Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Sulfonic Acid Functionalized Precipitated Silica as Efficient Solid Acid Catalyst for Acetylation Reactions

Author(s): Mayura Lolage, Manohar G. Chaskar* and Anirban Ghosh*

Volume 13, Issue 1, 2023

Published on: 17 April, 2023

Article ID: e160323214694 Pages: 9

DOI: 10.2174/2210681213666230316144347

Price: $65

Abstract

Introduction: Precipitated Silica has very high commercial significance in terms of ease of preparation, market volume, cost benefits and a wide range of industrial applications. The surface silanol groups of Precipitated Silica can be modified with reactive organic functional groups to achieve desired properties for specific applications, including catalysis.

Objective: The objective of this study is to demonstrate sulfonic acid functionalized Precipitated Silica as a true heterogeneous catalyst in acetylation reaction, where the catalytic activity and desired product selectivity is a magnitude higher than industrial solid acid zeolite catalysts as well as similar catalysts reported in literature.

Methods: A novel and cost-effective method for the functionalization of Precipitated Silica with sulfonic acid (-SO3H) is reported, where the silica nanoparticles are first functionalized in situ with a tetrasulfide organosilane, followed by oxidation of the tetrasulfide moiety to -SO3H groups, which are grafted to the surface silanol groups through covalent linkage.

Results: CHNS analyses and XPS prove successful functionalization of -SO3H group onto the nano silica surface. The resultant material acts as a solid acid catalyst and shows exceptional activity in the acetylation of benzyl alcohol and >99% selectivity towards the desired product benzyl acetate. The resultant material can also be recycled and reused several times.

Conclusion: The following factors make sulfonic acid functionalized Precipitated Silica a new generation of solid acid catalyst; (i) higher atom economy, (ii) recyclability and reusability, and (iii) significant cost benefits with respect to industrial catalysts.

Graphical Abstract

[1]
Flörke, O.W.; Graetsch, H.A.; Brunk, F.; Benda, L.; Paschen, S.; Bergna, H.E.; Roberts, W.O.; Welsh, W.A.; Libanati, C.; Ettlinger, M.; Kerner, D.; Maier, M.; Meon, W.; Schmoll, R.; Gies, H.; Schiffmann, D. Silica In: Ullmann's Encyclopaedia of Industrial Chemistry; Ley, C., Ed.; Wiley‐VCH Verlag GmbH & Co: Weinheim, Germany, 2008.
[http://dx.doi.org/10.1002/14356007.a23_583.pub3]
[2]
Hyde, E.D.E.R.; Seyfaee, A.; Neville, F.; Moreno-Atanasio, R. Colloidal Silica particle synthesis and future industrial manufacturing pathways: A review. Ind. Eng. Chem. Res., 2016, 55(33), 8891-8913.
[http://dx.doi.org/10.1021/acs.iecr.6b01839]
[3]
Rautaray, D.; Parida, P.K.; Lolage, M. Precipitated Silica. Patent US Patent 10981795 B2, 2021.
[4]
Krysztafkiewicz, A.; Rager, B.; Jesionowski, T. The effect of surface modification on physicochemical properties of Precipitated Silica. J. Mater. Sci., 1997, 32(5), 1333-1339.
[http://dx.doi.org/10.1023/A:1018564808810]
[5]
Singh, P.; Srivastava, S.; Singh, S.K. Nanosilica: Recent progress in synthesis, functionalization, biocompatibility, and biomedical applications. ACS Biomater. Sci. Eng., 2019, 5(10), 4882-4898.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00464] [PMID: 33455238]
[6]
Ogihara, H.; Xie, J.; Okagaki, J.; Saji, T. Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir, 2012, 28(10), 4605-4608.
[http://dx.doi.org/10.1021/la204492q] [PMID: 22369269]
[7]
Bentley, T.W. Directing and Activating Effects in Reactions Involving Sulphonic Acids and Derivatives.In: The Chemistry of Sulphonic Acids, Esters and their Derivatives; Patai, S.; Rappoport, Z., Eds.; John Wiley & Sons: Chichester, UK, 1991, pp. 671-696.
[http://dx.doi.org/10.1002/0470034394]
[8]
Bart, H.J.; Reidetschlager, J.; Schatka, K.; Lehmann, A. Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind. Eng. Chem. Res., 1994, 33(1), 21-25.
[http://dx.doi.org/10.1021/ie00025a004]
[9]
Vilmin, F.; Bottero, I.; Travert, A.; Malicki, N.; Gaboriaud, F.; Trivella, A.; Thibault-Starzyk, F. Reactivity of bis[3-(triethoxysilyl)propyl] tetrasulfide (TESPT) silane coupling agent over hydrated silica: Operando IR spectroscopy and chemometrics study. J. Phys. Chem. C, 2014, 118(8), 4056-4071.
[http://dx.doi.org/10.1021/jp408600h]
[10]
McGinty, D.; Vitale, D.; Letizia, C.S.; Api, A.M. Fragrance material review on benzyl acetate. Food Chem. Toxicol., 2012, 50(S2), S363-S384.
[http://dx.doi.org/10.1016/j.fct.2012.02.057] [PMID: 22387848]
[11]
Kirumakki, S.R.; Nagaraju, N.; Narayanan, S. A comparative esterification of benzyl alcohol with acetic acid over zeolites Hβ, HY and HZSM5. Appl. Catal. A Gen., 2004, 273(1-2), 1-9.
[http://dx.doi.org/10.1016/j.apcata.2004.03.016]
[12]
Polikarpova, P.; Akopyan, A.; Shlenova, A.; Anisimov, A. New mesoporous catalysts with Brønsted acid sites for deep oxidative desulfurization of model fuels. Catal. Commun., 2020, 146106123
[http://dx.doi.org/10.1016/j.catcom.2020.106123]
[13]
Bandyopadhyay, M.; Shiju, N.R.; Brown, D.R. MCM-48 as a support for sulfonic acid catalysts. Catal. Commun., 2010, 11(7), 660-664.
[http://dx.doi.org/10.1016/j.catcom.2010.01.018]
[14]
Lourenço, J.P.; Macedo, M.I.; Fernandes, A. Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of Glycerol. Catal. Commun., 2012, 19, 105-109.
[http://dx.doi.org/10.1016/j.catcom.2011.12.029]
[15]
Elimbinzi, E.; Nyandoro, S.S.; Mubofu, E.B.; Manayil, J.C.; Lee, A.F.; Wilson, K. Valorization of rice husk silica waste: Organo-amine functionalized castor oil templated mesoporous silicas for biofuels synthesis. Microporous Mesoporous Mater., 2020, 294109868
[http://dx.doi.org/10.1016/j.micromeso.2019.109868]
[16]
Sasidharan, M.; Kiyozumi, Y.; Mal, N.K.; Mizukami, F. Synthesis, characterization, and application of mesoporous silica functionalized with alkyl-hydroperoxides. Adv. Funct. Mater., 2006, 16(14), 1853-1858.
[http://dx.doi.org/10.1002/adfm.200500721]
[17]
Lolage, M.; Chaskar, M.; Ghosh, A. Synthesis, characterization and application development of ordered mesoporous silica in wastewater remediation. J. Porous Mater., 2021, 28(6), 1867-1879.
[http://dx.doi.org/10.1007/s10934-021-01126-9]
[18]
Gregg, S.J.; Sing, K.S.W.; Salzberg, H.W. Adsorption, surface area and porosity. J. Electrochem. Soc., 1967, 114(11), 279Ca.
[http://dx.doi.org/10.1149/1.2426447]
[19]
Ghosh, A.; Basak, S.; Wunsch, B.H.; Kumar, R.; Stellacci, F. Effect of composition on the catalytic properties of mixed-ligand-coated gold nanoparticles. Angew. Chem. Int. Ed., 2011, 50(34), 7900-7905.
[http://dx.doi.org/10.1002/anie.201101821] [PMID: 21744445]
[20]
Ghosh, A.; Stellacci, F.; Kumar, R. New mixed ligand coated platinum nanoparticles for heterogeneous catalytic applications. Catal. Today, 2012, 198(1), 77-84.
[http://dx.doi.org/10.1016/j.cattod.2012.03.079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy