma N. Recent advances in the energy harvesting device technology using hetero-atom doped carbon nanotubes. Mater Today Proc 2023; 73: 41-9.
[6]
Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/498420] [PMID: 25165707]
[7]
Ealia SA, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. InIOP conference series: materials science and engineering 2017; Nov 1(Vol. 263, No. 3, p. 032019): IOP Publishing.
[http://dx.doi.org/10.1088/1757-899X/263/3/032019]
[8]
Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int J Pharm 2017; 523(1): 15-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.019] [PMID: 28323096]
[9]
Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[10]
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[11]
Rosi NL, Mirkin CA. Nanostructures in Biodiagnostics. Chem Rev 2005; 105(4): 1547-62.
[http://dx.doi.org/10.1021/cr030067f] [PMID: 15826019]
[12]
Caruso F. Nanoengineering of particle surfaces. Adv Mater 2001; 13(1): 11-22.
[http://dx.doi.org/10.1002/1521-4095(200101)13:1<11:AID-ADMA11>3.0.CO;2-N]
[13]
Fischer NO, McIntosh CM, Simard JM, Rotello VM. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci USA 2002; 99(8): 5018-23.
[http://dx.doi.org/10.1073/pnas.082644099] [PMID: 11929986]
[14]
Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 2020; 13(3): 223-45.
[http://dx.doi.org/10.1080/17518253.2020.1802517]
[15]
Yadwade R, Gharpure S, Ankamwar B. Nanotechnology in cosmetics pros and cons. Nano Express 2021; 2(2)022003
[http://dx.doi.org/10.1088/2632-959X/abf46b]
[16]
Sahani S, Sharma YC. Advancements in applications of nanotechnology in global food industry. Food Chem 2021; 342128318
[http://dx.doi.org/10.1016/j.foodchem.2020.128318] [PMID: 33189478]
[17]
Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006; 18(4): 319-26.
[http://dx.doi.org/10.1002/elan.200503415]
[18]
Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 2013; 10(6): 2093-110.
[http://dx.doi.org/10.1021/mp300697h] [PMID: 23461379]
[19]
Tiwari DK, Behari J, Sen P. Application of nanoparticles in waste water treatment. World Appl Sci J 2008; 3(3): 417-33.
[20]
Bhatia S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery ApplicationsNatural Polymer Drug Delivery Systems. Cham: Springer International Publishing 2016; pp. 33-93.
[http://dx.doi.org/10.1007/978-3-319-41129-3_2]
[21]
Strambeanu N, Demetrovici L, Dragos D, Lungu M. Nanoparticles: Definition, Classification and General Physical Properties. In: Nanoparticles’ Promises and Risks. Cham: Springer International Publishing 2015; pp. 3-8.
[http://dx.doi.org/10.1007/978-3-319-11728-7_1]
[22]
Sterflinger K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol Rev 2010; 24(1-2): 47-55.
[http://dx.doi.org/10.1016/j.fbr.2010.03.003]
[23]
Raja HA, Miller AN, Pearce CJ, Oberlies NH. Fungal identification using molecular tools: A primer for the natural products research community. J Nat Prod 2017; 80(3): 756-70.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01085] [PMID: 28199101]
[24]
Dixon DM, Walsh TJ. Antifungal agents. Medical Microbiology 4th edition. 1996.
[25]
Chen SCA, Sorrell TC. Antifungal agents. Med J Aust 2007; 187(7): 404-9.
[http://dx.doi.org/10.5694/j.1326-5377.2007.tb01313.x] [PMID: 17908006]
[26]
Elias R, Benhamou RI, Jaber QZ, et al. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Eur J Med Chem 2019; 179: 779-90.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.003] [PMID: 31288127]
[27]
Kathiravan MK, Salake AB, Chothe AS, et al. The biology and chemistry of antifungal agents: A review. Bioorg Med Chem 2012; 20(19): 5678-98.
[http://dx.doi.org/10.1016/j.bmc.2012.04.045] [PMID: 22902032]
[28]
Antifungal drug resistance in pathogenic fungi. Med Mycol 1998; 36 (Suppl. 1): 119-28.
[29]
Asadi P, Mehravaran A, Soltanloo N, Abastabar M, Akhtari J. Nanoliposome-loaded antifungal drugs for dermal administration: A review. Curr Med Mycol 2021; 7(1): 71-8.
[http://dx.doi.org/10.18502/cmm.7.1.6247] [PMID: 34553102]
[30]
Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 2009; 69(3): 361-92.
[http://dx.doi.org/10.2165/00003495-200969030-00010] [PMID: 19275278]
[31]
Ma H, Yin B, Wang S, et al. Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem 2004; 5(1): 68-75.
[http://dx.doi.org/10.1002/cphc.200300900] [PMID: 14999845]
[32]
Andriole VT. Current and future antifungal therapy: new targets for antifungal agents. J Antimicrob Chemother 1999; 44(2): 151-62.
[http://dx.doi.org/10.1093/jac/44.2.151] [PMID: 10473222]
[33]
Aguilar-Méndez MA, San Martín-Martínez E, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 2011; 13(6): 2525-32.
[http://dx.doi.org/10.1007/s11051-010-0145-6]
[34]
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73(6): 1712-20.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[35]
Anzar N, Hasan R, Tyagi M, Yadav N, Narang J. Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sensors International 2020; 1100003
[http://dx.doi.org/10.1016/j.sintl.2020.100003]
[36]
Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. Toxicol Appl Pharmacol 2012; 261(2): 121-33.
[http://dx.doi.org/10.1016/j.taap.2012.03.023] [PMID: 22513272]
[37]
Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R. Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 2011; 5(1): 199-208.
[http://dx.doi.org/10.1021/nn1023522] [PMID: 21141979]
[38]
Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI. Metal nanoparticles as novel antifungal agents for sustainable agriculture: Current advances and future directions. J Fungi (Basel) 2021; 7(12): 1033.
[http://dx.doi.org/10.3390/jof7121033] [PMID: 34947015]
[39]
Singh M, Kumar M, Kalaivani R, Manikandan S, Kumaraguru AK. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng 2013; 36(4): 407-15.
[http://dx.doi.org/10.1007/s00449-012-0797-y] [PMID: 22903592]
[40]
Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 2012; 33(34): 8793-801.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.050] [PMID: 22979988]
[41]
Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 2012; 7: 6003-9.
[http://dx.doi.org/10.2147/IJN.S35347] [PMID: 23233805]
[42]
Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1638-49.
[http://dx.doi.org/10.1016/j.addr.2008.08.002] [PMID: 18840488]
[43]
Mauri E, Negri A, Rebellato E, Masi M, Perale G, Rossi F. Hydrogel-Nanoparticles composite system for controlled drug delivery. Gels 2018; 4(3): 74.
[http://dx.doi.org/10.3390/gels4030074] [PMID: 30674850]
[44]
Mendes AI, Silva AC, Catita JAM, Cerqueira F, Gabriel C, Lopes CM. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids Surf B Biointerfaces 2013; 111: 755-63.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.041] [PMID: 23954816]
[45]
Salem HF. KESM. Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. Int J Drug Deliv 2011.
[46]
Butani D, Yewale C, Misra A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf B Biointerfaces 2016; 139: 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.032] [PMID: 26700229]
[47]
Landi-Librandi AP, de Oliveira CA, Caleiro Seixas Azzolini AE, et al. In vitro evaluation of the antioxidant activity of liposomal flavonols by the HRP–H 2 O 2 –luminol system. J Microencapsul 2011; 28(4): 258-67.
[http://dx.doi.org/10.3109/02652048.2011.559283] [PMID: 21545317]
[48]
Fong J, Wood F. Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 2006; 1(4): 441-9.
[http://dx.doi.org/10.2147/nano.2006.1.4.441] [PMID: 17722278]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy