Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Can Polyherbal Medicine be used for the Treatment of Diabetes? - A Review of Historical Classics, Research Evidence and Current Prevention Programs

Author(s): Sudem Brahma, Arvind Kumar Goyal*, Prakash Dhamodhar, Mani Reema Kumari, S. Jayashree, Talambedu Usha and Sushil Kumar Middha

Volume 20, Issue 2, 2024

Published on: 06 June, 2023

Article ID: e140323214600 Pages: 55

DOI: 10.2174/1573399819666230314093721

Price: $65

Abstract

Diabetes mellitus (DM), a chronic medical condition, has attained a global pandemic status over the last few decades affecting millions of people. Despite a variety of synthetic drugs available in the market, the use of herbal medicines for managing diabetes is gaining importance because of being comparatively safer. This article reviews the result of a substantial literature search on polyherbal formulations (PHFs) developed and evaluated with potential for DM. The accumulated data in the literature allowed us to enlist 76PHFs consisting of different parts of 147 plant species belonging to 58 botanical families. The documented plant species are laden with bioactive components with anti-diabetic properties and thus draw attention. The most favoured ingredient for PHFs was leaves of Gymnema sylvestre and seeds of Trigonella foenum-graecum used in 27 and 22 formulations, respectively. Apart from herbs, shilajit (exudates from high mountain rocks) formed an important component of 9 PHFs, whereas calcined Mytilus margaritiferus and goat pancreas were used in Dolabi, the most commonly used tablet form of PHF in Indian markets. The healing properties of PHFs against diabetes have been examined in both pre-clinical studies and clinical trials. However, the mechanism(s) of action of PHFs are still unclear and considered the pitfalls inherent in understanding the benefits of PHFs. From the information available based on experimental systems, it could be concluded that plant-derived medicines will have a considerable role to play in the control of diabetes provided the challenges related to their bioavailability, bioefficacy, optimal dose, lack of characterization, ambiguous mechanism of action, and clinical efficiency are addressed.

[1]
Kamtekar S, Keer V. Management of diabetes: a review. Res J Pharm Techn 2014; 7: 1065-72.
[2]
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87(1): 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[3]
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[4]
Wanjari MM, Mishra S, Dey YN, et al. Antidiabetic activity of Chandraprabha vati–A classical Ayurvedic formulation. J Ayurveda Integr Med 2016; 7(3): 144-50.
[http://dx.doi.org/10.1016/j.jaim.2016.08.010]
[5]
Carbone S, Del Buono MG, Ozemek C, Lavie CJ. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Prog Cardiovasc Dis 2019; 62(4): 327-33.
[http://dx.doi.org/10.1016/j.pcad.2019.08.004] [PMID: 31442513]
[6]
Anderson JW, Kendall CWC, Jenkins DJA. Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J Am Coll Nutr 2003; 22(5): 331-9.
[http://dx.doi.org/10.1080/07315724.2003.10719316] [PMID: 14559925]
[7]
Jacobsen LV, Flint A, Olsen AK, Ingwersen SH. Liraglutide in type 2 diabetes mellitus: clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 2016; 55(6): 657-72.
[http://dx.doi.org/10.1007/s40262-015-0343-6] [PMID: 26597252]
[8]
Sullivan PW, Morrato EH, Ghushchyan V, Wyatt HR, Hill JO. Obesity, inactivity, and the prevalence of diabetes and diabetes-related cardiovascular comorbidities in the U.S., 2000-2002. Diabetes Care 2005; 28(7): 1599-603.
[http://dx.doi.org/10.2337/diacare.28.7.1599] [PMID: 15983307]
[9]
Isomaa B, Forsén B, Lahti K, et al. A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP)–Botnia study. Diabetologia 2010; 53(8): 1709-13.
[http://dx.doi.org/10.1007/s00125-010-1776-y] [PMID: 20454776]
[10]
Spanakis EK, Golden SH. Race/ethnic difference in diabetes and diabetic complications. Curr Diab Rep 2013; 13(6): 814-23.
[http://dx.doi.org/10.1007/s11892-013-0421-9] [PMID: 24037313]
[11]
Lago RM, Singh PP, Nesto RW. Diabetes and hypertension. Nat Clin Pract Endocrinol Metab 2007; 3(10): 667-7.
[http://dx.doi.org/10.1038/ncpendmet0638] [PMID: 17893686]
[12]
Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci 2017; 11(2): 65-71.
[PMID: 28539866]
[13]
Lazzaroni E, Ben Nasr M, Loretelli C, et al. Anti-diabetic drugs and weight loss in patients with type 2 diabetes. Pharmacol Res 2021; 171: 105782.
[http://dx.doi.org/10.1016/j.phrs.2021.105782] [PMID: 34302978]
[14]
Dey SK, Middha SK, Usha T, Brahma BK, Goyal AK. Antidiabetic activity of giant grass Bambusa tulda. Bangladesh J Pharmacol 2018; 13(2): 134-6.
[http://dx.doi.org/10.3329/bjp.v13i2.36034]
[15]
Barikm CS. Kanungo SK, Tripathy NK, Panda JR, Padhi M. A review on therapeutic potential of polyherbal formulations. Int J Pharm Sci Drug Res 2015; 7: 211-28.
[16]
Usha T, Middha SK, Goyal AK, et al. Toxicological evaluation of Emblica officinalis fruit extract and its anti-inflammatory and free radical scavenging properties. Pharmacogn Mag 2015; 11(44) (Suppl. 3): 427.
[http://dx.doi.org/10.4103/0973-1296.168982] [PMID: 26929577]
[17]
Middha SK, Usha T, Babu D, Misra AK, Lokesh P, Goyal AK. Evaluation of antioxidative, analgesic and anti-inflammatory activities of methanolic extract of Myrica nagi leaves - an animal model approach. Symbiosis 2016; 70(1-3): 179-84.
[http://dx.doi.org/10.1007/s13199-016-0422-y]
[18]
Goyal AK, Middha SK, Usha T, Sen A. Analysis of toxic, antidiabetic and antioxidant potential of Bambusa balcooa Roxb. leaf extracts in alloxan-induced diabetic rats. 3 Biotech 2017; 7(2): 120.
[http://dx.doi.org/10.1007/s13205-017-0776-8]
[19]
Bhattacharya B, Reddy KRC. Polyherbal Ayurvedic Powder Effectively Reduces Blood Sugar in Streptozotocin-induced Diabetic Rats. Indian J Pharm Sci 2018; 80(2): 253-60.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000352]
[20]
Pathak AV, Kawtikwar PS, Sakarkar DM. Pharmacognostical and Physico-Chemical Standardization of Shatavari Churna: An Official Ayurvedic Formulation. Res J Pharm Tech 2015; 8(11): 1495-501.
[http://dx.doi.org/10.5958/0974-360X.2015.00267.X]
[21]
Meena AK, Niranjan US. A review of the important chemical constituents and medicinal uses of Vitex genus. Asian J Tradit Med 2011; 6(2): 54-60.
[22]
Pattanayak P, Behera P, Das D, Panda S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Rev 2010; 4(7): 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[23]
Pal RS, Pal Y, Wal P, Wal A. Standardization of hingwashtak churna. Innov Int J Med Pharm Sci 2017; 2(2): 19-21.
[http://dx.doi.org/10.24018/10.24018/iijmps.2018.v1i1.22]
[24]
Ghosh S, Pradhan P, Bhateja P, Sharma YK. A recent approach for development and standardization of ayurvedic polyherbal formulation (Churna) for antioxidant activity. Am Res J Pharm 2015; 1(1): 5-12.
[25]
Svoboda R. Ayurveda: Life, Health and Longevity A brief introduction and guide. New Delhi, India: Penguin Books 1992.
[26]
Puri P, Singh SK, Srivastava S. Reporting heterogeneity in the measurement of hypertension and diabetes in India. J Public Health 2020; 28(1): 23-30.
[http://dx.doi.org/10.1007/s10389-019-01017-z]
[27]
Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177. Available from: http://www.frontiersin.org/Pharmacology/editorialboard
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[28]
Dukare S, Gaikwad P, Kolhe SS, Jadhav SL. Formulation and evaluation of polyherbal ointment. Int J Sci Inov Res 2017; 5(2): 63-8.
[29]
Jamil K, Amarachinta PR. Preclinical evaluation of polyherbal formulations: hypoglycemic activity in rats. Int J Ayurvedic Herb Med 2012; 2(2): 218-28.
[30]
Joshi CS, Priya ES, Venkataraman S. Acute and subacute toxicity studies on the polyherbal antidiabetic formulation diakyur in experimental animal models. J Health Sci 2007; 53(2): 245-9.
[http://dx.doi.org/10.1248/jhs.53.245]
[31]
Bangar OP, Jarald E, Showkat P, Ahmad S. Antidiabetic activity of a polyherbal formulation (Karnim Plus). Int J Green Pharm 2009; 3(3): 214.
[http://dx.doi.org/10.4103/0973-8258.56276]
[32]
Karigar AA, Shariff WR. Antidiabetic effect of polyherbal formulation in alloxan-induced diabetes mellitus. J Pharm Res 2009; 2(11): 1757-9.
[33]
Kumar CH, Kumar JNS, Ishaq BM, Rani GU, Prkash KV. Antidiabetic activity of a polyherbal preparation. Pharmacologyonline 2010; 2: 780-7.
[34]
Ghosh D, Bera TK, De D, Chatterjee K, Ali KM. Effect of Diashis, a polyherbal formulation, in streptozotocin-induced diabetic male albino rats. Int J Ayurveda Res 2010; 1(1): 18-24.
[http://dx.doi.org/10.4103/0974-7788.59939] [PMID: 20532093]
[35]
Ramesh M, Kumar PV, Chintalapudi P. Anti diabetic activity of polyherbal extract on streptozotocin induced diabetes in wistar rats. Int Res J Pharm Appl Sci 2012; 2(6): 174-82.
[36]
Kesavanarayanan KS, Sathiya S, Kalaivani P, et al. DIA-2, a polyherbal formulation ameliorates hyperglycemia and protein-oxidation without increasing the body weight in type II diabetic rats. Eur Rev Med Pharmacol Sci 2013; 17(3): 356-69.
[PMID: 23426539]
[37]
Rajwar S, Khatri P. Diabetic effects of polyherbal formulation of lawsonia inermisand azadirachta indica. J Drug Deliv Ther 2013; 3(2): 45-51.
[http://dx.doi.org/10.22270/jddt.v3i2.415]
[38]
Widyawaruyanti A, Sukardiman A, Iqbal MHS, Aya IS. Hypoglycemic Activity of Andrographis paniculate Nees. and Lagerstroemia speciosa L. Herbal Tea Combination. E-Journal Planta Husada 2013; 1: 7-9.
[39]
Madan S, Gullaiya S, Sharma D, Kamraj M. Evaluation of antidiabetic potential of Madhurakshak, A polyherbal formulation against streptozotocin induced diabetic mellitus. World J Pharm Pharm Sci 2014; 3(3): 1160-72.
[40]
Singh K, Ashok BK, Kaur M, Ravishankar B, Chandola H. Hypoglycemic and antihyperglycemic activity of Saptarangyadi Ghanavati: An Ayurvedic compound formulation. Ayu 2014; 35(2): 187-90.
[http://dx.doi.org/10.4103/0974-8520.146248] [PMID: 25558166]
[41]
Demoz MS, Gachoki KP, Mungai KJ, Negusse BG. Evaluation of the anti-diabetic potential of the methanol extracts of aloe camperi, meriandradianthera and a polyherb. J Diabetes Mellitus 2015; 5(4): 267-76.
[http://dx.doi.org/10.4236/jdm.2015.54033]
[42]
Gupta PP, Haider J, Yadav RP, Pal U. Preclinical evaluation of antidiabetic activity of poly herbal plant extract in streptozotocin induced diabetic rats. Phytopharmaco 2016; 5(2): 45-9.
[http://dx.doi.org/10.31254/phyto.2016.5202]
[43]
Tripathi N, Kumar V, Acharya S. Anti-diabetic activity of a polyherbal formulation in streptozotocin induced type 2 diabetic rats. J Nat Rem 2016; 16: 149-52.
[44]
Chaudhuri A, Sharma S. Evaluation of antidiabetic activity of polyherbal formulation in streptozotocin-induced diabetic rats. UK J Pharm Biosci 2016; 4: 1-6.
[45]
Suman M, Shivalinge GKP, Pal U, Priyanka S. Evaluation of antidiabetic and antihyperlipidemic activity of newly formulated polyherbal antidiabetic tablets in streptozocin-induced diabetes mellitus in rats. Asian J Pharm Clin Res 2016; 9(1): 202-7.
[46]
Sur TK, Hazar A. Preclinical evaluation of standardized anti-diabetic herbal formulation (ADC-05). JIPBS 2017; 4: 12-6.
[47]
Jagtap V, Jagtap P, Jayabhaye M, et al. Evaluation of polyherbal formulation for its anti-diabetic activity against stz induced diabetes in rat. Int J Sci 2018; 5(5): 1-5.
[48]
Islam D, Akter A, Huque A, et al. Hypoglycemic effect study of a comination of some stipulated spices in alloxan induced Diabetic Albino wastar rats alon with Nutritional value evaluation. J Diabetes Mellitus 2018; 8(2): 43-53.
[http://dx.doi.org/10.4236/jdm.2018.82005]
[49]
Iftikhar A, Aslam B, Muhammad F, Khaliq T. Polyherbal formulation ameliorates diabetes mellitus in alloxan-induced diabetic rats: Involvement of pancreatic genes expression. Pak Vet J 2018; 38(3): 261-5.
[http://dx.doi.org/10.29261/pakvetj/2018.036]
[50]
Srivastava N, Rai AK. Hypoglycemic effect of Polyherbal formulations in alloxan induced diabetic mice. J Drug Deliv Ther 2018; 8(2): 87-95.
[http://dx.doi.org/10.22270/jddt.v8i2.1670]
[51]
Kiani Z, Hassanpour-Fard M, Asghari Z, Hosseini M. Experimental evaluation of a polyherbal formulation (Tetraherbs): antidiabetic efficacy in rats. Comp Clin Pathol 2018; 27(6): 1437-45.
[http://dx.doi.org/10.1007/s00580-018-2755-9]
[52]
Muhsin SM, Mahmood RI, Rashaa F, Lattif A, Sabrei DA. Hypoglycemic and hypolipidemic properties of three plants extract in alloxan induced diabetic rats. Plant Arch 2019; 19: 1558-63.
[53]
Mali KK, Ligade SS, Dias RS. Delaying effect of polyherbal formulation on cataract in STZ-NIC-induced Diabetic wistar rats. Indian J Pharm Sci 2019; 81(3): 415-23.
[http://dx.doi.org/10.36468/pharmaceutical-sciences.525]
[54]
Manigauha A, Dubey B, Dubey B. Formulation and evaluation of antidiabetic and antihyperlipidemic activities of polyherbal formulation in streptozotocin induced diabetic rat. Pharma Biosci J 2019; 7(1): 26-30.
[http://dx.doi.org/10.20510/ukjpb/7/i1/179298]
[55]
Ghauri AO, Ahmad S, Rehman T. In vitro and in vivo anti-diabetic activity of Citrullus colocynthis pulpy flesh with seeds hydro-ethanolic extract. J Complement Integr Med 2020; 17(2): 1-9.
[http://dx.doi.org/10.1515/jcim-2018-0228] [PMID: 31971913]
[56]
Mawlieh BS, Shastry CS, Chand S. Evaluation of Anti-diabetic Activity of two marketed Herbal Formulations. Res J Pharm Technol 2020; 13(2): 664-8.
[http://dx.doi.org/10.5958/0974-360X.2020.00127.4]
[57]
Chan JYW, Lam FC, Leung PC, Che CT, Fung KP. Antihyperglycemic and antioxidative effects of a herbal formulation of Radix Astragali, Radix Codonopsis and Cortex Lycii in a mouse model of type 2 diabetes mellitus. Phytother Res 2009; 23(5): 658-65.
[http://dx.doi.org/10.1002/ptr.2694] [PMID: 19107854]
[58]
Akhtar MS, Zafar M, Irfan HM, Bashir S. Hypoglycemic effect of a compound herbal formulation (ziabeen) on blood glucose In normal and alloxan-diabetic rabbits. Diabetol Croat 2012; 41: 87-94.
[59]
Patel JA, Thakkar NV. Pharmacological evaluation of “Glyoherb”: A polyherbal formulation on streptozotocin-induced diabetic rats. Int J Diabetes Dev Ctries 2010; 30(1): 1-7.
[http://dx.doi.org/10.4103/0973-3930.60001] [PMID: 20431798]
[60]
Gupta YK, Kumar G, Srivastava A, Sharma SK. The hypolipidemic activity of Ayurvedic medicine, Arogyavardhini vati in Triton WR-1339-induced hyperlipidemic rats: A comparison with fenofibrate. J Ayurveda Integr Med 2013; 4(3): 165-70.
[http://dx.doi.org/10.4103/0975-9476.118707] [PMID: 24250146]
[61]
Wanjari MM, Mishra S, Dey YN, Sharma D, Gaidhani SN, Jadhav AD. Antidiabetic activity of Chandraprabha vati – A classical Ayurvedic formulation. J Ayurveda Integr Med 2016; 7(3): 144-50.
[http://dx.doi.org/10.1016/j.jaim.2016.08.010] [PMID: 27665674]
[62]
Padhar BC, Dave AR, Goyal M. Clinical study of Arogyavardhini compound and lifestyle modification in management of metabolic syndrome: A double blind placebo controlled randomized clinical trial. Ayu 2019; 40(3): 171-8.
[63]
Wanjari MM, Mishra S, Dey YN, Sharma D, Gaidhani SN, Jadhav AD. Antidiabetic activity of Chandraprabha vati – A classical Ayurvedic formulation. J Ayurveda Integr Med 2016; 7(3): 144-50.
[http://dx.doi.org/10.1016/j.jaim.2016.08.010]
[64]
Kant S, Sahu M, Sharma S, Kulkarn KS. Effect of Diabecon (D-400), an ayurvedic herbomineral formulation on diabetic retinopathy. Indian J Clin Pract 2000; 12: 49-56.
[65]
Pachauri A, Yadav H, Jain S, et al. Hypoglycemic Effect of Diabegon: A Polyherbal Preparation in Normal and Type 2 Diabetic Rats and Human Subjects. Int Med J 2009; 16(2): 117-24.
[66]
Mahajan S, Singh N, Subramanian SK, et al. “Diabegon”, a safe and effective polyherbal therapy for type 2 diabetes mellitus. World J Transl Med 2013; 2(3): 75-82.
[http://dx.doi.org/10.5528/wjtm.v2.i3.75]
[67]
Yadav D, Tiwari A, Mishra M, et al. Anti-hyperglycemic and anti-hyperlipidemic potential of a polyherbal preparation “Diabegon” in metabolic syndrome subject with type 2 diabetes. Afr J Tradit Complement Altern Med 2014; 11(2): 249-56.
[http://dx.doi.org/10.4314/ajtcam.v11i2.4] [PMID: 25435604]
[68]
Said O, Fulder S, Khalil K, Azaizeh H, Kassis E, Saad B. Maintaining a physiological blood glucose level with ‘glucolevel’, a combination of four anti-diabetes plants used in the traditional arab herbal medicine. Evid Based Complement Alternat Med 2008; 5(4): 421-8.
[http://dx.doi.org/10.1093/ecam/nem047] [PMID: 18955212]
[69]
Shrirang C, Sarang D, Shivapal KG, et al. A randomised single blind active controlled, parallel group study comparing the efficacy & safety of the karnim plus® capsules in patients with mild or moderate diabetes mellitus type. II. IJRAPS 2017; 1(2): 6-112.
[70]
Zarvandi M, Rakhshandeh H, Abazari M, Shafiee-Nick R, Ghorbani A. Safety and efficacy of a polyherbal formulation for the management of dyslipidemia and hyperglycemia in patients with advanced-stage of type-2 diabetes. Biomed Pharmacother 2017; 89: 69-75.
[http://dx.doi.org/10.1016/j.biopha.2017.02.016] [PMID: 28214690]
[71]
Rashid MHA, Ansary SJ, Jahan R, Rahmatullah M. Use of a novel polyherbal formulation for the treatment of diabetes. Asian J Pharmacogn 2018; 2(3): 55-9.
[72]
Nille GC, Reddy KR, Tripathi JS. Clinical evaluation of talapotaka churna- a polyhrrabal ayurvedic formulation in type 2 diabetes mellitus. Indian J Trad Med 2017; 17: 168-75.
[73]
Parasuraman S, Thing G, Dhanaraj S. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev 2014; 8(16): 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]
[74]
Kanetkar P, Singhal R, Kamat M. Gymnema sylvestre: A Memoir. J Clin Biochem Nutr 2007; 41(2): 77-81.
[http://dx.doi.org/10.3164/jcbn.2007010] [PMID: 18193099]
[75]
Khan F, Sarker MMR, Ming LC, et al. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front Pharmacol 2019; 10: 1223.
[http://dx.doi.org/10.3389/fphar.2019.01223] [PMID: 31736747]
[76]
Fuller S, Stephens JM. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome. Adv Nutr 2015; 6(2): 189-97.
[http://dx.doi.org/10.3945/an.114.007807] [PMID: 25770257]
[77]
Chen Y, Tang YM, Yu SL, et al. Advances in the pharmacological activities and mechanisms of diosgenin. Chin J Nat Med 2015; 13(8): 578-87.
[http://dx.doi.org/10.1016/S1875-5364(15)30053-4] [PMID: 26253490]
[78]
Saravanan G, Ponmurugan P, Deepa MA, Senthilkumar B. Modulatory effects of diosgenin on attenuating the key enzymes activities of carbohydrate metabolism and glycogen content in streptozotocin-induced diabetic rats. Can J Diabetes 2014; 38(6): 409-14.
[http://dx.doi.org/10.1016/j.jcjd.2014.02.004] [PMID: 24993510]
[79]
Sangeetha MK, ShriShri Mal N, Atmaja K, Sali VK, Vasanthi HR. PPAR’s and Diosgenin a chemico biological insight in NIDDM. Chem Biol Interact 2013; 206(2): 403-10.
[http://dx.doi.org/10.1016/j.cbi.2013.08.014] [PMID: 24001619]
[80]
Sauvaire Y, Petit P, Broca C, et al. 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes 1998; 47(2): 206-10.
[http://dx.doi.org/10.2337/diab.47.2.206] [PMID: 9519714]
[81]
Rashid K, Sil PC. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats. Toxicol Appl Pharmacol 2015; 282(3): 297-310.
[http://dx.doi.org/10.1016/j.taap.2014.12.003] [PMID: 25541178]
[82]
Choi MS, Jung UJ, Yeo J, Kim MJ, Lee MK. Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in Non-Obese Diabetic (NOD) mice. Diabetes Metab Res Rev 2008; 24(1): 74-81.
[http://dx.doi.org/10.1002/dmrr.780] [PMID: 17932873]
[83]
Cheong SH, Furuhashi K, Ito K, et al. Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in Type 2 diabetic model mice. J Nutr Biochem 2014; 25(2): 136-43.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.012] [PMID: 24445037]
[84]
Das D, Sarkar S, Bordoloi J, Wann SB, Kalita J, Manna P. Daidzein, its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2 diabetes. Biofactors 2018; 44(5): 407-17.
[http://dx.doi.org/10.1002/biof.1439] [PMID: 30191623]
[85]
Fu Z, Gilbert ER, Pfeiffer L, Zhang Y, Fu Y, Liu D. Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl Physiol Nutr Metab 2012; 37(3): 480-8.
[http://dx.doi.org/10.1139/h2012-005] [PMID: 22509809]
[86]
Fu Z, Zhang W, Zhen W, et al. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology 2010; 151(7): 3026-37.
[http://dx.doi.org/10.1210/en.2009-1294] [PMID: 20484465]
[87]
Behloul N, Wu G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 2013; 698(1-3): 31-8.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.013] [PMID: 23178528]
[88]
Harini R, Ezhumalai M, Pugalendi KV. Antihyperglycemic effect of biochanin A, a soy isoflavone, on streptozotocin-diabetic rats. Eur J Pharmacol 2012; 676(1-3): 89-94.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.051] [PMID: 22178203]
[89]
Oza MJ, Kulkarni YA. Biochanin A improves insulin sensitivity and controls hyperglycemia in type 2 diabetes. Biomed Pharmacother 2018; 107: 1119-27.
[http://dx.doi.org/10.1016/j.biopha.2018.08.073] [PMID: 30257324]
[90]
Agarwal SP, Khanna R, Karmarkar R, Anwer MK, Khar RK. Shilajit: a review. Phytother Res 2007; 21(5): 401-5.
[http://dx.doi.org/10.1002/ptr.2100] [PMID: 17295385]
[91]
Wilson E, Rajamanickam GV, Dubey GP, et al. Review on shilajit used in traditional Indian medicine. J Ethnopharmacol 2011; 136(1): 1-9.
[http://dx.doi.org/10.1016/j.jep.2011.04.033] [PMID: 21530631]
[92]
Cagno V, Donalisio M, Civra A, Cagliero C, Rubiolo P, Lembo D. In vitro evaluation of the antiviral properties of Shilajit and investigation of its mechanisms of action. J Ethnopharmacol 2015; 166(26): 129-34.
[http://dx.doi.org/10.1016/j.jep.2015.03.019] [PMID: 25792012]
[93]
Sruthi T, Satyavat D, Upendar K, Kumar CP. Antidiabetic activity and anti-oxidant activity of niddwin, a polyherbal formulation in alloxan induced diabetic rats. Int J Pharm Pharm Sci 2014; 6(2): 273-7.
[94]
Singhal S, Rathore AS, Lohar V, Dave R, Dave J. Pharmacological evaluation of “sugar remedy,” a polyherbal formulation, on streptozotocin-induced diabetic mellitus in rats. J Tradit Complement Med 2014; 4(3): 189-95.
[http://dx.doi.org/10.4103/2225-4110.127800] [PMID: 25161924]
[95]
Agrawa R, Maheshwari R, Balaraman R, Seth A. Anti-hyperglycemic and Anti-lipidemic activities of Diabac (a polyherbal formulation) in Streptozotocin-nicotinamide induced type 2 diabetic rats. Pharmacogn J 2015; 7(5): 283-8.
[http://dx.doi.org/10.5530/pj.2015.5.6]
[96]
Basnet P. Himalayan medicinal resources: present and future. a case study: andidiabetic activity of shilajit. Plant Res 2001; 4(3): 161-71.
[97]
Nadkarni KM, Nadkarni AK. Dr KM Nadkarni's Indian materia medica: with Ayurvedic, Unani-Tibbi, Siddha, Allopathic, Homeopathic, Naturopathic & Home remedies, Appendices & Indexes. Popular Prakashan Pvt Ltd 1996; 1.
[98]
Rahman IU, Idrees M, Rahman KU, Khan MI, Jan NU. Hypoglycemic potential of herbal product dolabi compared with pioglitazone in streptozotocin-induced diabetic rats. Chin J Integr Med 2016.
[http://dx.doi.org/10.1007/s11655-016-2583-1] [PMID: 27220738]
[99]
Yang Y. Use of herbal drugs to treat COVID-19 should be with caution. Lancet 2020; 395(10238): 1689-90.
[http://dx.doi.org/10.1016/S0140-6736(20)31143-0] [PMID: 32422123]
[100]
Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 2013; 75(3): 588-602.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04425.x] [PMID: 22897361]
[101]
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998; 64(4): 353-6.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[102]
Paolino D, Vero A, Cosco D, et al. Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Front Pharmacol 2016; 7: 485.
[http://dx.doi.org/10.3389/fphar.2016.00485] [PMID: 28066239]
[103]
Gómez-Mascaraque LG, Casagrande Sipoli C, de La Torre LG, López-Rubio A. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin. Food Chem 2017; 233: 343-50.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.133] [PMID: 28530583]
[104]
Del Prado-Audelo M, Caballero-Florán I, Meza-Toledo J, et al. Formulations of curcumin nanoparticles for brain diseases. Biomolecules 2019; 9(2): 56.
[http://dx.doi.org/10.3390/biom9020056] [PMID: 30743984]
[105]
Huo X, Zhang Y, Jin X, Li Y, Zhang L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 2019; 190: 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[106]
Sadegh Malvajerd S, Izadi Z, Azadi A, et al. Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: behavioral and biochemical evidence. J Alzheimers Dis 2019; 69(3): 671-86.
[http://dx.doi.org/10.3233/JAD-190083] [PMID: 31156160]
[107]
Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumin. Cancer 2005; 104(6): 1322-31.
[http://dx.doi.org/10.1002/cncr.21300] [PMID: 16092118]
[108]
Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 2007; 330(1-2): 155-63.
[http://dx.doi.org/10.1016/j.ijpharm.2006.09.025] [PMID: 17112692]
[109]
Du L, Feng X, Xiang X, Jin Y. Wound healing effect of an in situ forming hydrogel loading curcumin-phospholipid complex. Curr Drug Deliv 2016; 13(1): 76-82.
[http://dx.doi.org/10.2174/1567201813666151202195437] [PMID: 26634789]
[110]
Patel SS, Shah RS, Goyal RK. Antihyperglycemic, antihyperlipidemic and antioxidant effects of Dihar, a polyherbal ayurvedic formulation in streptozotocin induced diabetic rats. Indian J Exp Biol 2009; 47(7): 564-70.
[PMID: 19761040]
[111]
Umamaheswari S, Joseph LD, Srikanth J, et al. Antidiabetic activity of a polyherbal formulation (DIABET). Int J Pharm Sci 2010; 218-22.
[112]
Usha T, Middha SK, Narzary D, Brahma BK, Goyal AK. In silico and in vivo based scientific evaluation of traditional anti-diabetic herb Hodgsonia heteroclita. Bangladesh J Pharmacol 2017; 12(2): 165-6.
[http://dx.doi.org/10.3329/bjp.v12i2.31122]
[113]
Pari L, Saravanan G. Antidiabetic effect of Cogent db, a herbal drug in alloxan-induced diabetes mellitus. Comp Biochem Physiol C Toxicol Pharmacol 2002; 131(1): 19-25.
[http://dx.doi.org/10.1016/S1532-0456(01)00259-9 ] [PMID: 11796322]
[114]
Saravanan G, Pari L. Effect of Cogent db, a herbal drug, on serum and tissue lipid metabolism in experimental hyperglycaemic rats. Diabetes Obes Metab 2003; 5(3): 156-62.
[http://dx.doi.org/10.1046/j.1463-1326.2003.00257.x ] [PMID: 12681022]
[115]
Babu PS, Prince PSM. Antihyperglycaemic and antioxidant effect of hyponidd, an ayurvedic herbomineral formulation in streptozotocin-induced diabetic rats. J Pharm Pharmacol 2010; 56(11): 1435-42.
[http://dx.doi.org/10.1211/0022357044607 ] [PMID: 15525451]
[116]
Babu PS, Ignacimuthu S. Antihyperlipidemic and antioxidant effect of hyponidd in the brain of streptozotocin induced diabetic rat. Int J Biol Chem 2007; 1: 196-204.
[http://dx.doi.org/10.3923/ijbc.2007.196.204]
[117]
Somani RS, Deshmukh PR, Shah PR, Soni RM, Jain DP, Khaserao SS. Prokinetic effect of hyponidd, a herbomineral formulation in stz- induced diabetic rats. Pharmacologia 2013; 4(1): 48-52.
[http://dx.doi.org/10.5567/pharmacologia.2013.48.52]
[118]
Chang MS, Oh MS, Kim DR, et al. Effects of Okchun-San, a herbal formulation, on blood glucose levels and body weight in a model of Type 2 diabetes. J Ethnopharmacol 2006; 103(3): 491-5.
[http://dx.doi.org/10.1016/j.jep.2005.08.039 ] [PMID: 16185833]
[119]
Yadav H, Jain S, Prasad GBKS, Yadav M. Preventive effect of diabegon, a polyherbal preparation, during progression of diabetes induced by high-fructose feeding in rats. J Pharmacol Sci 2007; 105(1): 12-21.
[http://dx.doi.org/10.1254/jphs.FP0060092 ] [PMID: 17878707]
[120]
Mandlik RV, Desai SK, Naik SR, Sharma G, Kohli RK. Antidiabetic activity of a polyherbal formulation (DRF/AY/5001). Indian J Exp Biol 2008; 46(8): 599-606.
[PMID: 18814489]
[121]
Chan JYW, Leung PC, Che CT, Fung KP. Protective effects of an herbal formulation of Radix Astragali, Radix Codonopsis and Cortex Lycii on streptozotocin-induced apoptosis in pancreatic β -cells: an implication for its treatment of diabetes mellitus. Phytother Res 2008; 22(2): 190-6.
[http://dx.doi.org/10.1002/ptr.2285 ] [PMID: 17726733]
[122]
Sajeeth CI, Manna PK, Manavalan R, Jolly CI. Phytochemical investigation and antioxidant activity of a polyherbal formultion (ESF/AY/500) on streptozotocin indued oxidative stress in rats. Pharma Chem 2010; 2(5): 184-9.
[123]
Lanjhiyana S, Garabadu D, Ahirwar D, et al. Pharmacognostic Standardization and Hypoglycemic Evaluations of Novel Polyherbal Formulations. Pharm Lett 2011; 3(1): 319-33.
[124]
Kim JH, Chung HS, Kang M, et al. Anti-diabetic effect of standardized herbal formula PM021 consisting of Mori Folium and Aurantii Fructus on type II diabetic Otsuka Long–Evans Tokushima Fatty (OLETF) rats. Diabetes Res Clin Pract 2011; 93(2): 198-204.
[http://dx.doi.org/10.1016/j.diabres.2011.03.037 ] [PMID: 21524812]
[125]
Roa AP, Jamil K. Pharmacological Evaluation of Herbal Extracts For Their Invitro Hypoglycemic Activity. Int J Pharma Bio Sci 2011; 2(3): 408-16.
[126]
Kalia AN, Gauttam VK. Development of polyherbal antidiabetic formulation encapsulated in the phospholipids vesicle system. J Adv Pharm Technol Res 2013; 4(2): 108-17.
[http://dx.doi.org/10.4103/2231-4040.111527 ] [PMID: 23833751]
[127]
Ghorbani A, Shafiee-Nick R, Rakhshandeh H, Borji A. Antihyperlipidemic effect of a polyherbal mixture in streptozotocin-induced diabetic rats. J Lipids 2013; 2013: 1-6.
[http://dx.doi.org/10.1155/2013/675759 ] [PMID: 24383002]
[128]
Yadav D, Chaudhary AA, Garg V, et al. In vitro toxicity and antidiabetic activity of a newly developed polyherbal formulation (MAC-ST/001) in streptozotocin-induced diabetic Wistar rats. Protoplasma 2013; 250(3): 741-9.
[http://dx.doi.org/10.1007/s00709-012-0458-7 ] [PMID: 23053765]
[129]
Thamizh SN, Hima KM, Sanjayakumar YR, et al. Hypoglycaemic and antioxidant activity of SPHAG - a poly herbal formulation in alloxan induced wistar albino rats. Int J Pharm Sci Res 2015; 6(4): 767-72.
[130]
Mahajan SM, Baviskar DT, Chaudhari PM. Anti-diabetic activity of polyherbal formulation on alloxan induced diabetes. IOSR-JPBS 2018; 13(1): 1-6.
[131]
Pari L, Saravanan R. Antidiabetic effect of diasulin, a herbal drug, on blood glucose, plasma insulin and hepatic enzymes of glucose metabolism in hyperglycaemic rats. Diabetes Obes Metab 2004; 6(4): 286-92.
[http://dx.doi.org/10.1111/j.1462-8902.2004.0349.x ] [PMID: 15171753]
[132]
Saravanan R, Pari L. Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats. BMC Complement Altern Med 2005; 5(1): 14.
[http://dx.doi.org/10.1186/1472-6882-5-14 ] [PMID: 15969768]
[133]
Majhi S, Najmi AK, Sara UV. Hypoglycemic and antihyperglycemic activity of polyherbal formulation in normoglycemic and Streptozotocin-induced diabetic rats. Int J Green Pharm 2018; 12(2): 98-106.
[134]
Kurian GA, Manjusha V, Nair SS, Varghese T, Padikkala J. Short-term effect of G-400, polyherbal formulation in the management of hyperglycemia and hyperlipidemia conditions in patients with type 2 diabetes mellitus. Nutrition 2014; 30(10): 1158-64.
[http://dx.doi.org/10.1016/j.nut.2014.02.026 ] [PMID: 24976431]
[135]
Kurian GA. Hypoglycemic effect of poly-herbal combination in streptozotocin-induced diabetic rats. Bangladesh J Pharmacol 2016; 11(2): 364-7.
[http://dx.doi.org/10.3329/bjp.v11i2.24855]
[136]
Mishra J, Dash AK, Dash DK. Hypoglycemic, hypolipidemic and antioxidant potentials of specially formulate polyherbal, formulation in streptozotocin induced diabetic rats. Eur Sci J 2014; 10(18): 340-51.
[137]
Bera TK, Jana K, Maity S, et al. Antihyperglycemic and antihyperlipidemic effects of diashis, a polyherbal formulation, in streptozotocininduced diabetic male albino rat: An approach through toxicity study. World J Pharm Res 2015; 4(5): 1043-59.
[138]
Kumar R, Arora V, Ram V, Bhandari A, Vyas P. Hypoglycemic and hypolipidemic effect of Allopolyherbal formulations in streptozotocin induced diabetes mellitus in rats. Int J Diabetes Mellit 2015; 3(1): 45-50.
[http://dx.doi.org/10.1016/j.ijdm.2011.01.005]
[139]
Dubey GP, Subhasree N, Kamella A, Kaliappan I, agrawal A. Antidiabetic and antihyperlipidemic activities of a novel polyherbal formulation in high fat diet/streptozotocin induced diabetic rat model. Indian J Pharmacol 2015; 47(5): 509-13.
[http://dx.doi.org/10.4103/0253-7613.165200 ] [PMID: 26600639]
[140]
Majeed W, Khali T, Aslam B, Khan JA. Polyherbal formulation prevents hyperglycemia by modulating the biochemical parameters and upregulating the insulin signaling cascade in alloxan induced hyperglycemic rats. Pak Vet J 2018; 38(2): 121-6.
[http://dx.doi.org/10.29261/pakvetj/2018.035]
[141]
Hari R, Anbu J, Gengiah K. Antidiabetic antihyperlipidemic and hepato-protective effect of Gluconorm-5: A polyherbal formulation in steptozotocin induced hyperglycemic rats. Anc Sci Life 2014; 34(1): 23-32.
[http://dx.doi.org/10.4103/0257-7941.150773 ] [PMID: 25737607]
[142]
Choudhari VP, Gore KP, Pawar AT. Antidiabetic, antihyperlipidemic activities and herb–drug interaction of a polyherbal formulation in streptozotocin induced diabetic rats. J Ayurveda Integr Med 2017; 8(4): 218-25.
[http://dx.doi.org/10.1016/j.jaim.2016.11.002 ] [PMID: 29137853]
[143]
Reddy K, Sudheer A, Pradeepkumar B, Reddy C. Effect of a polyherbal formulation in streptozotocin-induced diabetic nephropathy in wistar rats. Indian J Pharmacol 2019; 51(5): 330-6.
[http://dx.doi.org/10.4103/ijp.IJP_217_18 ] [PMID: 31831922]
[144]
Sunarwidhi AL, Sudarsono S, Nugroho AE. Hypoglycemic Effect of Combination of Azadirachta indica A. Juss. and Gynura procumbens (Lour.) Merr. ethanolic extracts standardized by rutin and quercetin in alloxan-induced hyperglycemic rats. Adv Pharm Bull 2014; 4(2) (Suppl. 2): 613-8.
[http://dx.doi.org/10.5681/apb.2014.090 ] [PMID: 25671197]
[145]
Onuka AE, Emmanuel MPP, Nwafor A. polyherbal extract of Ocimum Gratissimum and GongronemaLatifolium on reproductive functions in alloxan induced diabetic male rats. J Med Sci Clin Res 2014; 2(4): 838-45.
[146]
Mustafa SB, Akram M, Muhammad Asif H, et al. Antihyperglycemic activity of hydroalcoholic extracts of selective medicinal plants Curcuma longa, Lavandula stoechas, Aegle marmelos, and Glycyrrhiza glabra and their polyherbal preparation in alloxaninduced diabetic mice. Dose Response 2019; 17(2): 1559325819852503.
[http://dx.doi.org/10.1177/1559325819852503] [PMID: 31191187] [http://dx.doi.org/10.1177/1559325819852503] [PMID: 31191187]
[147]
Kim JD, Kang SM, Seo BI, Choi HY, Choi HS, Ku SK. Anti-diabetic activity of SMK001, a poly herbal formula in streptozotocin induced diabetic rats: therapeutic study. Biol Pharm Bull 2006; 29(3): 477-82.
[http://dx.doi.org/10.1248/bpb.29.477 ] [PMID: 16508149]
[148]
Nair RVR, Varma K, Paul B, Amalraj A, Kuttappan S. Evaluation of the anti-hyperglycemic and antioxidant activities of a novel phytochemical formulation. Phytomedicine Plus 2021; 1(3): 100093.
[http://dx.doi.org/10.1016/j.phyplu.2021.100093]
[149]
Barti H, Ram V. Development and evaluation of polyherbal formulation for anti diabetic potential in streptozotocin-induced diabetic rats. Biol Sci 2021; 01: 46-52.
[150]
Mandoria N, Dashora K, Ahirwar K, Khirwadkar P. Antidiabetic potenttial of a novel polyherbal preparation in albino rats. IMCRR 2021; 4(8): 1112-6.
[151]
Roy A, Gupta PP, Bharadwaj S, Chandrakar S. Antidiabetic activity of polyherbal formulations from chhattisgarh state. Res J Pharm Technol 2021; 14(3): 1375-9.
[http://dx.doi.org/10.5958/0974-360X.2021.00245.6]
[152]
Nasir A, Ansari AP, Rafeeqi TA, et al. Anti-diabetic potential of ‘Safūf-i-Dhayābītus’ as standalone and as an adjuvant with glibenclamide in streptozotocin-induced diabetic rats. Phytomedicine Plus 2022; 2(1): 100218.
[http://dx.doi.org/10.1016/j.phyplu.2022.100218]
[153]
Perumal N, Nallappan M, Shohaimi S, Kassim NK, Tee TT, Cheah YH. Synergistic antidiabetic activity of Taraxacum officinale (L.) Weber ex F.H.Wigg and Momordica charantia L. polyherbal combination. Biomed Pharmacother 2022; 145: 112401.
[http://dx.doi.org/10.1016/j.biopha.2021.112401 ] [PMID: 34785415]
[154]
Zhang XF, Tan BKH. Antihyperglycaemic and anti-oxidant properties of Andrographis paniculata in normal and diabetic rats. Clin Exp Pharmacol Physiol 2000; 27(5-6): 358-63.
[http://dx.doi.org/10.1046/j.1440-1681.2000.03253.x ] [PMID: 10831236]
[155]
Nugroho A, Warditiani NK, Pramono S, Andrie M, Siswanto E, Lukitaningsih E. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian J Pharmacol 2012; 44(3): 377-81.
[http://dx.doi.org/10.4103/0253-7613.96343 ] [PMID: 22701250]
[156]
Augustine AW, Narasimhan A, Vishwanathan M, Karundevi B. Evaluation of antidiabetic property of Andrographis paniculata powder in high fat and sucrose-induced type-2 diabetic adult male rat. Asian Pac J Trop Dis 2014; 4(1): S140-7.
[http://dx.doi.org/10.1016/S2222-1808(14)60429-1]
[157]
Akhtar M, Bin Mohd Sarib M, Ismail I, et al. Anti-diabetic activity and metabolic changes induced by Andrographis paniculata plant extract in obese diabetic rats. Molecules 2016; 21(8): 1026.
[http://dx.doi.org/10.3390/molecules21081026 ] [PMID: 27517894]
[158]
Yu BC, Hung CR, Chen WC, Cheng JT. Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats. Planta Med 2003; 69(12): 1075-9.
[http://dx.doi.org/10.1055/s-2003-45185 ] [PMID: 14750020]
[159]
Widjajakusuma EC, Jonosewojo A, Hendriati L, et al. Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of Andrographis paniculata (Burm. f.) Wall. ex Nees and Syzygium polyanthum (Wight.) Walp leaves in metformin treated patients with type 2 diabetes. Phytomedicine 2019; 55(55): 137-47.
[http://dx.doi.org/10.1016/j.phymed.2018.07.002 ] [PMID: 30668423]
[160]
Muthulingam M. Antidiabetic efficacy of leaf extracts of Asteracantha longifolia (Linn.) Nees. on alloxan induced diabetics in male albino wistar rats. Int J Pharm Biomed Res 2010; 1(2): 28-34.
[161]
Tang JJ, Li JG, Qi W, et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 2011; 13(1): 44-56.
[http://dx.doi.org/10.1016/j.cmet.2010.12.004 ] [PMID: 21195348]
[162]
Gupta R, Sharma AK, Sharma MC, Dobhal MP, Gupta RS. Evaluation of antidiabetic and antioxidant potential of lupeol in experimental hyperglycaemia. Nat Prod Res 2012; 26(12): 1125-9.
[http://dx.doi.org/10.1080/14786419.2011.560845 ] [PMID: 22043924]
[163]
Ghosh T, Ghosh S, Maity TK. Antihyperglycemic activity of Stigmasterol isolated from Bacopa Monnieri Linn. Aerial parts against Alloxan induced diabetic rats. Int J Nat Prod Res 2014; 4: 40-6.
[164]
Deshmukh TA, Yadav BV, Badole SL, Bodhankar SL, Dhaneshwar SR. Antihyperglycaemic activity of alcoholic extract of Aerva lanata (L.) A. L. Juss. Ex J. A. Schultes leaves in alloxan induced diabetic mice. J Appl Biomed 2008; 6(2): 81-7.
[http://dx.doi.org/10.32725/jab.2008.011]
[165]
Akanji MA, Olukolu SO, Kazeem MI. Leaf Extracts of Aerva lanata inhibit the activities of type 2 diabetes-related enzymes and possess antioxidant properties. Oxid Med Cell Longev 2018; 2018: 1-7.
[http://dx.doi.org/10.1155/2018/3439048 ] [PMID: 30356437]
[166]
Appia KG, Rai VK, Nandy BC, et al. Hypoglycemic and antihyperlipidaemic effect of ethanolic extract of aerial parts of aervalanata linn. in normal and alloxan induced diabetic rats. In J Pharm Sci. Drug Res 2009; 1(3): 191-4.
[167]
Agrawal R, Sethiya NK, Mishra SH. Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats. Pharm Biol 2013; 51(5): 635-42.
[http://dx.doi.org/10.3109/13880209.2012.761244 ] [PMID: 23527955]
[168]
Cooper EJ, Hudson AL, Parker CA, Morgan NG. Effects of the β-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur J Pharmacol 2003; 482(1-3): 189-96.
[http://dx.doi.org/10.1016/j.ejphar.2003.09.039 ] [PMID: 14660022]
[169]
Chikhi I, Allali H, El Amine Dib M, Medjdoub H, Tabti B. Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin–induced diabetic rats. Asian Pac J Trop Dis 2014; 4(3): 181-4.
[http://dx.doi.org/10.1016/S2222-1808(14)60501-6]
[170]
Campos KE, Diniz YS, Cataneo AC, Faine LA, Alves MJQF, Novelli ELB. Hypoglycaemic and antioxidant effects of onion, Allium cepa : dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. Int J Food Sci Nutr 2003; 54(3): 241-6.
[http://dx.doi.org/10.1080/09637480120092062 ] [PMID: 12775373]
[171]
Akash MSH, Rehman K, Chen S. Spice plant Allium cepa: Dietary supplement for treatment of type 2 diabetes mellitus. Nutrition 2014; 30(10): 1128-37.
[http://dx.doi.org/10.1016/j.nut.2014.02.011 ] [PMID: 25194613]
[172]
I Airaodion A, U Akaninyene I, O Ngwogu K, A Ekenjoku J, C Ngwogu A. Hypolipidaemic and antidiabetic potency of Allium cepa (Onions) bulb in alloxan-induced diabetic rats. Acta Scientifci Nutritional Health 2020; 4(3): 01-, -8.
[http://dx.doi.org/10.31080/ASNH.2020.04.0648]
[173]
Dhanarasu S. Evaluation of ameliorative effect of allicin (diallyl thiosulfinate) on experimentally induced diabetes mellitus in albino rats. Egypt Acad J Biol Sci C Physiol Mol Biol 2015; 7(1): 1-10.
[http://dx.doi.org/10.21608/eajbsc.2015.13698]
[174]
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006; 13(9-10): 624-9.
[http://dx.doi.org/10.1016/j.phymed.2005.09.010 ] [PMID: 17085291]
[175]
Poonam T, Prakash GP, Kumar LV. Influence of Allium sativum extract on the hypoglycemic activity of glibenclamide: an approach to possible herb-drug interaction. Drug Metabol Drug Interact 2013; 28(4): 225-30.
[http://dx.doi.org/10.1515/dmdi-2013-0031 ] [PMID: 24114899]
[176]
Waheed A, Usman N, Miana GA. Antidiabetic actions of powdered plant and aqueous extract of Allium Sativum (garlic) bulbs in type-ii diabetic Patients. Med Forum 2014; 25(8): 27-31.
[177]
Nasim SA, Dhir B, Kapoor R, et al. Alliin obtained from leaf extract of garlic grown under in situ conditions possess higher therapeutic potency as analyzed in alloxan-induced diabetic rats. Pharm Biol 2011; 49(4): 416-21.
[178]
Zhai B, Zhang C, Sheng Y, et al. Hypoglycemic and hypolipidemic effect of S-allyl-cysteine sulfoxide (alliin) in DIO mice. Sci Rep 2018; 8(1): 3527.
[http://dx.doi.org/10.1038/s41598-018-21421-x ] [PMID: 29476144]
[179]
Khaleghi S, Bahrami G, Mahmoodi M, Asgari V, Mostafaie A. Hypoglycemic effect of hydroalcoholic extract and hexane fraction of persian shallot (Allium hirtifoliumboiss) extract in streptozotocin-induced diabetic rats. J Rep Pharma Sci 2016; 5(1): 33-40.
[180]
Nunes E, Rafacho A. Implications of palmitoleic acid (palmitoleate) on glucose homeostasis, insulin resistance and diabetes. Curr Drug Targets 2017; 18(6): 619-28.
[http://dx.doi.org/10.2174/1389450117666151209120345 ] [PMID: 26648072]
[181]
Saprudin D, Batubara I, Putri NP. Endosperm of Indramayu mango (Mangifera indica) as α-glucosidase inhibitor and antioxidant. AIP Conference Proceedings. 2020; 2243: p. (1)020023.
[http://dx.doi.org/10.1063/5.0001080]
[182]
Kemasari P, Sangeetha S, Venkatalakshmi P. Antihyperglycemic activity of Mangifera indica Linn. in alloxan induced diabetic rats. J Chem Pharm Res 2011; 3(5): 653-9.
[183]
Villas Boas GR, Rodrigues Lemos JM, de Oliveira MW, et al. Aqueous extract from Mangifera indica Linn. (Anacardiaceae) leaves exerts long-term hypoglycemic effect, increases insulin sensitivity and plasma insulin levels on diabetic Wistar rats. PLoS One 2020; 15(1): e0227105.
[http://dx.doi.org/10.1371/journal.pone.0227105 ] [PMID: 31914140]
[184]
Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 2005; 97(3): 497-501.
[http://dx.doi.org/10.1016/j.jep.2004.12.010 ] [PMID: 15740886]
[185]
Sekar V, Chakraborty S, Mani S, Sali VK, Vasanthi HR. Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. S Afr J Bot 2019; 120: 129-34.
[http://dx.doi.org/10.1016/j.sajb.2018.02.001]
[186]
More TA, Kulkarni BR, Nalawade ML, Arvindekar AU. Antidiabetic activity of linalool and limonene in streptozotocin-induced diabetic rat: A combinatorial therapy approach. Int J Pharm Pharm 2014; 6(8): 159-63.
[187]
Gupta RK, Kesari AN, Murthy PS, Chandra R, Tandon V, Watal G. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol 2005; 99(1): 75-81.
[http://dx.doi.org/10.1016/j.jep.2005.01.048 ] [PMID: 15848023]
[188]
Panda S, Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors 2007; 31(3-4): 201-10.
[http://dx.doi.org/10.1002/biof.5520310307 ] [PMID: 18997283]
[189]
Giancarlo S, Rosa LM, Nadjafi F, Francesco M. Hypoglycaemic activity of two spices extracts:Rhus coriaria L. andBunium persicum Boiss. Nat Prod Res 2006; 20(9): 882-6.
[http://dx.doi.org/10.1080/14786410500520186 ] [PMID: 16753927]
[190]
Kumawat VS, Kaur G. Insulinotropic and antidiabetic effects of β‐caryophyllene with l ‐arginine in type 2 diabetic rats. J Food Biochem 2020; 44(4): e13156.
[http://dx.doi.org/10.1111/jfbc.13156 ] [PMID: 31997410]
[191]
Habtemariam S. Antidiabetic potential of monoterpenes: A case of small molecules punching above their weight. Int J Mol Sci 2017; 19(1): 4.
[http://dx.doi.org/10.3390/ijms19010004 ] [PMID: 29267214]
[192]
Eddouks M, Lemhadri A, Michel JB. Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol 2004; 94(1): 143-8.
[http://dx.doi.org/10.1016/j.jep.2004.05.006 ] [PMID: 15261975]
[193]
Muruganathan U, Srinivasan S, Indumathi D. Antihyperglycemic effect of carvone: Effect on the levels of glycoprotein components in streptozotocin-induced diabetic rats. J Acute Dis 2013; 2(4): 310-5.
[http://dx.doi.org/10.1016/S2221-6189(13)60150-X]
[194]
Muruganathan U, Srinivasan S. Beneficial effect of carvone, a dietary monoterpene ameliorates hyperglycemia by regulating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Biomed Pharmacother 2016; 84: 1558-67.
[http://dx.doi.org/10.1016/j.biopha.2016.11.025 ] [PMID: 27876337]
[195]
Bacanlı M, Anlar HG, Aydın S, et al. d -limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem Toxicol 110: 434-2.2017;
[http://dx.doi.org/10.1016/j.fct.2017.09.020] [PMID: 28923438]
[196]
Eidi M, Eidi A, Saeidi A, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res 2009; 23(3): 404-6.
[http://dx.doi.org/10.1002/ptr.2642 ] [PMID: 19003941]
[197]
Sreelatha S, Inbavalli R. Antioxidant, antihyperglycemic, and antihyperlipidemic effects of Coriandrum sativum leaf and stem in alloxan-induced diabetic rats. J Food Sci 2012; 77(7): T119-23.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02755.x ] [PMID: 22671941]
[198]
Andallu B, Ramya V. Antihyperglycemic, cholesterol-lowering and HDL-raising effects of cumin (Cuminum cyminum) seeds in type-2 diabetes. J Nat Rem 2007; 7(1): 142-9.
[http://dx.doi.org/10.18311/jnr/2007/207]
[199]
Jagtap AG, Patil PB. Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food Chem Toxicol 2010; 48(8-9): 2030-6.
[http://dx.doi.org/10.1016/j.fct.2010.04.048 ] [PMID: 20451573]
[200]
Srivsatava R, Srivastava SP, Jaiswal N, Mishra A, Maurya R, Srivastava AK. Antidiabetic and antidyslipidemic activities of Cuminum cyminum L. in validated animal models. Med Chem Res 2011; 20(9): 1656-66.
[http://dx.doi.org/10.1007/s00044-010-9483-2]
[201]
Patil SB, Takalikar SS, Joglekar MM, Haldavnekar VS, Arvindekar AU. Insulinotropic and β-cell protective action of cuminaldehyde, cuminol and an inhibitor isolated from Cuminum cyminum in streptozotocin-induced diabetic rats. Br J Nutr 2013; 110(8): 1434-43.
[http://dx.doi.org/10.1017/S0007114513000627 ] [PMID: 23507295]
[202]
Joglekar MM, Panaskar SN, Arvindekar AU. Inhibition of advanced glycation end product formation by cymene – A common food constituent. J Funct Foods 2014; 6: 107-15.
[http://dx.doi.org/10.1016/j.jff.2013.09.024]
[203]
Soud NE, Laithy NE, Saeed GE, et al. Antidiabetic activities of Foeniculum vulgare Mill. essential oil in streptozotocin-induced diabetic rats. Maced J Med Sci 2011; 150173(4): 139-146139.
[http://dx.doi.org/10.3889/MJMS.1857-5773.2011.0173]
[204]
Anitha T, Balakumar C, Ilango KB, Jose CB, Vetrivel D. Antidiabetic activity of the aqueous extracts of Foeniculum vulgare on streptozotocin-induced diabetic rats. Int J Adv Pharm Biol Chem 2014; 3(2): 487-94.
[205]
Dongare VR, Arvindekar AU, Magadum CS. Hypoglycemic effect of Foeniculum vulgare Mill. fruit on dexamethasone induced insulin resistance rats. Res J Pharm Phytochem 2010; 2(2): 163-5.
[206]
Sheikh BA, Pari L, Rathinam A, Chandramohan R. Trans-anethole, a terpenoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Biochimie 2015; 112: 57-65.
[http://dx.doi.org/10.1016/j.biochi.2015.02.008 ] [PMID: 25708856]
[207]
Sebai H, Selmi S, Rtibi K, Souli A, Gharbi N, Sakly M. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids Health Dis 2013; 12(1): 189.
[http://dx.doi.org/10.1186/1476-511X-12-189 ] [PMID: 24373672]
[208]
Kaskoos RA. GC/MS Profile and in-vitro Antidiabetic Activity of Cinnamomum z eylanicum Blume., Bark and Trachyspermum ammi (L.) Sprague, Seeds. J Essent Oil-Bear Plants 2019; 22(2): 535-44.
[http://dx.doi.org/10.1080/0972060X.2019.1612281]
[209]
Saravanan S, Pari L. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. Eur J Pharmacol 2015; 761: 279-87.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.034 ] [PMID: 26007642]
[210]
Özbek H, Yılmaz BS. Anti-inflammatory and hypoglycemic activities of alpha-pinene. Acta Pharmaceutica Sciencia 2017; 55(4): 7.
[http://dx.doi.org/10.23893/1307-2080.APS.05522]
[211]
Jong-Anurakkun N, Bhandari MR, Kawabata J. α-Glucosidase inhibitors from Devil tree (Alstonia scholaris). Food Chem 2007; 103(4): 1319-23.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.043]
[212]
Arulmozhi S, Mazumder PM, Lohidasan S, Thakurdesai P. Antidiabetic and antihyperlipidemic activity of leaves of Alstonia scholaris Linn. R.Br. Eur J Integr Med 2010; 2(1): 23-32.
[http://dx.doi.org/10.1016/j.eujim.2009.12.001]
[213]
Anusha I, Naik AS, Jagadish NM. Anti hyperglycemic activity of ethanolic leaf extract of Alstonia scholaris (L.) in induced diabetic rats. J Glob Biosci 2016; 5: 4535-40.
[214]
Wanjari AD, Maske AO, Akare SC, et al. Alpha-amylase inhibition activity of Leaves of Alstonia scholaris R Br. Int J Pharmacol Res 2019; 9(4): e5194.
[215]
Singh SN, Vats P, Suri S, et al. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 2001; 76(3): 269-77.
[http://dx.doi.org/10.1016/S0378-8741(01)00254-9 ] [PMID: 11448549]
[216]
Islam MA, Akhtar MA, Islam MR, et al. Antidiabetic and hypolipidemic effects of different fractions of Catharanthus roseus (Linn.) on normal and streptozotocin-induced diabetic rats. J Sci Res 2009; 1(2): 334-44.
[http://dx.doi.org/10.3329/jsr.v1i2.1075]
[217]
Desireddy S, Rasineni K, Bellamkonda R, Singareddy SR. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacognosy Res 2010; 2(3): 195-201.
[http://dx.doi.org/10.4103/0974-8490.65523 ] [PMID: 21808566]
[218]
Jayanthi M, Sowbala N, Rajalakshmi G, Kanagavalli U, Sivakumar V. Study of antihyperglycemic effect of Catharanthus roseus in alloxan induced diabetic rats. Int J Pharm Pharm Sci 2010; 2(4): 114-6.
[219]
Al-Shaqha WM, Khan M, Salam N, Azzi A, Chaudhary AA. Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC Complement Altern Med 2015; 15(1): 379.
[http://dx.doi.org/10.1186/s12906-015-0899-6 ] [PMID: 26490765]
[220]
Tiong SH, Looi CY, Arya A, et al. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia 2015; 102: 182-8.
[http://dx.doi.org/10.1016/j.fitote.2015.01.019 ] [PMID: 25665941]
[221]
Aba PE, Asuzu IU. Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A Review. Indian J Nat Prod Resour 2018; 9(2): 85-96.
[222]
Ugochukwu NH, Babady NE. Antihyperglycemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of normal and streptozotocin-induced diabetic rats. Life Sci 2003; 73(15): 1925-38.
[http://dx.doi.org/10.1016/S0024-3205(03)00543-5 ] [PMID: 12899918]
[223]
Akah PA, Uzodinma SU, Okolo CE. Antidiabetic activity of aqueous and methanol extract and fractions of Gongronema latifolium (Asclepidaceae) leaves in alloxan diabetic rats. J Appl Pharm Sci 2011; 01: 99-102.
[224]
Bobkiewicz-Kozłowska T, Dworacka M, Kuczyński S, et al. Hypoglycaemic effect of quinolizidine alkaloids — lupanine and 2- thionosparteine on non-diabetic and streptozotocin-induced diabetic rats. Eur J Pharmacol 2007; 565(1-3): 240-4.
[http://dx.doi.org/10.1016/j.ejphar.2007.02.032] [PMID: 17379208]
[225]
Wiedemann M, Gurrola-Díaz C, Vargas-Guerrero B, Wink M, García-López P, Düfer M. Lupanine improves glucose homeostasis by influencing KATP channels and insulin gene expression. Molecules 2015; 20(10): 19085-100.
[http://dx.doi.org/10.3390/molecules201019085 ] [PMID: 26492234]
[226]
Leach MJ. Gymnema sylvestre for diabetes mellitus: a systematic review. J Altern Complement Med 2007; 13(9): 977-83.
[http://dx.doi.org/10.1089/acm.2006.6387 ] [PMID: 18047444]
[227]
Mall GK, Mishra PK, Prakash V. Antidiabetic and hypolipidemic activity of Gymnema sylvestre in alloxan induced diabetic rats. Global J Biotech & Biochem 2009; 4: 37-42.
[228]
Sugihara Y, Nojima H, Matsuda H, Murakami T, Yoshikawa M, Kimura I. Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. J Asian Nat Prod Res 2000; 2(4): 321-7.
[http://dx.doi.org/10.1080/10286020008041372 ] [PMID: 11249615]
[229]
Ali KM, Chatterjee K, De D, Bera TK, Ghosh D. Efficacy of aqueous extract of seed of Holarrhena antidysenterica for the management of diabetes in experimental model rat: A correlative study with antihyperlipidemic activity. Int J Appl Res Nat Prod 2009; 2(3): 13-21.
[230]
Mana S, Singhal S, Sharma NK, Singh D. Hypoglycemic effect of Holarrhena antidysenterica seeds on streptozotocin induced diabetic rats. Int J Pharm Tech Res 2010; 2(2): 1325-9.
[231]
Pathak VK, Maiti A, Gupta SS, Shukla I, Rao CV. Effect of the standardized extract of Holarrhena antidysenterica seeds against Streptozotocin-induced diabetes in rats. Int J Pharma Res Rev 2015; 4: 1-6.
[232]
Sheikh Y, Manral MS, Kathait V, Prasar B, Kumar R, Sahu RK. Computation of in vivo antidiabetic activity of Holarrhena antidysenterica seeds extracts in Streptozotocin-induced diabetic rats. IJPT 2016; 14: 22-7.
[233]
Bhusal A, Jamarkattel N, Shrestha A, et al. Evaluation of antioxidative and antidiabetic activity of bark of holarrhena pubescens wall. J Clin Diagn Res 2014; 8(9): HC05-8.
[http://dx.doi.org/10.7860/JCDR/2014/7803.4863]
[234]
Somania R, Singhai AK, Shivgunde P, Jain D. Asparagus racemosus Willd (Liliaceae) ameliorates early diabetic nephropathy in STZ induced diabetic rats. Indian J Exp Biol 2012; 50(7): 469-75.
[PMID: 22822526]
[235]
Vadivelan R, Gopala Krishnan R, Kannan R. Antidiabetic potential of Asparagus racemosus Willd leaf extracts through inhibition of α-amylase and α-glucosidase. J Tradit Complement Med 2019; 9(1): 1-4.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.004 ] [PMID: 30671360]
[236]
Liu YW, Hao YC, Chen YJ, et al. Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats. Phytother Res 2018; 32(8): 1574-82.
[http://dx.doi.org/10.1002/ptr.6088 ] [PMID: 29682805]
[237]
Akinmoladun AC, Akinloye O. Prevention of the onset of hyperglycaemia by extracts of Aloe barbadensis in rabbits treated with alloxan. Afr J Biotechnol 2007; 6(8): 1028-30.
[238]
Moniruzzaman M, Rokeya B, Ahmed S, Bhowmik A, Khalil M, Gan S. In vitro antioxidant effects of Aloe barbadensis Miller extracts and the potential role of these extracts as antidiabetic and antilipidemic agents on streptozotocin-induced type 2 diabetic model rats. Molecules 2012; 17(11): 12851-67.
[http://dx.doi.org/10.3390/molecules171112851 ] [PMID: 23117427]
[239]
Ghamari F, Ghaffari SM, Salami M, et al. Synergic study of α-glucosidase inhibitory action of aloin and its antioxidant activity with and without camel β-casein and its peptides. Protein Pept Lett 2013; 20(5): 607-12.
[http://dx.doi.org/10.2174/0929866511320050015 ] [PMID: 23116059]
[240]
Younus H, Anwar S. Antiglycating activity of Aloe vera gel extract and its active component Aloin. J Proteins Proteom 2018; 9(2): 115-25.
[241]
Demoz MS, Gachoki KP, Mungai KJ, Negusse BG. Evaluation of the anti-diabetic potential of the methanol extracts of <i>Aloe camperi</i>, <i>Meriandra dianthera</i> and a Polyherb. J Diabetes Mellitus 2015; 5(4): 267-76.
[http://dx.doi.org/10.4236/jdm.2015.54033]
[242]
Xue J, Ding W, Liu Y. Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2010; 81(3): 173-7.
[http://dx.doi.org/10.1016/j.fitote.2009.08.020 ] [PMID: 19699280]
[243]
Wu Z, Chen Q, Ke D, Li G, Deng W. Emodin protects against diabetic cardiomyopathy by regulating the AKT/GSK-3β signaling pathway in the rat model. Molecules 2014; 19(9): 14782-93.
[http://dx.doi.org/10.3390/molecules190914782 ] [PMID: 25232702]
[244]
Rajasekaran S, Sivagnanam K, Ravi K, Subramanian S. Hypoglycemic effect of Aloe vera gel on streptozotocin-induced diabetes in experimental rats. J Med Food 2004; 7(1): 61-6.
[http://dx.doi.org/10.1089/109662004322984725 ] [PMID: 15117555]
[245]
Noor A, Gunasekaran S, Manickam AS, Vijayalakshmi MA. Antidiabetic activity of Aloe vera and histology of organs in streptozotocin-induced diabetic rats. Curr Sci 2008; 94(8): 1070-6.
[246]
Kim K, Kim H, Kwon J, et al. Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine 2009; 16(9): 856-63.
[http://dx.doi.org/10.1016/j.phymed.2009.02.014 ] [PMID: 19303272]
[247]
Yagi A, Hegazy S, Kabbash A, Wahab EAE. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients. Saudi Pharm J 2009; 17(3): 209-15.
[http://dx.doi.org/10.1016/j.jsps.2009.08.007 ] [PMID: 23964163]
[248]
Huseini H, Kianbakht S, Hajiaghaee R, Dabaghian F. Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Planta Med 2012; 78(4): 311-6.
[http://dx.doi.org/10.1055/s-0031-1280474 ] [PMID: 22198821]
[249]
Sultana R, Begum R, Nannur Rahman M, Rakibul Hasan M, Azizul Haque M. Development of Aloe Vera Jelly for Diabetic Patients and Analysis of Its Physicochemical Properties. Int J Food Sci Biotechnol 2020; 5(1): 1-5.
[http://dx.doi.org/10.11648/j.ijfsb.20200501.11]
[250]
Yimam M, Brownell L, Jia Q. Aloesin as a medical food ingredient for systemic oxidative stress of diabetes. World J Diabetes 2015; 6(9): 1097-107.
[http://dx.doi.org/10.4239/wjd.v6.i9.1097 ] [PMID: 26265996]
[251]
Daradka HM, Abas MM, Mohammad MAM, Jaffar MM. Antidiabetic effect of Artemisia absinthium extracts on alloxan-induced diabetic rats. Comp Clin Pathol 2014; 23(6): 1733-42.
[http://dx.doi.org/10.1007/s00580-014-1963-1]
[252]
Baddar NWAH, Aburjai TA, Taha MO, Disi AM. Thujone corrects cholesterol and triglyceride profiles in diabetic rat model. Nat Prod Res 2011; 25(12): 1180-4.
[http://dx.doi.org/10.1080/14786419.2010.496116 ] [PMID: 21740283]
[253]
Irshaid F, Mansi K, Aburjai T. Antidiabetic effect of essential oil from Artemisia sieberi growing in Jordan in normal and alloxan induced diabetic rats. Pak J Biol Sci 2010; 13(9): 423-30.
[http://dx.doi.org/10.3923/pjbs.2010.423.430 ] [PMID: 20973395]
[254]
Kim DY, Kang MK, Lee EJ, Kim YH, Oh H, Kang YH. Eucalyptol Inhibits Advanced Glycation End Products-Induced Disruption of Podocyte Slit Junctions by Suppressing Rage-Erk-C-Myc Signaling Pathway. Mol Nutr Food Res 2018; 62(19): 1800302.
[http://dx.doi.org/10.1002/mnfr.201800302 ] [PMID: 29987888]
[255]
Ani V, Naidu KA. Antihyperglycemic activity of polyphenolic components of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds. Eur Food Res Technol 2008; 226(4): 897-903.
[http://dx.doi.org/10.1007/s00217-007-0612-1]
[256]
Arya A, Yeng Looi C, Chuen Cheah S, Rais Mustafa M, Ali Mohd M. Anti-diabetic effects of Centratherum anthelminticum seeds methanolic fraction on pancreatic cells, β-TC6 and its alleviating role in type 2 diabetic rats. J Ethnopharmacol 2012; 144(1): 22-32.
[http://dx.doi.org/10.1016/j.jep.2012.08.014 ] [PMID: 22954496]
[257]
Swarnkar R, Kaushal C, Jain SK. Hypoglycaemic activity of centratherum anthelminticum in experimental animals. J Drug Deliv Ther 2017; 7(4): 73-7.
[http://dx.doi.org/10.22270/jddt.v7i4.1472]
[258]
Punithavathi VR, Prince PSM, Kumar R, Selvakumari J. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol 2011; 650(1): 465-71.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.059 ] [PMID: 20863784]
[259]
Harini R, Pugalendi KV. Antihyperglycemic effect of protocatechuic acid on streptozotocin-diabetic rats. J Basic Clin Physiol Pharmacol 2010; 21(1): 79-91.
[http://dx.doi.org/10.1515/JBCPP.2010.21.1.79 ] [PMID: 20506690]
[260]
Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 2006; 318(2): 476-83.
[http://dx.doi.org/10.1124/jpet.106.105163 ] [PMID: 16644902]
[261]
Malini P, Kanchana G, Rajadurai M. Antibiabetic efficacy of ellagic acid in streptozotocin-induced diabetes mellitus in albino wistar rats. Asian J Pharm Clin Res 2011; 4(3): 124-8.
[262]
Ramar M, Manikandan B, Raman T, et al. Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol 2012; 690(1-3): 226-35.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.019 ] [PMID: 22659112]
[263]
Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in rats. Indian J Clin Biochem 2010; 25(2): 188-92.
[http://dx.doi.org/10.1007/s12291-010-0034-x ] [PMID: 23105908]
[264]
Zang Y, Zhang L, Igarashi K, Yu C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct 2015; 6(3): 834-41.
[http://dx.doi.org/10.1039/C4FO00844H ] [PMID: 25599885]
[265]
Hassan Z, Yam MF, Ahmad M, Yusof APM. Antidiabetic properties and mechanism of action of Gynura procumbens water extract in streptozotocin-induced diabetic rats. Molecules 2010; 15(12): 9008-23.
[http://dx.doi.org/10.3390/molecules15129008 ] [PMID: 21150821]
[266]
Algariri K, Meng KY, Atangwho IJ, et al. Hypoglycemic and anti–hyperglycemic study of Gynura procumbens leaf extracts. Asian Pac J Trop Biomed 2013; 3(5): 358-66.
[http://dx.doi.org/10.1016/S2221-1691(13)60077-5 ] [PMID: 23646298]
[267]
Riaz A, Rasul A, Hussain G, et al. Astragalin: a bioactive phytochemical with potential therapeutic activities. Adv Pharmacol Sci 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/9794625 ] [PMID: 29853868]
[268]
Kwon TO, Choi JW, Lee HS, Cho BO, Yin H-H, Jang S-I. Anti-diabetic effects of Mori folium extract on high-fat diet and streptozotocin-induced type II diabetes mellitus in mice. Korea Journal of Herbology 2015; 30(1): 1-9.
[http://dx.doi.org/10.6116/kjh.2015.30.1.1]
[269]
Kazazis CE, Evangelopoulos AA, Kollas A, Vallianou NG. The therapeutic potential of milk thistle in diabetes. Rev Diabet Stud 2014; 11(2): 167-74.
[http://dx.doi.org/10.1900/RDS.2014.11.167 ] [PMID: 25396404]
[270]
Sheela N, Jose MA, Sathyamurthy D, Kumar BN. Effect of silymarin on streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats. Iran J Kidney Dis 2013; 7(2): 117-23.
[PMID: 23485535]
[271]
Qin N, Jia C, Xu J, et al. New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities. Fitoterapia 2017; 119: 83-9.
[http://dx.doi.org/10.1016/j.fitote.2017.04.008 ] [PMID: 28400224]
[272]
Prabhu KS, Lobo R, Shirwaikar A. Antidiabetic properties of the alcoholic extract of Sphaeranthus indicus in streptozotocin-nicotinamide diabetic rats. J Pharm Pharmacol 2010; 60(7): 909-16.
[http://dx.doi.org/10.1211/jpp.60.7.0013 ] [PMID: 18549678]
[273]
Ramachandran S, Asokkumar K, Uma Maheswari M, et al. Investigation of antidiabetic, antihyperlipidemic, and in vivo antioxidant properties of Sphaeranthus indicus Linn. in type 1 diabetic rats: an identification of possible biomarkers. Evid Based Complement Alternat Med 2011; 2011: 1-8.
[http://dx.doi.org/10.1155/2011/571721 ] [PMID: 20953435]
[274]
Swetha K, Raju MG. Antidiabetic and hypolipidemic activity of methanolic extract of Sphaeranthus indicus in alloxan induced diabetic rats. Indo Am J Pharm 2014; 4: 5218-25.
[275]
Semwal B, Gupta J, Singh S, Kumar Y, Giri M. Antihyperglycemic activity of root of Berberis aristata D.C. in alloxan-induced diabetic rats. International Journal of Green Pharmacy 2009; 3(3): 259-62.
[http://dx.doi.org/10.4103/0973-8258.56288]
[276]
Bhutkar MA, Bhinge SD, Randive DS, Wadkar GH. Hypoglycemic effects of Berberis aristata and Tamarindus indica extracts in vitro. Bull Fac Pharm Cairo Univ 2017; 55(1): 91-4.
[http://dx.doi.org/10.1016/j.bfopcu.2016.09.001]
[277]
Upwa NK, Patel R, Waseem N, Mahobia NK. Hypoglycemic effect of methanolic extract of Berberis aristata DC stem on normal and streptozotocin induced diabetic rats. Int J Pharm Pharm Sci 2011; 3(1): 222-4.
[278]
Cicero AFG, Tartagni E. Antidiabetic properties of berberine: from cellular pharmacology to clinical effects. Hosp Pract 2012; 40(2): 56-63.
[http://dx.doi.org/10.3810/hp.2012.04.970 ] [PMID: 22615079]
[279]
Shyam T, Ganapaty S, Balakrishnaiah P. Antidiabetic activity of Rotula aquatica lour roots in streptozotocin induced diabetic rats. Am J Phytomed Clin Ther 2013; 1(7): 530-5.
[280]
Priya B, Gahlot M, Joshi P, Zade S, Bagmar U. Evaluation of Anti-Diabetic Activity of Methanolic Extract from the Leaves of Rotula Aquatica Lour in Alloxan-Induced Diabetic Rats. Pharmacogn J 2014; 6(2): 30-5.
[http://dx.doi.org/10.5530/pj.2014.2.5]
[281]
Anand P, Murali KY, Tandon V, Chandra R, Murthy PS. Preliminary studies on antihyperglycemic effect of aqueous extract of Brassica nigra (L.) Koch in streptozotocin induced diabetic rats. Indian J Exp Biol 2007; 45(8): 696-701.
[PMID: 17877146]
[282]
Abbas Q, Hassan M, Raza H, et al. In vitro, in vivo and in silico anti-hyperglycemic inhibition by sinigrin. Asian Pac J Trop Med 2017; 10(4): 372-9.
[http://dx.doi.org/10.1016/j.apjtm.2017.03.019 ] [PMID: 28552107]
[283]
Xu L, Nagata N, Ota T. Glucoraphanin: a broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte 2018; 7(3): 218-25.
[http://dx.doi.org/10.1080/21623945.2018.1474669 ] [PMID: 29898626]
[284]
Nagata N, Xu L, Kohno S, et al. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes 2017; 66(5): 1222-36.
[http://dx.doi.org/10.2337/db16-0662 ] [PMID: 28209760]
[285]
Hetta MH, Owis AI, Haddad PS, Eid HM. The fatty acid-rich fraction of Eruca sativa (rocket salad) leaf extract exerts antidiabetic effects in cultured skeletal muscle, adipocytes and liver cells. Pharm Biol 2017; 55(1): 810-8.
[http://dx.doi.org/10.1080/13880209.2017.1280687 ] [PMID: 28112007]
[286]
Wang X, Gupta J, Kerslake M, Rayat G, Proctor SD, Chan CB. Trans-11 vaccenic acid improves insulin secretion in models of type 2 diabetes in vivo and in vitro. Mol Nutr Food Res 2016; 60(4): 846-57.
[http://dx.doi.org/10.1002/mnfr.201500783 ] [PMID: 27061233]
[287]
Hichri F, Omri Hichri A, Maha M, Saad Mana Hossan A, Flamini G, Ben Jannet H. Chemical composition, antibacterial, antioxidant and in vitro antidiabetic activities of essential oils from Eruca vesicaria. Chem Biodivers 2019; 16(8): e1900183.
[http://dx.doi.org/10.1002/cbdv.201900183 ] [PMID: 31361076]
[288]
Eddouks M, Maghrani M, Zeggwagh NA, Michel JB. Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. J Ethnopharmacol 2005; 97(2): 391-5.
[http://dx.doi.org/10.1016/j.jep.2004.11.030 ] [PMID: 15707780]
[289]
Chauhan K, Sharma S, Agarwal N, Chauhan S, Chauhan B. A study on potential hypoglycemic and hypolipidemic effects of Lepidium Sativum (Garden Cress) in Alloxan induced diabetic rats. Am J Pharm Tech Res 2012; 2(3): 522-35.
[290]
Attia ES, Amer AH, Hasanein MA. The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat Prod Res 2019; 33(6): 901-5.
[http://dx.doi.org/10.1080/14786419.2017.1413564 ] [PMID: 29237302]
[291]
Boyadzhieva N. Study of the effect of lepidine on the course of a mild chronic form of alloxan-diabetes. Problemi na vŭtreshnatameditsina 1981; 9: 130-9.
[292]
Madhvi B, Arvind S, Sudhansu M, Sandeep T. Protective effect of Commiphora wightii in metabolic activity of streptozotocin (STZ) induced diabetes in rats. J Diabetes Endocrinol 2014; 5(3): 19-28.
[http://dx.doi.org/10.5897/JDE2014.0076]
[293]
El-Mekkawy S, Meselhy MR, Nkobole N, Lall N. Three new α-glucosidase inhibitors from guggul, the oleogum resin of Commiphora wightii. Nat Prod Res 2013; 27(2): 146-54.
[http://dx.doi.org/10.1080/14786419.2012.662651 ] [PMID: 22376270]
[294]
Liu W, Lv X, Huang W, Yao W, Gao X. Characterization and hypoglycemic effect of a neutral polysaccharide extracted from the residue of Codonopsis Pilosula. Carbohydr Polym 2018; 197(197): 215-26.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.067 ] [PMID: 30007607]
[295]
Zia-Ul-Haq M, Ćavar S, Qayum M, Imran I, Feo V. Compositional studies: antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew Int J Mol Sci 2011; 12(12): 8846-61.
[http://dx.doi.org/10.3390/ijms12128846 ] [PMID: 22272107]
[296]
Sivajothi V, Sd S. In vitro and in silico anti-diabetic activity of phthalic acid isolated from phyllanthus rheedii. Int J Res Ayurveda Pharm 2013; 4(6): 889-92.
[http://dx.doi.org/10.7897/2277-4343.04623]
[297]
Mahesh MG, Dipti ST, Kaushal PJ, Pragnesh VP, Balasaheb DS, Avinash D. Hypoglycemic and antihyperglycemic activity of <i>Nardostachys jatamansi</i> roots. Niger J Nat Prod Med 2008; 11(1): 67-70.
[http://dx.doi.org/10.4314/njnpm.v11i1.11886]
[298]
Aleem M, Asad BS, Mohammed T, et al. Antidiabetic activity of hydroalcoholic extracts of Nardostachys jatamansi in alloxan-induced diabetic rats. Br J Med Med Res 2014; 4(28): 4665-73.
[http://dx.doi.org/10.9734/BJMMR/2014/11282]
[299]
Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes 2011; 3(1): 29-37.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00107.x ] [PMID: 21143769]
[300]
Lanjhiyana S, Garabadu D, Ahirwar D, et al. Antidiabetic activity of methanolic extract of stem bark of Elaeodendron glaucum Pers. in alloxanized rat model. Adv Appl Sci Res 2011; 2(1): 47-62.
[301]
Susanti D, Amiroudine MZAM, Rezali MF, Taher M. Friedelin and lanosterol from Garcinia prainiana stimulated glucose uptake and adipocytes differentiation in 3T3-L1 adipocytes. Nat Prod Res 2013; 27(4-5): 417-24.
[http://dx.doi.org/10.1080/14786419.2012.725399 ] [PMID: 22988818]
[302]
Sikarwar M, Patil MB. Antihyperlipidemic activity of Salacia chinensis root extracts in triton-induced and atherogenic diet-induced hyperlipidemic rats. Indian J Pharmacol 2012; 44(1): 88-92.
[http://dx.doi.org/10.4103/0253-7613.91875 ] [PMID: 22345877]
[303]
Sellamuthu PS, Arulselvan P, Muniappan BP, Fakurazi S, Kandasamy M. Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocin-induced diabetic rats. J Med Food 2013; 16(8): 719-27.
[http://dx.doi.org/10.1089/jmf.2012.2480 ] [PMID: 23957355]
[304]
Morikawa T, Akaki J, Ninomiya K, et al. Salacinol and related analogs: new leads for type 2 diabetes therapeutic candidates from the Thai traditional natural medicine Salacia chinensis. Nutrients 2015; 7(3): 1480-93.
[http://dx.doi.org/10.3390/nu7031480 ] [PMID: 25734563]
[305]
Krishnakumar K, Augusti KT, Vijayammal PL. Hypoglycaemic and anti-oxidant activity of Salacia oblonga Wall. extract in streptozotocin-induced diabetic rats. Indian J Physiol Pharmacol 1999; 43(4): 510-4.
[PMID: 10776471]
[306]
Hsunweihuang T, Peng G, Qianli G, Yamahara J, Roufogalis B, Li Y. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-α. Toxicol Appl Pharmacol 2006; 210(3): 225-35.
[http://dx.doi.org/10.1016/j.taap.2005.05.003 ] [PMID: 15975614]
[307]
Xie W, Tanabe G, Matsuoka K, et al. Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Bioorg Med Chem 2011; 19(7): 2252-62.
[http://dx.doi.org/10.1016/j.bmc.2011.02.028 ] [PMID: 21420866]
[308]
Yoshino K, Miyauchi Y, Kanetaka T, Takagi Y, Koga K. Anti-diabetic activity of a leaf extract prepared from Salacia reticulata in mice. Biosci Biotechnol Biochem 2009; 73(5): 1096-104.
[http://dx.doi.org/10.1271/bbb.80854 ] [PMID: 19420711]
[309]
Ruvin Kumara NKVM, Pathirana RN, Pathirana C. Hyperglycemic activity of the root and stem of Salacia reticulata var. β‐diandra in alloxan diabetic rats. Pharm Biol 2005; 43(3): 219-25.
[http://dx.doi.org/10.1080/13880200590928780]
[310]
Khatib NA, Patil PA. Evaluation of Garcina indica Whole Fruit Extracts For Hypoglycemic Potential in Streptozotocin Induced Hyperglycemic Rats. Res J Pharm Tech 2011; 4(6): 999-1003.
[311]
Swathi P, Kumar TJ, Kumar EK. Methanolic fruit extract of Garcinia indica ameliorates progression of diabetic nephropathy in streptozotocin induced diabetic rats. Int J Biol Phram Res 2015; 6: 12-8.
[312]
Madhuri K, Naik PR. Modulatory effect of garcinol in streptozotocin-induced diabetic Wistar rats. Arch Physiol Biochem 2017; 123(5): 322-9.
[http://dx.doi.org/10.1080/13813455.2017.1336632 ] [PMID: 28598692]
[313]
Mali KK, Dias RJ, Havaldar VD, Yadav SJ. Antidiabetic effect of garcinol on streptozotocin-induced diabetic rats. Indian J Pharm Sci 2017; 79(3): 463-8.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000250]
[314]
Cui J, Gong R, Hu S, Cai L, Chen L. Gambogic acid ameliorates diabetes-induced proliferative retinopathy through inhibition of the HIF-1α/VEGF expression via targeting PI3K/AKT pathway. Life Sci 2018; 192(192): 293-303.
[http://dx.doi.org/10.1016/j.lfs.2017.11.007 ] [PMID: 29129773]
[315]
Ragavan B, Krishnakumari S. Antidiabetic effect ofT. arjuna bark extract in alloxan induced diabetic rats. Indian J Clin Biochem 2006; 21(2): 123-8.
[http://dx.doi.org/10.1007/BF02912926 ] [PMID: 23105628]
[316]
Morshed M, Haque A, Rokeya B, Ali L. Anti-hyperglycemic and lipid lowering effect of Terminalia arjuna bark extract on streptozotocin induced type-2 diabetic model Rats. Int J Pharm Pharm Sci 2011; 3(4): 450-4.
[317]
Kumar C, Kumar R, Nehar S. Phytochemical properties, total antioxidant status of acetone and methanol extract of Terminalia arjuna Roxb. bark and its hypoglycemic effect on Type-II diabetic albino rats. J Pharmacogn Phytochem 2013; 2(1): 199-208.
[318]
Biswas M, Kar B, Bhattacharya S, Kumar RBS, Ghosh AK, Haldar PK. Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats. Pharm Biol 2011; 49(4): 335-40.
[http://dx.doi.org/10.3109/13880209.2010.516755 ] [PMID: 21281245]
[319]
Mohanty IR, Borde M, Kumar C S, Maheshwari U. Dipeptidyl peptidase IV Inhibitory activity of Terminalia arjuna attributes to its cardioprotective effects in experimental diabetes: in silico, in vitro and in vivo analyses. Phytomedicine 2019; 57: 158-65.
[http://dx.doi.org/10.1016/j.phymed.2018.09.195 ] [PMID: 30668318]
[320]
Gupta A, Kumar R, Pandey AK. Antioxidant and antidiabetic activities of Terminalia bellirica fruit in alloxan induced diabetic rats. S Afr J Bot 2020; 130: 308-15.
[http://dx.doi.org/10.1016/j.sajb.2019.12.010]
[321]
Kumar GPS, Arulselvan P, Kumar DS, Subramanian SP. Anti-diabetic activity of fruits of Terminalia chebula on streptozotocin induced diabetic rats. J Health Sci 2006; 52(3): 283-91.
[http://dx.doi.org/10.1248/jhs.52.283]
[322]
Rao NK, Nammi S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats. BMC Complement Altern Med 2006; 6(1): 17.
[http://dx.doi.org/10.1186/1472-6882-6-17 ] [PMID: 16677399]
[323]
Huang YN, Zhao DD, Gao B, et al. Anti-hyperglycemic effect of chebulagic acid from the fruits of Terminalia chebula Retz. Int J Mol Sci 2012; 13(5): 6320-33.
[http://dx.doi.org/10.3390/ijms13056320 ] [PMID: 22754367]
[324]
Zhong J, Reece EA, Yang P. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects. Biochem Biophys Res Commun 2015; 467(2): 179-84.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.024 ] [PMID: 26453010]
[325]
El-Beih NM, Ramadan G, El-Husseiny EA, Hussein AM. Effects of pomegranate aril juice and its punicalagin on some key regulators of insulin resistance and oxidative liver injury in streptozotocin-nicotinamide type 2 diabetic rats. Mol Biol Rep 2019; 46(4): 3701-11.
[http://dx.doi.org/10.1007/s11033-019-04813-8 ] [PMID: 31006095]
[326]
Alladi S, Prakash DS, Malothu R, Nalini M, Rao KS. Anti-Hyperglycemic activity of the Leaves of Terminalia tomentosa against normal and alloxan induced diabetic rats. Res J Pharm Technol 2012; 5(12): 1577-84.
[327]
Sharma M, Lobo R, Setty MM, et al. In-vitro anti-diabetic evaluation of terminalia tomentosa (Roxb). bark. World J Pharm Res 2013; 2(6): 2366-72.
[328]
Manna P, Sinha M, Sil PC. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways. Toxicology 2009; 257(1-2): 53-63.
[http://dx.doi.org/10.1016/j.tox.2008.12.008 ] [PMID: 19133311]
[329]
Chaudhary S, Khosa RL, Jha KK, Verma N. Evaluation of antidiabetic activity of Cressa cretica Linn in alloxan induced diabetes in rats. Pharmacologyonline 2010; 3: 181-8.
[330]
Verma N, Jha KK, Chaudhary S, Garg V. Assessment of antidiabetic potential of Cressa cretica Linn in streptozotocin-induced diabetic rats. Int J Adv Res Innov 2014; 2(1): 293-7.
[http://dx.doi.org/10.51976/ijari.211444]
[331]
Ramesh B, Pugalendi KV. Antihyperlipidemic and antidiabetic effects of umbelliferone in streptozotocin diabetic rats. Yale J Biol Med 2005; 78(4): 189-96.
[PMID: 16720013]
[332]
Gomathi D, Ravikumar G, Kalaiselvi M, Devaki K, Uma C. Efficacy of Evolvulus alsinoides (L.) L. on insulin and antioxidants activity in pancreas of streptozotocin induced diabetic rats. J Diabetes Metab Disord 2013; 12(1): 39.
[http://dx.doi.org/10.1186/2251-6581-12-39 ] [PMID: 23834750]
[333]
Duraisamy G, Ganesan R, Manokaran K, Kanakasabapathi D, Chandrasekar U. Protective effect of the whole plant extract of Evolvulus alsinoides on glycoprotein alterations in streptozotocin induced diabetic rats. J Acute Dis 2013; 2(2): 148-50.
[http://dx.doi.org/10.1016/S2221-6189(13)60116-X]
[334]
Atal S, Agrawal RP, Vyas S, Phadnis P, Rai N. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Pol Pharm 2012; 69(5): 965-9.
[PMID: 23061294]
[335]
Simonen P, Gylling H, Miettinen TA. The validity of serum squalene and non-cholesterol sterols as surrogate markers of cholesterol synthesis and absorption in type 2 diabetes. Atherosclerosis 2008; 197(2): 883-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.08.003 ] [PMID: 17875306]
[336]
Abdel-Hassan IA, Abdel-Barry JA, Tariq Mohammeda S. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J Ethnopharmacol 2000; 71(1-2): 325-30.
[http://dx.doi.org/10.1016/S0378-8741(99)00215-9 ] [PMID: 10904181]
[337]
Huseini HF, Darvishzadeh F, Heshmat R, Jafariazar Z, Raza M, Larijani B. The clinical investigation of citrullus colocynthis (L.) schrad fruit in treatment of Type II diabetic patients: a randomized, double blind, placebo-controlled clinical trial. Phytother Res 2009; 23(8): 1186-9.
[http://dx.doi.org/10.1002/ptr.2754 ] [PMID: 19170143]
[338]
Ostovar M, Akbari A, Anbardar MH, et al. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. J Integr Med 2020; 18(1): 59-67.
[http://dx.doi.org/10.1016/j.joim.2019.12.002 ] [PMID: 31874814]
[339]
Ahangarpour A, Belali R, Bineshfar F, Javadzadeh S, Yazdanpanah L. Evaluation of skin absorption of the Citrullus colocynthis in treatment of type II diabetic patients. J Diabetes Metab Disord 2020; 19(1): 305-9.
[http://dx.doi.org/10.1007/s40200-020-00509-0 ] [PMID: 32550180]
[340]
Karimabad MN, Niknia S, Golnabadi MB, Poor SF, Hajizadeh MR, Mahmoodi M. Effect of citrullus colocynthis extract on glycated hemoglobin formation (in vitro). Eurasian J Med 2020; 52(1): 47-51.
[http://dx.doi.org/10.5152/eurasianjmed.2020.19223 ] [PMID: 32158314]
[341]
Shafaei H, Rad J, Behjati M, Delazar A. The effect of pulp and seed extract of Citrullus Colocynthis, as an antidaibetic medicinal herb, on hepatocytes glycogen stores in diabetic rabbits. Adv Biomed Res 2014; 3(1): 258.
[http://dx.doi.org/10.4103/2277-9175.148230 ] [PMID: 25625097]
[342]
Mohammad D. In vivo, hypolipidemic and antioxidant effects of Citrullus colocynthis pulp extract in alloxan-induced diabetic rats. Afr J Biotechnol 2013; 10(48): 9898-903.
[http://dx.doi.org/10.5897/AJB11.268]
[343]
Agarwal V, Sharma AK, Upadhyay A, Singh G, Gupta R. Hypoglycemic effects of Citrullus colocynthis roots. Acta Pol Pharm 2012; 69(1): 75-9.
[PMID: 22574509]
[344]
Kalva S, Fatima N, Nerella R, Samreen S. Insulinomimetic Effect of Citrullus Colocynthis Roots in STZ Challenged Rat Model. Iran J Pharm Res 2018; 14(3): 49-66.
[345]
Heydari M, Hashempur MH, Ostovar M, Shams M. Citrullus colocynthis and its potential role against diabetes and its complications.In: Bioactive Food as Dietary Interventions for Diabetes. 2019; pp. 495-507.
[http://dx.doi.org/10.1016/B978-0-12-813822-9.00032-1]
[346]
Varghese S, Narmadha R, Gomathi D, Kalaiselvi M, Devaki K. Evaluation of hypoglycemic effect of ethanolic seed extracts of Citrullus lanatus. Journal of Phytopharmacology 2013; 2(6): 31-40.
[http://dx.doi.org/10.31254/phyto.2013.2606]
[347]
Omigie IO, Agoreyo FO. Effects of watermelon (Citrullus lanatus) seed on blood glucose and electrolyte parameters in diabetic wistar rats. J Appl Sci Environ Manag 2014; 18(2): 231-3.
[http://dx.doi.org/10.4314/jasem.v18i2.12]
[348]
Sani UM. Phytochemical screening and antidiabetic effect of extracts of the seeds of Citrullus lanatus in alloxan-induced diabetic albino mice. J Appl Pharm Sci 2015.
[http://dx.doi.org/10.7324/JAPS.2015.50309]
[349]
Oseni OA, Odesanmi OE, Oladele FC. Antioxidative and antidiabetic activities of watermelon (Citrullus lanatus) juice on oxidative stress in alloxan-induced diabetic male Wistar albino rats. Niger Med J 2015; 56(4): 272-7.
[http://dx.doi.org/10.4103/0300-1652.169707 ] [PMID: 26759513]
[350]
Deshmukh CD, Jain A. Hypoglycemic effect of methanolic extract of Citrullus lanatus seeds. Int J Pharm Chem Biol Sci 2015; 5(8): 807-16.
[351]
Aruna A, Vijayalakshmi K, Karthikeyan V. Antidiabetic screening of methanolic extract of Citrullus lanatus leaves. Am J Pharm Tech Res 2014; 4(4): 295-323.
[352]
Ajiboye BO, Shonibare MT, Oyinloye BE. Antidiabetic activity of watermelon (Citrullus lanatus) juice in alloxan-induced diabetic rats. J Diabetes Metab Disord 2020; 19(1): 343-52.
[http://dx.doi.org/10.1007/s40200-020-00515-2 ] [PMID: 32550185]
[353]
Ryan M, McInerney D, Owens D, Collins P, Johnson A, Tomkin GH. Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. QJM 2000; 93(2): 85-91.
[http://dx.doi.org/10.1093/qjmed/93.2.85 ] [PMID: 10700478]
[354]
Venkateswaran S, Pari L. Effect of Coccinia indica on blood glucose, insulin and key hepatic enzymes in experimental diabetes. Pharm Biol 2002; 40(3): 165-70.
[http://dx.doi.org/10.1076/phbi.40.3.165.5836]
[355]
Jose E, Usha PTA. Evaluation of antidiabetic efficacy of Coccinia indica in rats. Indian J Anim Res 2010; 44(3): 168-72.
[356]
Vangoori Y, Mishra SS, Ambudas B, et al. Antidiabetic effect of Momordica charantia (Bitter melone) on Alloxan induced diabetic rabbits. Int J Med Res Health Sci 2013; 2(2): 137-42.
[357]
Efird J, Choi Y, Davies S, Mehra S, Anderson E, Katunga L. Potential for improved glycemic control with dietary Momordica charantia in patients with insulin resistance and pre-diabetes. Int J Environ Res Public Health 2014; 11(2): 2328-45.
[http://dx.doi.org/10.3390/ijerph110202328 ] [PMID: 24566057]
[358]
Ahmad Z, Zamhuri KF, Yaacob A, et al. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules 2012; 17(8): 9631-40.
[http://dx.doi.org/10.3390/molecules17089631 ] [PMID: 22885359]
[359]
Singh J, Cumming E, Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions. Open Med Chem J 2011; 5(2) (Suppl. 2): 70-7.
[http://dx.doi.org/10.2174/1874104501105010070 ] [PMID: 21966327]
[360]
Wang HY, Kan WC, Cheng TJ, Yu SH, Chang LH, Chuu JJ. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem Toxicol 2014; 69: 347-56.
[http://dx.doi.org/10.1016/j.fct.2014.04.008 ] [PMID: 24751968]
[361]
Desai S, Tatke P. Charantin: An important lead compound from Momordica charantia for the treatment of diabetes. J Pharmacogn Phytochem 2015; 3(6): 163-6.
[362]
Lo HY, Li TC, Yang TY, et al. Hypoglycemic effects of Trichosanthes kirilowii and its protein constituent in diabetic mice: the involvement of insulin receptor pathway. BMC Complement Altern Med 2017; 17(1): 53.
[http://dx.doi.org/10.1186/s12906-017-1578-6 ] [PMID: 28100206]
[363]
Go HK, Rahman M, Kim GB, et al. Antidiabetic effects of yam (Dioscorea batatas) and its active constituent, allantoin, in a rat model of streptozotocin-induced diabetes. Nutrients 2015; 7(10): 8532-44.
[http://dx.doi.org/10.3390/nu7105411 ] [PMID: 26501316]
[364]
Raut NA, Gaikwad NJ. Antidiabetic activity of hydro-ethanolic extract of Cyperus rotundus in alloxan induced diabetes in rats. Fitoterapia 2006; 77(7-8): 585-8.
[http://dx.doi.org/10.1016/j.fitote.2006.09.006 ] [PMID: 17056202]
[365]
Singh P, Khosa R, Mishra G, Jha K. Antidiabetic activity of ethanolic extract of Cyperus rotundus rhizomes in streptozotocin-induced diabetic mice. J Pharm Bioallied Sci 2015; 7(4): 289-92.
[http://dx.doi.org/10.4103/0975-7406.168028 ] [PMID: 26681885]
[366]
Tran HHT, Nguyen MC, Le HT, et al. Inhibitors of α -glucosidase and α -amylase from Cyperus rotundus. Pharm Biol 2014; 52(1): 74-7.
[http://dx.doi.org/10.3109/13880209.2013.814692 ] [PMID: 24044731]
[367]
Feshani AM, Kouhsari SM, Mohammadi S. Vaccinium arctostaphylos, a common herbal medicine in Iran: Molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J Ethnopharmacol 2011; 133(1): 67-74.
[http://dx.doi.org/10.1016/j.jep.2010.09.002 ] [PMID: 20850514]
[368]
Kianbakht S, Hajiaghaee R. Anti-hyperglycemic effects of vaccinium arctostaphylos l. fruit and leaf extracts in alloxan-induced diabetic rats. Faslnamah-i Giyahan-i Daruyi 2013; 12(45): 43-50.
[369]
Kianbakht S, Abasi B, Dabaghian FH. Anti-hyperglycemic effect of Vaccinium arctostaphylos in type 2 diabetic patients: a randomized controlled trial. Complement Med Res 2013; 20(1): 17-22.
[http://dx.doi.org/10.1159/000346607 ] [PMID: 23727759]
[370]
Gharib A, Faezizadeh Z, Godarzee M. Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms. Planta Med 2013; 79(17): 1599-604.
[http://dx.doi.org/10.1055/s-0033-1350908 ] [PMID: 24108435]
[371]
Nickavar B, Amin G. Enzyme assay guided isolation of an α-amylase inhibitor flavonoid from Vaccinium arctostaphylos leaves. Iran J Pharm Res 2011; 10(4): 849-53.
[PMID: 24250422]
[372]
Yasir M, Jain P, jyoti D, Kharya MD. Hypoglycemic and antihyperglycemic effect of different extracts of Acacia arabica lamk bark in normal and alloxan induced diabetic rats. Int J Phytomed 2010; 2(2): 133-8.
[http://dx.doi.org/10.5138/ijpm.2010.0975.0185.02021]
[373]
Hegazy GA, Alnoury AM, Gad HG. The role of Acacia Arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 2013; 34(7): 727-33.
[PMID: 23860893]
[374]
Kishalay J, Kausik C, Bera TK, et al. Antihyperglycemic and antihyperlipidemic effects of hydro-methanolic extract of seed of Caesalpinia bonduc in streptozotocin induced diabetic male albino rat. Int J Pharm Tech Res 2010; 2: 2234-42.
[375]
Ghosh D, Chatterjee K, De D, Jana K, Ali KM, Bera TK. Antihyperglycemic and antioxidative effects of the hydro-methanolic extract of the seeds of Caesalpinia bonduc on streptozotocin-induced diabetes in male albino rats. Pharmacognosy Res 2012; 4(1): 57-62.
[http://dx.doi.org/10.4103/0974-8490.91044 ] [PMID: 22224063]
[376]
Chakrabarti S, Biswas TK, Rokeya B, et al. Advanced studies on the hypoglycemic effect of Caesalpinia bonducella F. in type 1 and 2 diabetes in Long Evans rats. J Ethnopharmacol 2003; 84(1): 41-6.
[http://dx.doi.org/10.1016/S0378-8741(02)00262-3 ] [PMID: 12499075]
[377]
Kannur DM, Hukkeri VI, Akki KS. Antidiabetic activity of Caesalpinia bonducella seed extracts in rats. Fitoterapia 2006; 77(7-8): 546-9.
[http://dx.doi.org/10.1016/j.fitote.2006.06.013 ] [PMID: 16905279]
[378]
Widhiantara IG, Arunngam P, Milas Siswanto F. Ethanolic Extract of Caesalpinia bonducella f. Seed Ameliorates Diabetes Phenotype of Streptozotocin- Nicotinamide-Induced Type 2 Diabetes Rat. Biomed Pharmacol J 2018; 11(2): 1127-33.
[http://dx.doi.org/10.13005/bpj/1473]
[379]
Jaiswal D, Rai PK, Kumar A, Watal G. Study of glycemic profile of Cajanus cajan leaves in experimental rats. Indian J Clin Biochem 2008; 23(2): 167-70.
[http://dx.doi.org/10.1007/s12291-008-0037-z ] [PMID: 23105745]
[380]
Ezike AC, Akah PA, Okoli CC, Okpala CB. Experimental evidence for the antidiabetic activity of cajanus cajan leaves in rats. J Basic Clin Pharm 2010; 1(2): 81-4.
[PMID: 24825970]
[381]
Dolui AK, Segupta R. Antihyperglycemic effect of different solvent extracts of leaves of Cajanus cajan HPLC profile of the active extracts. Asian J Pharm Clin Res 2012; 5(2): 116-9.
[382]
Ajala-Lawal RA, Aliyu NO, Ajiboye TO. Betulinic acid improves insulin sensitivity, hyperglycemia, inflammation and oxidative stress in metabolic syndrome rats via PI3K/Akt pathways. Arch Physiol Biochem 2020; 126(2): 107-15.
[http://dx.doi.org/10.1080/13813455.2018.1498901 ] [PMID: 30288995]
[383]
Pari L, Latha M. Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptozotocin diabetic rats. Singapore Med J 2002; 43(12): 617-21.
[PMID: 12693765]
[384]
Latha M, Pari L. Antihyperglycaemic effect of Cassia auriculata in experimental diabetes and its effects on key metabolic enzymes involved in carbohydrate metabolism. Clin Exp Pharmacol Physiol 2003; 30(1-2): 38-43.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03785.x ] [PMID: 12542451]
[385]
Perumal NG, Idachristi VE, Karpakavalli M, Mohan S. In vitro and in vivo evaluation of potential anti diabetic efficacy on Cassia Auriculata Flowers. Biomed Pharmacol J 2018; 11(4): 2043-50.
[http://dx.doi.org/10.13005/bpj/1581]
[386]
Gupta S, Sharma SB, Prabhu KM, Bansal SK. Protective role of Cassia auriculata leaf extract on hyperglycemia-induced oxidative stress and its safety evaluation. Indian J Biochem Biophys 2009; 46(5): 371-7.
[PMID: 20027866]
[387]
Habtemariam S. A-glucosidase inhibitory activity of kaempferol-3- O-rutinoside. Nat Prod Commun 2011; 6(2): 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600211] [PMID: 21425674]
[388]
Zang Y, Igarashi K, Li Y. Anti-diabetic effects of luteolin and luteolin-7- O -glucoside on KK- A y mice. Biosci Biotechnol Biochem 2016; 80(8): 1580-6.
[http://dx.doi.org/10.1080/09168451.2015.1116928 ] [PMID: 27170065]
[389]
Kumavat UC, Shimpi SN, Jagdale SP. Hypoglycemic activity of Cassia javanica Linn. in normal and streptozotocin-induced diabetic rats. J Adv Pharm Technol Res 2012; 3(1): 47-51.
[http://dx.doi.org/10.4103/2231-4040.93562 ] [PMID: 22470893]
[390]
Wang Y, Huang S, Feng Y, Ning M, Leng Y. Emodin, an 11β-hydroxysteroid dehydrogenase type 1 inhibitor, regulates adipocyte function in vitro and exerts anti-diabetic effect in ob/ob mice. Acta Pharmacol Sin 2012; 33(9): 1195-203.
[http://dx.doi.org/10.1038/aps.2012.87 ] [PMID: 22922341]
[391]
Prathapan A, Fahad K, Thomas BK, Philip RM, Raghu KG. Effect of sprouting on antioxidant and inhibitory potential of two varieties of Bengal gram (Cicer arietinum L.) against key enzymes linked to type-2 diabetes. Int J Food Sci Nutr 2011; 62(3): 234-8.
[http://dx.doi.org/10.3109/09637486.2010.529801 ] [PMID: 21126210]
[392]
Qiu G, Tian W, Huan M, Chen J, Fu H. Formononetin exhibits anti-hyperglycemic activity in alloxan-induced type 1 diabetic mice. Exp Biol Med (Maywood) 2017; 242(2): 223-30.
[http://dx.doi.org/10.1177/1535370216657445 ] [PMID: 27412955]
[393]
Oza MJ, Kulkarni YA. Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia. Front Pharmacol 2018; 9: 739.
[http://dx.doi.org/10.3389/fphar.2018.00739 ] [PMID: 30072892]
[394]
Kartikeson PS, Lakshmi T. Anti-diabetic activity of Glycyrrhiza glabra - An in vitro study. Int J Pharm Sci Rev Res 2017; 44(1): 80-1.
[395]
Sen S, Roy M, Chakraborti AS. Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats. J Pharm Pharmacol 2011; 63(2): 287-96.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01217.x ] [PMID: 21235594]
[396]
Ghffar EAAE. Ameliorative effect of glabridin, a main component of Glycyrrhiza glabra L. roots in streptozotocin induced Type 1 diabetes in male albino rats. Indian J Tradit Knowl 2016; 159(4): 570-9.
[397]
Gaur R, Yadav KS, Verma RK, Yadav NP, Bhakuni RS. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine 2014; 21(4): 415-22.
[http://dx.doi.org/10.1016/j.phymed.2013.10.015 ] [PMID: 24262065]
[398]
Kuroda M, Mimaki Y, Sashida Y, et al. Phenolics with PPAR-γ ligand-Binding activity obtained from licorice (Glycyrrhiza uralensis Roots) and ameliorative effects of glycyrin on genetically diabetic KK-A y mice. Bioorg Med Chem Lett 2003; 13(24): 4267-72.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.052 ] [PMID: 14643306]
[399]
Ko BS, Jang JS, Hong SM, et al. Changes in components, glycyrrhizin and glycyrrhetinic acid, in raw Glycyrrhiza uralensis Fisch, modify insulin sensitizing and insulinotropic actions. Biosci Biotechnol Biochem 2007; 71(6): 1452-61.
[http://dx.doi.org/10.1271/bbb.60533 ] [PMID: 17587675]
[400]
Gupta LH, Badole SL, Bodhankar SL, Sabharwal SG. Antidiabetic potential of α-amylase inhibitor from the seeds of Macrotyloma uniflorum in streptozotocin-nicotinamide-induced diabetic mice. Pharm Biol 2011; 49(2): 182-9.
[http://dx.doi.org/10.3109/13880209.2010.507633 ] [PMID: 21043992]
[401]
Mohan M, Elyas KK. Anti-hyperglycemic properties of a purified proteinaceous protease inhibitor from Macrotyloma uniflorum seeds. Curr Top Med Chem 2019; 18(29): 2502-10.
[http://dx.doi.org/10.2174/1568026619666181220110038 ] [PMID: 30569860]
[402]
Amalan V, Vijayakumar N, Indumathi D, Ramakrishnan A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed Pharmacother 2016; 84: 230-6.
[http://dx.doi.org/10.1016/j.biopha.2016.09.039 ] [PMID: 27662473]
[403]
Abdel-Moneim A, El-Twab SMA, Yousef AI, Reheim ESA, Ashour MB. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: The role of adipocytokines and PPARγ. Biomed Pharmacother 2018; 105: 1091-7.
[http://dx.doi.org/10.1016/j.biopha.2018.06.096 ] [PMID: 30021345]
[404]
Peungvicha P, Temsiririrkkul R, Prasain JK, et al. 4-Hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of Pandanus odorus root. J Ethnopharmacol 1998; 62(1): 79-84.
[http://dx.doi.org/10.1016/S0378-8741(98)00061-0 ] [PMID: 9720616]
[405]
Bhaskar A, Vidhya VG, Ramya M. Hypoglycemic effect of Mucuna pruriens seed extract on normal and streptozotocin-diabetic rats. Fitoterapia 2008; 79(7-8): 539-43.
[http://dx.doi.org/10.1016/j.fitote.2008.05.008 ] [PMID: 18672037]
[406]
Majekodunmi SO, Oyagbemi AA, Umukoro S, Odeku OA. Evaluation of the anti–diabetic properties of Mucuna pruriens seed extract. Asian Pac J Trop Med 2011; 4(8): 632-6.
[http://dx.doi.org/10.1016/S1995-7645(11)60161-2 ] [PMID: 21914541]
[407]
Murugan M, Reddy CUM. Hypoglycemic and hypolipidemic activity of leaves of Mucuna pruriens in alloxan induced diabetic rats. J Pharm Sci Technol 2009; 1(2): 69-73.
[408]
Wu W, Wang L, Qiu J, Li Z. The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells. J Funct Foods 2018; 50: 137-46.
[http://dx.doi.org/10.1016/j.jff.2018.09.032]
[409]
Punitha R, Manoharan S. Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats. J Ethnopharmacol 2006; 105(1-2): 39-46.
[http://dx.doi.org/10.1016/j.jep.2005.09.037 ] [PMID: 16271443]
[410]
Sikarwar M, Patil MB. Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats. Int J Ayurveda Res 2010; 1(4): 199-204.
[http://dx.doi.org/10.4103/0974-7788.76780 ] [PMID: 21455444]
[411]
Badole SL, Bodhankar SL. Investigation of antihyperglycaemic activity of aqueous and petroleum ether extract of stem bark of Pongamia pinnata on serum glucose level in diabetic mice. J Ethnopharmacol 2009; 123(1): 115-20.
[http://dx.doi.org/10.1016/j.jep.2009.02.018 ] [PMID: 19429349]
[412]
Vadivel V, Biesalski HK. Contribution of phenolic compounds to the antioxidant potential and type II diabetes related enzyme inhibition properties of Pongamia pinnata L. Pierre seeds. Process Biochem 2011; 46(10): 1973-80.
[http://dx.doi.org/10.1016/j.procbio.2011.07.007]
[413]
Badole SL, Bodhankar SL. Antihyperglycaemic activity of cycloart-23-ene-3β 25-diol isolated from stem bark of Pongamia pinnata in alloxan induced diabetic mice. J Photochem 2009; 3(1): 18-24.
[http://dx.doi.org/10.17311/rjphyto.2009.18.24]
[414]
Tamrakar AK, Yadav PP, Tiwari P, Maurya R, Srivastava AK. Identification of pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits. J Ethnopharmacol 2008; 118(3): 435-9.
[http://dx.doi.org/10.1016/j.jep.2008.05.008 ] [PMID: 18572336]
[415]
Seo E, Lee EK, Lee CS, Chun KH, Lee MY, Jun HS. Psoralea corylifolia L. seed extract ameliorates streptozotocin-induced diabetes in mice by inhibition of oxidative stress. Oxid Med Cell Longev 2014; 2014: 1-9.
[http://dx.doi.org/10.1155/2014/897296 ] [PMID: 24803987]
[416]
Lee H, Li H, Noh M, Ryu JH. Bavachin from Psoralea corylifolia improves insulin-dependent glucose uptake through insulin signaling and AMPK activation in 3T3-L1 adipocytes. Int J Mol Sci 2016; 17(4): 527.
[http://dx.doi.org/10.3390/ijms17040527 ] [PMID: 27070585]
[417]
Oh KY, Lee JH, Curtis-Long MJ, et al. Glycosidase inhibitory phenolic compounds from the seed of Psoralea corylifolia. Food Chem 2010; 121(4): 940-5.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.022]
[418]
Mukhtar HM, Ansari SH, Ali M, Bhat ZA, Naved T. Effect of aqueous extract of Pterocarpus marsupium wood on alloxan-induced diabetic rats. Pharmazie 2005; 60(6): 478-9.
[PMID: 15997844]
[419]
Maruthupandian A, Mohan VR. Antidiabetic, antihyperlipidaemic and antioxidant activity of Pterocarpus marsupium Roxb. in alloxan induced diabetic rats. Int J Pharm Tech Res 2011; 3(3): 1681-7.
[420]
Pradhan S, Sahu SK, Mukhi S, Mishra SS, Chinara PK. Invitro α-Glucosidase and α-Amylase Inhibitory Activities of Heartwood of Pterocarpus Marsupium. Indian J Public Health Res Dev 2019; 10(6): 247-50.
[http://dx.doi.org/10.5958/0976-5506.2019.01276.2]
[421]
Kalaivani R, Chitra M, Gayathri U. Hypoglycemic and Antimicrobial Activity of Pterocarpus marsupium roxb. Res J Pharm Technol 2011; 4(12): 1915-7.
[422]
Pari L, Satheesh MA. Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats. Life Sci 2006; 79(7): 641-5.
[http://dx.doi.org/10.1016/j.lfs.2006.02.036 ] [PMID: 16616938]
[423]
Kosuru R, Singh S. Pterostilbene ameliorates insulin sensitivity, glycemic control and oxidative stress in fructose-fed diabetic rats. Life Sci 2017; 182(182): 112-21.
[http://dx.doi.org/10.1016/j.lfs.2017.06.015 ] [PMID: 28629731]
[424]
Sheehan EW, Zemaitis MA, Slatkin DJ, Schiff PL Jr. A constituent of Pterocarpus marsupium, (-)-epicatechin, as a potential antidiabetic agent. J Nat Prod 1983; 46(2): 232-4.
[http://dx.doi.org/10.1021/np50026a018 ] [PMID: 6875579]
[425]
Park MH, Kang JH, Han JS. The hypoglycemic effect of fermented Pueraria thunbergiana extract in streptozotocin-induced diabetic mice. Food Sci Biotechnol 2015; 24(6): 2199-203.
[http://dx.doi.org/10.1007/s10068-015-0293-7]
[426]
Lee KT, Sohn IC, Kim DH, Choi JW, Kwon SH, Park HJ. Hypoglycemic and hypolipidemic effects of tectorigenin and kaikasaponin III in the streptozotocin-induced diabetic rat and their antioxidant activity in vitro. Arch Pharm Res 2000; 23(5): 461-6.
[http://dx.doi.org/10.1007/BF02976573 ] [PMID: 11059824]
[427]
Agyemang K, Han L, Liu E, Zhang Y, Wang T, Gao X. Recent advances in Astragalus membranaceus anti-diabetic research: pharmacological effects of its phytochemical constituents. Evid Based Complement Alternat Med 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/654643 ] [PMID: 24348714]
[428]
Middha SK, Bhattacharjee B, Saini D, Baliga MS, Nagaveni MB, Usha T. Protective role of Trigonella foenum graceum extract against oxidative stress in hyperglycemic rats. Eur Rev Med Pharmacol Sci 2011; 15(4): 427-35.
[PMID: 21608438]
[429]
Xue WL, Li XS, Zhang J, Liu YH, Wang ZL, Zhang RJ. Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asia Pac J Clin Nutr 2007; 16 (Suppl. 1): 422-6.
[PMID: 17392143]
[430]
Sharma S, Mishra V, Srivastava N. Protective effect of Trigonella foenum-graecum and Cinnamomum zeylanicum against diabetes induced oxidative DNA damage in rats. Indian J Biochem Biophys 2020; 57(1): 15-26.
[http://dx.doi.org/10.56042/ijbb.v57i1.31772]
[431]
Pari L, Monisha P, Mohamed Jalaludeen A. Beneficial role of diosgenin on oxidative stress in aorta of streptozotocin induced diabetic rats. Eur J Pharmacol 2012; 691(1-3): 143-50.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.038 ] [PMID: 22771295]
[432]
Naidu PB, Ponmurugan P, Begum MS, et al. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats. J Sci Food Agric 2015; 95(15): 3177-82.
[http://dx.doi.org/10.1002/jsfa.7057 ] [PMID: 25530163]
[433]
Zhou J, Chan L, Zhou S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 2012; 19(21): 3523-31.
[http://dx.doi.org/10.2174/092986712801323171 ] [PMID: 22680628]
[434]
Babby A, Elanchezhiyan C, Suhasini S, Chandirasegaran G. Antihyperglycemic effect of tannic acid in streptozotocin induced diabetic rats. Int J Curr Res 2014; 6(03): 5396-8.
[435]
Ahmad M, Zaman F, Sharif T, Ch MZ. Antidiabetic and hypolipidemic effects of aqueous methanolic extract of Acacia nilotica pods in alloxan-induced diabetic rabbits. Scand J Lab Anim Sci 2008; 35(1): 29-34.
[http://dx.doi.org/10.23675/sjlas.v35i1.135]
[436]
Saha MR, Dey P, Sarkar I, et al. Acacia nilotica leaf improves insulin resistance and hyperglycemia associated acute hepatic injury and nephrotoxicity by improving systemic antioxidant status in diabetic mice. J Ethnopharmacol 2018; 210: 275-86.
[http://dx.doi.org/10.1016/j.jep.2017.08.036 ] [PMID: 28859934]
[437]
Mustapha MD, Bukar B. Effect of aqueous extract of Acacia nilotica stem bark on some biochemical parameters in alloxan-induced diabetic rats. Bio Science Research Bulletin 2014; 30(2): 73-8.
[http://dx.doi.org/10.5958/2320-3161.2014.00005.4]
[438]
Maroo J, Vasu VT, Aalinkeel R, Gupta S. Glucose lowering effect of aqueous extract of Enicostemma littorale Blume in diabetes: a possible mechanism of action. J Ethnopharmacol 2002; 81(3): 317-20.
[http://dx.doi.org/10.1016/S0378-8741(02)00095-8 ] [PMID: 12127231]
[439]
Vishwakarma SL, Sonawane RD, Rajani M, Goyal RK. Evaluation of effect of aqueous extract of Enicostemma littorale Blume in streptozotocin-induced type 1 diabetic rats. Indian J Exp Biol 2010; 48(1): 26-30.
[PMID: 20358863]
[440]
Sonawane RD, Vishwakarma SL, Lakshmi S, Rajani M, Padh H, Goyal RK. Amelioration of STZ-induced type 1 diabetic nephropathy by aqueous extract of Enicostemma littorale Blume and swertiamarin in rats. Mol Cell Biochem 2010; 340(1-2): 1-6.
[http://dx.doi.org/10.1007/s11010-010-0393-x ] [PMID: 20229291]
[441]
Ahamad J, Ali Alkefai NH, Amin S, Mir SR. Standardized Extract from Enicostemma littorale Ameliorates Post-prandial Hyperglycaemia in Normal and Diabetic Rats. Journal of Biologically Active Products from Nature 2020; 10(1): 34-43.
[http://dx.doi.org/10.1080/22311866.2020.1724566]
[442]
Sri AK. Antidiabetic Studies of the Leaf Extract of Enicostemma littorale (Blume) Using Wistar Rats.In: Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation. Singapore: Springer 2020.
[http://dx.doi.org/10.1007/978-981-15-1636-8_40]
[443]
Vaidya H, Rajani M, Sudarsanam V, Padh H, Goyal R. Swertiamarin: A lead from Enicostemma littorale Blume. for anti-hyperlipidaemic effect. Eur J Pharmacol 2009; 617(1-3): 108-12.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.053 ] [PMID: 19577561]
[444]
Vaidya H, Goyal RK, Cheema SK. Anti-diabetic activity of swertiamarin is due to an active metabolite, gentianine, that upregulates PPAR-γ gene expression in 3T3-L1 cells. Phytother Res 2013; 27(4): 624-7.
[http://dx.doi.org/10.1002/ptr.4763 ] [PMID: 22718571]
[445]
Dhanavathy G. Immunohistochemistry, histopathology, and biomarker studies of swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-induced β-cell damage in Wistar rat pancreas. J Endocrinol Invest 2015; 38(6): 669-84.
[http://dx.doi.org/10.1007/s40618-015-0243-5 ] [PMID: 25770453]
[446]
S R, Holla R, Patil V, S A, L K. Anti-hyperglycemic effect of Swertia chirata root extract on indinavir treated rats. Natl J Physiol Pharm Pharmacol 2017; 7(6): 1.
[http://dx.doi.org/10.5455/njppp.2017.7.0101505022017]
[447]
Hossian AM, Newaz N, Bhuiyan MJH, Hossain MA. Effects of Swertia chirata on some blood biochemical parameters in streptozotocin diabetic rats. J Bangladesh Agric Univ 2007; 5(2): 217-24.
[448]
Bajpai M, Asthana R, Sharma N, Chatterjee S, Mukherjee S. Hypoglycemic effect of swerchirin from the hexane fraction of Swertia chirayita. Planta Med 1991; 57(2): 102-4.
[http://dx.doi.org/10.1055/s-2006-960041 ] [PMID: 1891489]
[449]
Asgary S, Parkhideh S, Solhpour A, Madani H, Mahzouni P, Rahimi P. Effect of ethanolic extract of Juglans regia L. on blood sugar in diabetes-induced rats. J Med Food 2008; 11(3): 533-8.
[http://dx.doi.org/10.1089/jmf.2007.0611 ] [PMID: 18800903]
[450]
Hosseini S, Huseini HF, Larijani B, et al. The hypoglycemic effect of Juglans regia leaves aqueous extract in diabetic patients: A first human trial. Daru 2014; 22(1): 19.
[http://dx.doi.org/10.1186/2008-2231-22-19 ] [PMID: 24447826]
[451]
Forino M, Stiuso P, Lama S, et al. Bioassay-guided identification of the antihyperglycaemic constituents of walnut (Juglans regia) leaves. J Funct Foods 2016; 26: 731-8.
[http://dx.doi.org/10.1016/j.jff.2016.08.053]
[452]
Javidanpour S, Fatemi Tabtabaei SR, Siahpoosh A, Morovati H, Shahriari A. Comparison of the effects of fresh leaf and peel extracts of walnut (Juglans regia L.) on blood glucose and β-cells of streptozotocin-induced diabetic rats. Vet Res Forum 2012; 3(4): 251-5.
[PMID: 25653767]
[453]
Jawaid T, Kamal M, Maddheshiya P. Hypoglycemic Effect of Methanolic Extract of Callicarpa macrophylla Fruits on STZ Induced Diabetic Rats. Bull Env Pharmacol 2016; 5(4): 42-8.
[454]
Santos FA, Frota JT, Arruda BR, et al. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids Health Dis 2012; 11(1): 98.
[http://dx.doi.org/10.1186/1476-511X-11-98 ] [PMID: 22867128]
[455]
Mishra C, Khalid MA, Tripathi D, Mahdi AA. Comparative anti-diabetic study of three phytochemicals on high-fat diet and streptozotocin-induced diabetic dyslipidemic rats. Int J Biol Adv Res 2018; 9(8): 286-93.
[http://dx.doi.org/10.7439/ijbar]
[456]
Sium M, Kareru P, Kiage-Mokua B, Sood K, Langley J, Herniman J. In vitro anti-diabetic activities and phytochemical analysis of bioactive fractions present in Meriandradianthera, Aloe camperi and a Polyherb. Am J Plant Sci 2017; 8(3): 533-48.
[http://dx.doi.org/10.4236/ajps.2017.83037]
[457]
Egesie UG, Adelaiye AB, Ibu JO, Egesie OJ. Safety and hypoglycaemic properties of aqueous leaf extract of <i>Ocimum gratissimum</i> in streptozotocin induced diabetic rats. Niger J Physiol Sci 2010; 21(1-2): 31-5.
[http://dx.doi.org/10.4314/njps.v21i1-2.53971 ] [PMID: 17242731]
[458]
Ayinla MT, Dada SO, Shittu ST, et al. Anti-hyperlipidemic effect of aqueous leaf extract of Ocimum gratissimum in alloxan induced diabetic rats. Int J Med Med Sci 2011; 3(12): 360-3.
[459]
Casanova LM, da Silva D, Sola-Penna M, et al. Identification of chicoric acid as a hypoglycemic agent from Ocimum gratissimum leaf extract in a biomonitoring in vivo study. Fitoterapia 2014; 93: 132-41.
[http://dx.doi.org/10.1016/j.fitote.2013.12.024 ] [PMID: 24418658]
[460]
Okoduwa S, Umar I, James D, Inuwa H. Anti-diabetic potential of Ocimum gratissimum leaf fractions in fortified diet-fed streptozotocin treated rat model of type-2 diabetes. Medicines 2017; 4(4): 73.
[http://dx.doi.org/10.3390/medicines4040073 ] [PMID: 29019956]
[461]
Srinivasan S, Sathish G, Jayanthi M, Muthukumaran J, Muruganathan U, Ramachandran V. Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Mol Cell Biochem 2014; 385(1-2): 159-68.
[http://dx.doi.org/10.1007/s11010-013-1824-2 ] [PMID: 24078031]
[462]
Khan MRI, Islam MA, Hossain MS, et al. Antidiabetic effects of the different fractions of ethanolic extracts of Ocimum sanctum in normal and alloxan induced diabetic rats. Journal of Scientific Research 2009; 2(1): 158-68.
[http://dx.doi.org/10.3329/jsr.v2i1.2769]
[463]
Lokhande VY, Yadav AV. In vitro Antioxidant and Antidiabetic Activity of Supercritical Fluid extract of Leaves Ocimum sanctum L. Res J PharmTechnol 2018; 11(12): 5373-5.
[http://dx.doi.org/10.5958/0974-360X.2018.00980.0]
[464]
Shilpa VN, Rajasekaran N, Gopalakrishnan VK, Devaki K. In vivo antioxidant activity of Premna corymbosa (Rottl.) against streptozotocin induced oxidative stress in Wistar albino rats. J Appl Pharm Sci 2012.
[http://dx.doi.org/10.7324/JAPS.2012.21012]
[465]
Eidi M, Eidi A, Zamanizadeh H. Effect of Salvia officinalis L. leaves on serum glucose and insulin in healthy and streptozotocin-induced diabetic rats. J Ethnopharmacol 2005; 100(3): 310-3.
[http://dx.doi.org/10.1016/j.jep.2005.03.008 ] [PMID: 16125023]
[466]
Eidi A, Eidi M. Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats. Diabetes Metab Syndr 2009; 3(1): 40-4.
[http://dx.doi.org/10.1016/j.dsx.2008.10.007]
[467]
Hasanein P, Felehgari Z, Emamjomeh A. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms. Neurosci Lett 2016; 622(622): 72-7.
[http://dx.doi.org/10.1016/j.neulet.2016.04.045 ] [PMID: 27113201]
[468]
Esmaeili MA, Yazdanparast R. Hypoglycaemic effect of Teucrium polium: studies with rat pancreatic islets. J Ethnopharmacol 2004; 95(1): 27-30.
[http://dx.doi.org/10.1016/j.jep.2004.06.023 ] [PMID: 15374603]
[469]
Esmaeili M, Zohari F, Sadeghi H. Antioxidant and protective effects of major flavonoids from Teucrium polium on β-cell destruction in a model of streptozotocin-induced diabetes. Planta Med 2009; 75(13): 1418-20.
[http://dx.doi.org/10.1055/s-0029-1185704 ] [PMID: 19452438]
[470]
Chakraborty U, Das H. Antidiabetic and antioxidant activities of Cinnamomum tamala leaf extracts in STZ-treated diabetic rats. Global J Biotech & Biochem 2010; 5(1): 12-8.
[471]
Bisht S, Sisodia SS. Assessment of antidiabetic potential of Cinnamomum tamala leaves extract in streptozotocin induced diabetic rats. Indian J Pharmacol 2011; 43(5): 582-5.
[http://dx.doi.org/10.4103/0253-7613.84977 ] [PMID: 22022005]
[472]
Li Y, Ding Y. Minireview: Therapeutic potential of myricetin in diabetes mellitus. Food Sci Hum Wellness 2012; 1(1): 19-25.
[http://dx.doi.org/10.1016/j.fshw.2012.08.002]
[473]
Zhang K, Gu L, Chen J, et al. Preparation and evaluation of kaempferol–phospholipid complex for pharmacokinetics and bioavailability in SD rats. J Pharm Biomed Anal 2015; 114(114): 168-75.
[http://dx.doi.org/10.1016/j.jpba.2015.05.017 ] [PMID: 26051640]
[474]
Akilen R, Pimlott Z, Tsiami A, Robinson N. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 2013; 29(10): 1192-6.
[http://dx.doi.org/10.1016/j.nut.2013.03.007 ] [PMID: 23867208]
[475]
Ranasinghe P, Galappaththy P, Constantine GR, et al. Cinnamomum zeylanicum (Ceylon cinnamon) as a potential pharmaceutical agent for type-2 diabetes mellitus: study protocol for a randomized controlled trial. Trials 2017; 18(1): 446.
[http://dx.doi.org/10.1186/s13063-017-2192-0 ] [PMID: 28962661]
[476]
Zhu R, Liu H, Liu C, et al. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol Res 2017; 122: 78-89.
[http://dx.doi.org/10.1016/j.phrs.2017.05.019 ] [PMID: 28559210]
[477]
Abdelmageed ME, Shehatou GS, Abdelsalam RA, Suddek GM, Salem HA. Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedebergs Arch Pharmacol 2019; 392(2): 243-58.
[http://dx.doi.org/10.1007/s00210-018-1583-4 ] [PMID: 30460386]
[478]
Pullaiah T, Naidu KC. Antidiabetic plants in India and herbal based antidiabetic research.In: Daya Books. 2003; pp. 214-5.
[479]
Miura T, Takagi S, Ishida T. Management of diabetes and its complications with banaba (Lagerstroemia speciosa L.) and corosolic acid. Evid Based Complement Alternat Med 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/871495 ] [PMID: 23082086]
[480]
Guo S, Ren X, He K, et al. The anti-diabetic effect of eight Lagerstroemia speciosa leaf extracts based on the contents of ellagitannins and ellagic acid derivatives. Food Funct 2020; 11(2): 1560-71.
[http://dx.doi.org/10.1039/C9FO03091C ] [PMID: 32003379]
[481]
Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YMA, Passwater R. Antidiabetic activity of a standardized extract (Glucosol™) from Lagerstroemia speciosa leaves in Type II diabetics. J Ethnopharmacol 2003; 87(1): 115-7.
[http://dx.doi.org/10.1016/S0378-8741(03)00122-3 ] [PMID: 12787964]
[482]
Choubey A, Ojha M, Mishra A, Mishra S, Patil UK. Hypoglycemic and antihyperglycemic effect of ethanolic extract of whole plant of Lawsonia inermis (henna) in streptozotocin induced diabetic rats. Int J Pharm Sci Res 2010; 1(8): 74-7.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.1(8-S).74-77]
[483]
Chikaraddy A, Maniyar Y, Mannapur B. Hypoglycemic activity of ethanolic extract of Lawsonia inermislinn (henna) in alloxan-induced diabetic albino rats. Int J Pharm Bio Sci 2012; 2(4): 287-92.
[484]
Ko BS, Kang S, Moon BR, Ryuk JA, Park S. 70% ethanol extract of mistletoe rich in Betulin, betulinic acid, and Oleanolic acid potentiated β-cell function and mass and enhanced hepatic insulin sensitivity. Evid Based Complement Alternat Med 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/7836823 ] [PMID: 26884795]
[485]
Genet C, Strehle A, Schmidt C, et al. Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes. J Med Chem 2010; 53(1): 178-90.
[http://dx.doi.org/10.1021/jm900872z ] [PMID: 19911773]
[486]
Li Y, Wen S, Kota BP, et al. Punica granatum flower extract, a potent α-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol 2005; 99(2): 239-44.
[http://dx.doi.org/10.1016/j.jep.2005.02.030 ] [PMID: 15894133]
[487]
Bagri P, Ali M, Aeri V, Bhowmik M, Sultana S. Antidiabetic effect of Punica granatum flowers: Effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem Toxicol 2009; 47(1): 50-4.
[http://dx.doi.org/10.1016/j.fct.2008.09.058 ] [PMID: 18950673]
[488]
Das AK, Mandal SC, Banerjee SK, Sinha S, Saha BP, Pal M. Studies on the hypoglycaemic activity of Punica granatum seed in streptozotocin induced diabetic rats. Phytother Res 2001; 15(7): 628-9.
[http://dx.doi.org/10.1002/ptr.740 ] [PMID: 11746848]
[489]
Middha SK, Usha T, RaviKiran T. Influence of Punica granatum L. on region specific responses in rat brain during Alloxan-Induced diabetes. Asian Pac J Trop Biomed 2012; 2(2): S905-9.
[http://dx.doi.org/10.1016/S2221-1691(12)60334-7]
[490]
Gautam R, Sharma SC. Effect of Punica granatum Linn. (peel) on blood glucose level in normal and alloxan-induced diabetic rats. Res J Pharma Technol 2012; 5(2): 226-7.
[491]
Salwe K, Sachdev D, Bahurupi Y, Kumarappan M. Evaluation of antidiabetic, hypolipedimic and antioxidant activity of hydroalcoholic extract of leaves and fruit peel of Punica granatum in male Wistar albino rats. J Nat Sci Biol Med 2015; 6(1): 56-62.
[http://dx.doi.org/10.4103/0976-9668.149085 ] [PMID: 25810635]
[492]
Bellesia A, Verzelloni E, Tagliazucchi D. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions. Int J Food Sci Nutr 2015; 66(1): 85-92.
[http://dx.doi.org/10.3109/09637486.2014.953455 ] [PMID: 25519249]
[493]
Wu S, Tian L. A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (Punica granatum). Nat Prod Res 2019; 33(2): 252-7.
[http://dx.doi.org/10.1080/14786419.2018.1446009 ] [PMID: 29502447]
[494]
Fang L, Cao J, Duan L, Tang Y, Zhao Y. Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase inhibitory activities of Schisandra chinensis (Turcz.) Baill. J Funct Foods 2014; 9: 264-70.
[http://dx.doi.org/10.1016/j.jff.2014.04.017]
[495]
Zhang J, Shi LL, Zheng YN. Dibenzocyclooctadiene lignans from Fructus Schisandrae Chinensis improve glucose uptake in vitro. Nat Prod Commun 2010; 5(2): 1934578X1000500.
[http://dx.doi.org/10.1177/1934578X1000500212] [PMID: 20334133]
[496]
Gao X, Meng X, Li J, Tong H. Isolation, characterization and hypoglycemic activity of an acid polysaccharide isolated from Schisandra Chinensis (Turcz.) Baill. Lett Org Chem 2009; 6(5): 428-33.
[http://dx.doi.org/10.2174/157017809788681374]
[497]
Kaur G, Kamboj P, Kalia AN. Antidiabetic and anti-hypercholesterolemic effects of aerial parts of Sida cordifolia Linn. on Streptozotocin-induced diabetic rats. Indian J Nat Prod Resour 2011; 2(4): 428-34.
[498]
Ahmad M, Prawez S, Sultana M, et al. Anti-Hyperglycemic, Anti-Hyperlipidemic and Antioxidant Potential of Alcoholic-Extract of Sida cordifolia (Areal Part) in Streptozotocin-Induced-Diabetes in Wistar-Rats. Proc Natl Acad Sci, India, Sect B Biol Sci 2014; 84(2): 397-405.
[http://dx.doi.org/10.1007/s40011-013-0218-2]
[499]
Prabhakar T, Nagarathna PKM, Vikram BS. AntiDiabetic Activity of Sida cordifolia Linn of Nilgiris Root on Alloxan Induced Diabetic Rats. Res J Pharmacol Pharmacodynamics 2009; 1(3): 125-7.
[500]
Rao NY, Babu KN, Srikanth M. Anti-Diabetic activity of Sida cordifolia. J Integral Sc 2020; 3(1): 1-7.
[501]
Luan G, Tie F, Yuan Z, et al. Hypaphorine, an indole alkaloid isolated from Caragana korshinskiiKom., Inhibites 3T3-L1 adipocyte differentiation and improves insulin sensitivity in vitro. Chem Biodivers 2017; 14(7): e1700038.
[http://dx.doi.org/10.1002/cbdv.201700038 ] [PMID: 28398659]
[502]
Khosla P, Bhanwra S, Singh J, Seth S, Srivastava RK. A study of hypoglycaemic effects of Azadirachta indica (Neem) in normaland alloxan diabetic rabbits. Indian J Physiol Pharmacol 2000; 44(1): 69-74.
[PMID: 10919098]
[503]
Ezeigwe OC, Ezeonu FC, Igwilo IO. Antidiabetic property and antioxidant potentials of ethanol extract of Azadirachta indica leaf in streptozotocin-induced diabetic rats. Bioscientist J 2020; 8(1): 1-11.
[504]
Patil P, Patil S, Mane A, Verma S. Antidiabetic activity of alcoholic extract of Neem (Azadirachta Indica) root bark. Natl J Physiol Pharm Pharmacol 2013; 3(2): 142-6.
[http://dx.doi.org/10.5455/njppp.2013.3.134-138]
[505]
Mukherjee A, Sengupta S. Characterization of nimbidiol as a potent intestinal disaccharidase and glucoamylase inhibitor present in Azadirachta indica (neem) useful for the treatment of diabetes. J Enzyme Inhib Med Chem 2013; 28(5): 900-10.
[http://dx.doi.org/10.3109/14756366.2012.694877 ] [PMID: 22803678]
[506]
Ponnusamy S, Haldar S, Mulani F, Zinjarde S, Thulasiram H, RaviKumar A. Gedunin and azadiradione: human pancreatic alpha-amylase inhibiting limonoids from neem (Azadirachta indica) as anti-diabetic agents. PLoS One 2015; 10(10): e0140113.
[http://dx.doi.org/10.1371/journal.pone.0140113 ] [PMID: 26469405]
[507]
Vijayanand S, Wesely EG. Evaluation of antidiabetic activity of Melia azadirach on alloxan induced diabetic rats. Int J Curr Pharm Res 2011; 3(4): 37-40.
[508]
Khan MF, Rawat AK, Pawar B, Gautam S, Srivastava AK, Negi DS. Bioactivity-guided chemical analysis of Melia azedarach L. (Meliaceae), displaying antidiabetic activity. Fitoterapia 2014; 98: 98-103.
[http://dx.doi.org/10.1016/j.fitote.2014.07.014 ] [PMID: 25062890]
[509]
Seifu D, Gustafsson L, Chawla R, et al. Antidiabetic and gastric emptying inhibitory effect of herbal Melia azedarach leaf extract in rodent models of diabetes type 2 mellitus. J Exp Pharmacol 2017; 9(9): 23-9.
[http://dx.doi.org/10.2147/JEP.S126146 ] [PMID: 28360538]
[510]
Khan MF, Rawat AK, Khatoon S, Hussain MK, Mishra A, Negi DS. In vitro and in vivo antidiabetic effect of extracts of Melia azedarach, Zanthoxylum alatum, and Tanacetum nubigenum. Integr Med Res 2018; 7(2): 176-83.
[http://dx.doi.org/10.1016/j.imr.2018.03.004 ] [PMID: 29984178]
[511]
Stanely P, Prince M, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 2000; 70(1): 9-15.
[http://dx.doi.org/10.1016/S0378-8741(99)00136-1 ] [PMID: 10720784]
[512]
Rajalakshmi M, Eliza J, Priya CE, Nirmala A, Daisy P. Anti-diabetic properties of Tinospora cordifolia stem extracts on streptozotocin-induced diabetic rats. Afr J Pharm Pharmacol 2009; 3(5): 171-80.
[513]
Puranik N, Kammar KF, Devi S. Anti-diabetic activity of Tinospora cordifolia (Willd.) in streptozotocin diabetic rats; does it act like sulfonylureas? Turk J Med Sci 2010; 40(2): 265-70.
[http://dx.doi.org/10.3906/sag-0802-40]
[514]
Cherku PD, Reedy PK, Bittlingu K, Priya K, Dasari S. Inhibitory activity of leaf extract of Tinospora cordifolia and magnoflorine on aldose reductase for control of diabetes. Int J Green Pharm 2019; 13(3): 186.
[515]
Sengupta S, Mukherjee A, Goswami R, Basu S. Hypoglycemic activity of the antioxidant saponarin, characterized as α-glucosidase inhibitor present in Tinospora cordifolia. J Enzyme Inhib Med Chem 2009; 24(3): 684-90.
[http://dx.doi.org/10.1080/14756360802333075 ] [PMID: 18951283]
[516]
Sangeetha MK, Priya CDM, Vasanthi HR. Anti-diabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes. Phytomedicine 2013; 20(3-4): 246-8.
[http://dx.doi.org/10.1016/j.phymed.2012.11.006 ] [PMID: 23290487]
[517]
Patel MB, Mishra SM. Magnoflorine from Tinospora cordifolia stem inhibits α-glucosidase and is antiglycemic in rats. J Funct Foods 2012; 4(1): 79-86.
[http://dx.doi.org/10.1016/j.jff.2011.08.002]
[518]
Xu T, Kuang T, Du H, et al. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacol Res 2020; 152: 104632.
[http://dx.doi.org/10.1016/j.phrs.2020.104632 ] [PMID: 31911246]
[519]
Yan F, Benrong H, Qiang T, Qin F, Jizhou X. Hypoglycemic activity of Jatrorrhizine. J Huazhong Univ Sci Technolog Med Sci 2005; 25(5): 491-3.
[http://dx.doi.org/10.1007/BF02895996 ] [PMID: 16463653]
[520]
Sharma VK, Kumar S, Patel HJ, Hugar S. Hypoglycemic activity of Ficus glomerata in alloxan induced diabetic rats. Int J Pharm Sci Rev Res 2010; 1(2): 18-22.
[521]
Ahmed F, Urooj A. Antihyperglycemic activity of Ficus glomerata stem bark in streptozotocin-induced diabetic rats. Glob J Pharmacol 2008; 2(3): 41-5.
[522]
Ahmed Z, Bhushan S, Bhagat A, Das A, Samyal M. Scientific validation of antidiabetic activity of ethanol extract of ficus glomerata barks and roots in streptozotocin-induced diabetic rats. Pharma Biosci J 2014; 2(1): 42-6.
[http://dx.doi.org/10.20510/ukjpb/2/i1/91155]
[523]
Pari L, Umamaheswari J. Antihyperglycaemic activity of Musa sapientum flowers: Effect on lipid peroxidation in alloxan diabetic rats. Phytother Res 2000; 14(2): 136-8.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<136:AID-PTR607>3.0.CO;2-K ] [PMID: 10685115]
[524]
Dhanabal SP, Sureshkumar M, Ramanathan M, Suresh B. Hypoglycemic effect of ethanolic extract of Musa sapientum on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential. J Herb Pharmacother 2005; 5(2): 7-19.
[http://dx.doi.org/10.1080/J157v05n02_02 ] [PMID: 16260406]
[525]
Adewoye EO, Taiwo VO, Olayioye FA. Anti-oxidant and anti-hyperglycemic activities of musa sapientum root extracts in alloxan-induced diabetic rats. Afr J Med Med Sci 2009; 38(2): 109-17.
[PMID: 20175413]
[526]
Dikshit P, Shukla K, Tyagi MK, Garg P, Gambhir JK, Shukla R. Antidiabetic and antihyperlipidemic effects of the stem of Musa sapientum Linn. in streptozotocin-induced diabetic rats. J Diabetes 2012; 4(4): 378-85.
[http://dx.doi.org/10.1111/j.1753-0407.2012.00198.x ] [PMID: 22429814]
[527]
Adewoye EO, Ige AO. Anti-diabetic property of Methanol extract of Musa sapientum leaves and its fractions in alloxan-induced diabetic rats. Niger J Physiol Sci 2013; 28(1): 91-7.
[PMID: 23955414]
[528]
Annadurai T, Muralidharan AR, Joseph T, Hsu MJ, Thomas PA, Geraldine P. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin–nicotinamide-induced experimental diabetic rats. J Physiol Biochem 2012; 68(3): 307-18.
[http://dx.doi.org/10.1007/s13105-011-0142-y ] [PMID: 22234849]
[529]
Somani RS, Singhai AK. Hypoglycaemic and antidiabetic activities of seeds of Myristica fragrans in normoglycaemic and alloxan-induced diabetic rats. Asian J Exp Sci 2008; 22(1): 95-102.
[530]
Lestari K, Hwang JK, Hartini Kariadi S, et al. Screening for PPAR γ agonist from Myristica fragrans Houtt seeds for the treatment of Type 2 diabetes by in vitro and in vivo. Med Health Sci J 2012; 12(3): 7-15.
[http://dx.doi.org/10.15208/mhsj.2012.37]
[531]
Pashapoor A, Mashhadyrafie S, Mortazavi P. Ameliorative effect of Myristica fragrans (nutmeg) extract on oxidative status and histology of pancreas in alloxan induced diabetic rats. Folia Morphol 2015; 79(1): 113-9.
[http://dx.doi.org/10.5603/FM.a2019.0052 ] [PMID: 31063201]
[532]
Ravi K, Rajasekaran S, Subramanian S. Antihyperlipidemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats. Food Chem Toxicol 2005; 43(9): 1433-9.
[http://dx.doi.org/10.1016/j.fct.2005.04.004 ] [PMID: 15964674]
[533]
Sharma B, Balomajumder C, Roy P. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chem Toxicol 2008; 46(7): 2376-83.
[http://dx.doi.org/10.1016/j.fct.2008.03.020 ] [PMID: 18474411]
[534]
Sharma SB, Nasir A, Prabhu KM, Murthy PS. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J Ethnopharmacol 2006; 104(3): 367-73.
[http://dx.doi.org/10.1016/j.jep.2005.10.033 ] [PMID: 16386863]
[535]
Jang SM, Yee ST, Choi J, et al. Ursolic acid enhances the cellular immune system and pancreatic β-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol 2009; 9(1): 113-9.
[http://dx.doi.org/10.1016/j.intimp.2008.10.013 ] [PMID: 19013541]
[536]
Sawant L, Singh VK, Dethe S, et al. Aldose reductase and protein tyrosine phosphatase 1B inhibitory active compounds from Syzygium cumini seeds. Pharm Biol 2015; 53(8): 1176-82.
[http://dx.doi.org/10.3109/13880209.2014.967784 ] [PMID: 25853967]
[537]
Oh WK, Lee CH, Lee MS, et al. Antidiabetic effects of extracts from Psidium guajava. J Ethnopharmacol 2005; 96(3): 411-5.
[http://dx.doi.org/10.1016/j.jep.2004.09.041 ] [PMID: 15619559]
[538]
Manikandan R, Anand AV, Muthumani GD. Phytochemical and in vitro anti-diabetic activity of methanolic extract of Psidium guajava leaves. Int J Curr Microbiol Appl Sci 2013; 2(2): 15-9.
[539]
Huang CS, Yin MC, Chiu LC. Antihyperglycemic and antioxidative potential of Psidium guajava fruit in streptozotocin-induced diabetic rats. Food Chem Toxicol 2011; 49(9): 2189-95.
[http://dx.doi.org/10.1016/j.fct.2011.05.032 ] [PMID: 21679740]
[540]
Rai PK, Jaiswal D, Mehta S, Watal G. Anti-hyperglycaemic potential of Psidium guajava raw fruit peel. Indian J Med Res 2009; 129(5): 561-5.
[PMID: 19675385]
[541]
Alagesan K, Raghupathi PK, Sankarnarayanan S. Amylase inhibitors: potential source of anti-diabetic drug discovery from medicinal plants. Int J Pharm Life Sci 2012; 3(2): 1407-12.
[542]
Kuroda M, Mimaki Y, Ohtomo T, et al. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J Nat Med 2012; 66(2): 394-9.
[http://dx.doi.org/10.1007/s11418-011-0593-z ] [PMID: 21987283]
[543]
Chaudhry ZR, Chaudhry SR, Naseer A, Chaudhry FR. Effect of Syzygium aromaticum (clove) extract on blood glucose level in streptozotocin induced diabetic rats. Pak Armed Forces Med J 2013; 63(3): 323-8.
[544]
Ngubane PS, Masola B, Musabayane CT. The effects of Syzygium aromaticum-derived oleanolic acid on glycogenic enzymes in streptozotocin-induced diabetic rats. Ren Fail 2011; 33(4): 434-9.
[http://dx.doi.org/10.3109/0886022X.2011.568147 ] [PMID: 21529273]
[545]
Khathi A, Serumula MR, Myburg RB, Van Heerden FR, Musabayane CT. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. PLoS One 2013; 8(11): e81632.
[http://dx.doi.org/10.1371/journal.pone.0081632 ] [PMID: 24278452]
[546]
Jawla S, Kumar Y, Khan MSY. Hypoglycemic potential of Bougainvillea spectabilis root bark in normal and Alloxan induced diabetic rats. Pharmacologyonline 2011; 3: 73-87.
[547]
Jawla S, Kumar Y, Khan MSY. Hypoglycemic activity of Bougainvillea spectabilis stem bark in normal and alloxan-induced diabetic rats. Asian Pac J Trop Biomed 2012; 2(2): S919-23.
[http://dx.doi.org/10.1016/S2221-1691(12)60337-2]
[548]
Chauhan P, Mahajan S, Kulshrestha A, et al. Bougainvillea spectabilis exhibits antihyperglycemic and antioxidant activities in experimental diabetes. J Evid Based Complementary Altern Med 2016; 21(3): 177-85.
[http://dx.doi.org/10.1177/2156587215595152 ] [PMID: 26187284]
[549]
Narayanan CR, Joshi DD, Mujumdar AM, Dhekne VV. Pinitol—a new anti-diabetic compound from the leaves of Bougainvillea spectabilis. Curr Sci 1987; 56(3): 139-41. Available from: https://www.jstor.org/stable/24091051
[550]
Eidi A, Eidi M, Darzi R. Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytother Res 2009; 23(3): 347-50.
[http://dx.doi.org/10.1002/ptr.2629 ] [PMID: 18844257]
[551]
Zhang J, Huang X, Sun X, Pei D, Di D. Efficient method for the screening and identification of anti-diabetic components in the leaves of Olea europaea L. New J Chem 2014; 38(8): 3796-802.
[http://dx.doi.org/10.1039/C4NJ00074A]
[552]
Al-Attar AM, Alsalmi FA. Effect of Olea europaea leaves extract on streptozotocin induced diabetes in male albino rats. Saudi J Biol Sci 2019; 26(1): 118-28.
[http://dx.doi.org/10.1016/j.sjbs.2017.03.002 ] [PMID: 30622415]
[553]
Sato H, Genet C, Strehle A, et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun 2007; 362(4): 793-8.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.130 ] [PMID: 17825251]
[554]
Zhang RX, Jia ZP, Kong LY, et al. Stachyose extract from Rehmannia glutinosa Libosch. to lower plasma glucose in normal and diabetic rats by oral administration. Pharmazie 2004; 59(7): 552-6.
[PMID: 15296094]
[555]
Qin Z, Wang W, Liao D, Wu X, Li X. UPLC-Q/TOF-MS-based serum metabolomics reveals hypoglycemic effects of Rehmannia glutinosa, Coptis chinensis and their combination on high-fat-diet-induced diabetes in KK-Ay mice. Int J Mol Sci 2018; 19(12): 3984.
[http://dx.doi.org/10.3390/ijms19123984 ] [PMID: 30544908]
[556]
Shieh JP, Cheng KC, Chung HH, Kerh YF, Yeh CH, Cheng JT. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. J Agric Food Chem 2011; 59(8): 3747-53.
[http://dx.doi.org/10.1021/jf200069t ] [PMID: 21391677]
[557]
Zhu H, Wang Y, Liu Z, et al. Antidiabetic and antioxidant effects of catalpol extracted from Rehmannia glutinosa (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed. Chin Med 2016; 11(1): 25.
[http://dx.doi.org/10.1186/s13020-016-0096-7 ] [PMID: 27175212]
[558]
Sharan SB, Mondal P, Zaman K, Junajo JA, Verma VK. In vivo anti-diabetic activity of the methanolic and aqueous bark extracts of the plant Emblica officinalis Gaertn. Acad J Plant Sci 2013; 6(2): 64-8.
[http://dx.doi.org/10.5829/idosi.ajps.2013.6.2.329]
[559]
Nain P, Saini V, Sharma S, Nain J. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 2012; 142(1): 65-71.
[http://dx.doi.org/10.1016/j.jep.2012.04.014 ] [PMID: 22855943]
[560]
Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr 2011; 62(6): 609-16.
[http://dx.doi.org/10.3109/09637486.2011.560565 ] [PMID: 21495900]
[561]
D’souza JJ, D’souza PP, Fazal F, Kumar A, Bhat HP, Baliga MS. Anti-diabetic effects of the Indian indigenous fruit Emblica officinalis Gaertn: active constituents and modes of action. Food Funct 2014; 5(4): 635-44.
[http://dx.doi.org/10.1039/c3fo60366k ] [PMID: 24577384]
[562]
Raphael KR, Sabu MC, Kuttan R. Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum & Thonn on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential. Indian J Exp Biol 2002; 40(8): 905-9.
[PMID: 12597020]
[563]
Adeneye AA. The leaf and seed aqueous extract of Phyllanthus amarus improves insulin resistance diabetes in experimental animal studies. J Ethnopharmacol 2012; 144(3): 705-11.
[http://dx.doi.org/10.1016/j.jep.2012.10.017 ] [PMID: 23085308]
[564]
Mitra A, Tamil IG, Dineshkumar B, Nandhakumar M, Senthilkumar M. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian J Pharmacol 2010; 42(5): 280-2.
[http://dx.doi.org/10.4103/0253-7613.70107 ] [PMID: 21206618]
[565]
Jagtap S, Khare P, Mangal P, Kondepudi KK, Bishnoi M, Bhutani KK. Protective effects of phyllanthin, a lignan from Phyllanthus amarus, against progression of high fat diet induced metabolic disturbances in mice. RSC Advances 2016; 6(63): 58343-53.
[http://dx.doi.org/10.1039/C6RA10774E]
[566]
Singh P, Khosa RL, Mishra G. Evaluation of antidiabetic activity of ethanolic extract of Cedrus deodara (Pinaceae) stem bark in streptozotocin induced diabetes in mice. Nigerian J Exper Clinic Biosci 2013; 1(1): 33-8.
[http://dx.doi.org/10.4103/2348-0149.123961]
[567]
Jain S, Jain A, Malviya N, Kumar D, Jain V, Jain S. Antidiabetic activity of Cedrus deodara aqueous extract and its relationship with its antioxidant properties. J Pharm Sci Pharmacol 2014; 1(3): 187-94.
[http://dx.doi.org/10.1166/jpsp.2014.1023]
[568]
Xu F, Gu D, Wang M, et al. Screening of the potential α-amylase inhibitor in essential oil from Cedrus deodara cones. Ind Crops Prod 2017; 103: 251-6.
[http://dx.doi.org/10.1016/j.indcrop.2017.04.006]
[569]
Nabi SA, Kasetti RB, Sirasanagandla S, Tilak TK, Kumar MVJ, Rao CA. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complement Altern Med 2013; 13(1): 37.
[http://dx.doi.org/10.1186/1472-6882-13-37 ] [PMID: 23414307]
[570]
Kumar S, Sharma S, Vasudeva N. Screening of antidiabetic and antihyperlipidemic potential of oil from Piper longum and piperine with their possible mechanism. Expert Opin Pharmacother 2013; 14(13): 1723-36.
[http://dx.doi.org/10.1517/14656566.2013.815725 ] [PMID: 23875561]
[571]
Kaleem M, Sheema S, Sarmad H, Bano B. Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats. Indian J Physiol Pharmacol 2005; 49(1): 65-71.
[PMID: 15881860]
[572]
Onyesife CO, Ogugua VN, Anaduaka BG. Hypoglycemic potentials of ethanol leaves extract of black pepper (Piper nigrum) on alloxan-induced diabetic rats. Ann Biol Res 2014; 5(6): 26-31.
[573]
Ghosh T, Kumar MT, Sengupta P, Dash DK, Bose A. Antidiabetic and in vivo antioxidant activity of ethanolic extract of Bacopa monnieri Linn. aerial parts: a possible mechanism of action. Iran J Pharm Res 2008; 7(1): 61-8.
[574]
Taznin I, Mukti M, Rahmatullah M. Bacopa monnieri: An evaluation of antihyperglycemic and antinociceptive potential of methanolic extract of whole plants. Pak J Pharm Sci 2015; 28(6): 2135-9.
[PMID: 26639482]
[575]
Ghosh T, Maity T, Singh J. Antihyperglycemic activity of bacosine, a triterpene from Bacopa monnieri, in alloxan-induced diabetic rats. Planta Med 2011; 77(8): 804-8.
[http://dx.doi.org/10.1055/s-0030-1250600 ] [PMID: 21154199]
[576]
Husain GM, Rai R, Rai G, et al. Potential mechanism of anti-diabetic activity of Picrorhiza kurroa. Tang 2014; 4(4): 27.
[http://dx.doi.org/10.5667/tang.2014.0013]
[577]
Kumar S, Patial V, Soni S, et al. Picrorhiza kurroa enhances β-Cell mass proliferation and insulin secretion in streptozotocin evoked β-Cell damage in rats. Front Pharmacol 2017; 8(8): 537.
[http://dx.doi.org/10.3389/fphar.2017.00537 ] [PMID: 28878669]
[578]
Ahmed I, Naeem M, Shakoor A, Ahmed Z, Iqbal HMN. Investigation of anti-diabetic and hypocholesterolemic potential of Psyllium husk fiber (Plantago psyllium) in diabetic and hypercholesterolemic albino rats. Int J Bio Life Sci 2010; 4: 30-4.
[579]
Feinglos MN, Gibb RD, Ramsey DL, Surwit RS, McRorie JW. Psyllium improves glycemic control in patients with type-2 diabetes mellitus. Bioactive Carbohydrates and Dietary Fibre 2013; 1(2): 156-61.
[http://dx.doi.org/10.1016/j.bcdf.2013.02.003]
[580]
Noureddin S, Mohsen J, Payman A. Effects of psyllium vs. placebo on constipation, weight, glycemia, and lipids: A randomized trial in patients with type 2 diabetes and chronic constipation. Complement Ther Med 2018; 40: 1-7.
[http://dx.doi.org/10.1016/j.ctim.2018.07.004 ] [PMID: 30219432]
[581]
Latha M, Pari L. Effect of an aqueous extract of Scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes. Braz J Med Biol Res 2004; 37(4): 577-86.
[http://dx.doi.org/10.1590/S0100-879X2004000400015 ] [PMID: 15064821]
[582]
Zulfiker AHM, Ripa FA, Rahman MM, et al. Antidiabetic and antioxidant effect of Scoparia dulcis in alloxan induced albino mice. Int J Pharm Tech Res 2010; 2(4): 2527-34.
[583]
Latha M, Pari L, Ramkumar KM, et al. Antidiabetic effects of scoparic acid D isolated from Scoparia dulcis in rats with streptozotocin-induced diabetes. Nat Prod Res 2009; 23(16): 1528-40.
[http://dx.doi.org/10.1080/14786410902726126 ] [PMID: 19606382]
[584]
Sharma KR, Adhikari A, Hafizur RM, et al. Potent insulin secretagogue from Scoparia dulcis Linn of Nepalese origin. Phytother Res 2015; 29(10): 1672-5.
[http://dx.doi.org/10.1002/ptr.5412 ] [PMID: 26178652]
[585]
Kumar G, Banu SG, Maheswaran R, et al. Effect of Plumbago zeylanica L. on blood glucose and plasma antioxidant status in STZ diabetic rats. J Nat Rem 2007; 7(1): 66-71.
[http://dx.doi.org/10.18311/jnr/2007/196]
[586]
Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem Toxicol 2012; 50(12): 4356-63.
[http://dx.doi.org/10.1016/j.fct.2012.08.046 ] [PMID: 22960630]
[587]
Nazreen S, Kaur G, Alam MM, et al. Hypoglycemic activity of Bambusa arudiacea leaf ethanolic extract in streptozotoci induced diabetic rats. Pharmacologyonline 2011; 1: 964-72.
[588]
Soni V, Jha AK, Dwivedi J, Soni P. Traditional uses, phytochemistry and pharmacological profile of Bambusa arudinacea Retz. TANG [HUMANITAS MEDICINE] 2013; 3(3): e20.
[http://dx.doi.org/10.5667/tang.2013.0011] [http://dx.doi.org/10.5667/tang.2013.0011]
[589]
Tseng YH, Chang CW, Chiang W, Hsieh SC. Adlay bran oil suppresses hepatic gluconeogenesis and attenuates hyperlipidemia in Type 2 diabetes rats. J Med Food 2019; 22(1): 22-8.
[http://dx.doi.org/10.1089/jmf.2018.4237 ] [PMID: 30673500]
[590]
Chen LC, Fan ZY, Wang HY, Wen DC, Zhang SY. Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food Funct 2019; 10(7): 4372-80.
[http://dx.doi.org/10.1039/C9FO00406H ] [PMID: 31276140]
[591]
Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab 2018; 29(3): 178-90.
[http://dx.doi.org/10.1016/j.tem.2017.11.009 ] [PMID: 29290500]
[592]
Reddy NS, Vidyasabbani , Pravanthi B, Laxmi BV, Harika B. Evaluation of Antidiabetic Activity of Rumex vesicarius in Streptozotocin Induced Diabetic Albino Rats. Res J Pahrmacol Pharmacodyn 2016; 8(3): 123-6.
[http://dx.doi.org/10.5958/2321-5836.2016.00023.9]
[593]
Ahmed OM, Mahmoud AM, Moneim AA, Ashour MB. Antidiabetic effects of hesperidin and naringin in type 2 diabetic rats. Diabetol Croat 2012; 41: 53-67.
[594]
Ranjan V, Vats M, Gupta N, Sardana S. Antidiabetic potential of whole plant of Adiantum capillus veneris linn. in streptozotocin induced diabetic rats. Int J Pharmaceutical Clinic Res 2014; 6(4): 341-7.
[595]
Kasabri V, Al-Hallaq EK, Bustanji YK, Abdul-Razzak KK, Abaza IF, Afifi FU. Antiobesity and antihyperglycaemic effects of Adiantum capillus-veneris extracts: in vitro and in vivo evaluations. Pharm Biol 2017; 55(1): 164-72.
[http://dx.doi.org/10.1080/13880209.2016.1233567 ] [PMID: 27663206]
[596]
Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response 2017; 15(1): 1559325817691158.
[http://dx.doi.org/10.1177/1559325817691158] [PMID: 28228702] [http://dx.doi.org/10.1177/1559325817691158] [PMID: 28228702]
[597]
Muthukumaran J, Srinivasan S, Venkatesan RS, Ramachandran V, Muruganathan U. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. J Acute Dis 2013; 2(4): 304-9.
[http://dx.doi.org/10.1016/S2221-6189(13)60149-3]
[598]
Chen QM, Xie MZ. [Studies on the hypoglycemic effect of Coptis chinensis and berberine]. Yao Xue Xue Bao 1986; 21(6): 401-6.
[PMID: 3811923]
[599]
Yuan L, Tu D, Ye X, Wu J. Hypoglycemic and hypocholesterolemic effects of Coptis chinensis franch inflorescence. Plant Foods Hum Nutr 2006; 61(3): 139-44.
[http://dx.doi.org/10.1007/s11130-006-0023-7 ] [PMID: 17031605]
[600]
Ma B, Tong J, Zhou G, Mo Q, He J, Wang Y. Coptis chinensis inflorescence ameliorates hyperglycaemia in 3T3-L1 preadipocyte and streptozotocin-induced diabetic mice. J Funct Foods 2016; 21: 455-62.
[http://dx.doi.org/10.1016/j.jff.2015.12.021]
[601]
Kaleem M, Kirmani D, Asif M, Ahmed Q, Bano B. Biochemical effects of Nigella sativa L seeds in diabetic rats. Indian J Exp Biol 2006; 44(9): 745-8.
[PMID: 16999030]
[602]
Bamosa AO, Kaatabi H, Lebdaa FM, Elq AM, Al-Sultanb A. Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian J Physiol Pharmacol 2010; 54(4): 344-54.
[PMID: 21675032]
[603]
Heshmati J, Namazi N. Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: A systematic review. Complement Ther Med 2015; 23(2): 275-82.
[http://dx.doi.org/10.1016/j.ctim.2015.01.013 ] [PMID: 25847566]
[604]
Abdelmeguid NE, Fakhoury R, Kamal SM, Al Wafai RJ. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J Diabetes 2010; 2(4): 256-66.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00091.x ] [PMID: 20923501]
[605]
Sharma SR, Dwivedi SK, Varshney VP, Swarup D. Antihyperglycaemic and Insulin Release Effects ofAegle marmelosLeaves in Streptozotocin-Diabetic Rats. Phytother Res 1996; 10(5): 426-8.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199608)10:5<426:AID-PTR861>3.0.CO;2-E]
[606]
Narendhirakannan RT, Subramanian S. Biochemical evaluation of the protective effect of Aegle marmelos (L.), Corr. leaf extract on tissue antioxidant defense system and histological changes of pancreatic β-cells in streptozotocin-induced diabetic rats. Drug Chem Toxicol 2010; 33(2): 120-30.
[http://dx.doi.org/10.3109/01480540903203984 ] [PMID: 20307140]
[607]
Mudi SR, Akhter M, Biswas SK, et al. Effect of aqueous extract of Aegle marmelos fruit and leaf on glycemic, insulinemic and lipidemic status of type 2 diabetic model rats. J Complement Integr Med 2017; 14(2): 20160111.
[http://dx.doi.org/10.1515/jcim-2016-0111]
[608]
Kesari AN, Gupta RK, Singh SK, Diwakar S, Watal G. Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol 2006; 107(3): 374-9.
[http://dx.doi.org/10.1016/j.jep.2006.03.042 ] [PMID: 16781099]
[609]
Kamalakkannan N, Prince PSM. Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. J Ethnopharmacol 2003; 87(2-3): 207-10.
[http://dx.doi.org/10.1016/S0378-8741(03)00148-X ] [PMID: 12860309]
[610]
Gandhi GR, Ignacimuthu S, Paulraj MG. Hypoglycemic and β-cells regenerative effects of Aegle marmelos (L.) Corr. bark extract in streptozotocin-induced diabetic rats. Food Chem Toxicol 2012; 50(5): 1667-74.
[http://dx.doi.org/10.1016/j.fct.2012.01.030 ] [PMID: 22310238]
[611]
Narender T, Shweta S, Tiwari P, et al. Antihyperglycemic and antidyslipidemic agent from Aegle marmelos. Bioorg Med Chem Lett 2007; 17(6): 1808-11.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.037 ] [PMID: 17197179]
[612]
Yadav S, Vats V, Dhunnoo Y, Grover JK. Hypoglycemic and antihyperglycemic activity of Murraya koenigii leaves in diabetic rats. J Ethnopharmacol 2002; 82(2-3): 111-6.
[http://dx.doi.org/10.1016/S0378-8741(02)00167-8 ] [PMID: 12241985]
[613]
Arulselvan P, Subramanian SP. Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic β-cells in experimental diabetes in rats. Chem Biol Interact 2007; 165(2): 155-64.
[http://dx.doi.org/10.1016/j.cbi.2006.10.014 ] [PMID: 17188670]
[614]
Tembhurne SV, Sakarkar DM. Hypoglycemic effects of fruit juice of Murraya koenigii (L) in alloxan induced diabetic mice. Int J Pharm Tech Res 2009; 1(4): 1589-93.
[615]
Lanjhiyana S, Garabadu D, Ahirwar D, et al. Hypoglycemic activity studies on root extracts of Murraya koenigii root in Alloxan-induced diabetic rats. J Nat Prod Plant Resour 2011; 1(2): 91-104.
[616]
Kumar BD, Mitra A, Mahadevappa M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves. Int J Phytomed 2010; 2: 22-30.
[http://dx.doi.org/10.5138/ijpm.2010.0975.0185.02004]
[617]
Park JS, Park CH, Jun CY, et al. The Anti-diabetes and Vasoelasticity Effects of Mori Folium and Aurantii Fructus in Streptozotocin Induced Type II Diabetes Mellitus Model. J Int Korean Med 2007; 28(3): 544-59.
[618]
Taslimi P, Akıncıoglu H, Gülçin İ. Synephrine and phenylephrine act as α‐amylase, α‐glycosidase, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase enzymes inhibitors. J Biochem Mol Toxicol 2017; 31(11): e21973.
[http://dx.doi.org/10.1002/jbt.21973 ] [PMID: 28800181]
[619]
Sinha D, Satapathy T, Jain P, et al. In vitro Antidiabetic Effect of Neohesperidin. J Drug Deliv Ther 2019; 9(6): 102-9.
[http://dx.doi.org/10.22270/jddt.v9i6.3633]
[620]
Prakasam A, Sethupathy S, Pugalendi KV. Effect of Casearia esculenta root extract on blood glucose and plasma antioxidant status in streptozotocin diabetic rats. Pol J Pharmacol 2003; 55(1): 43-9.
[PMID: 12856825]
[621]
Chandramohan G, Ignacimuthu S, Pugalendi KV. A novel compound from Casearia esculenta (Roxb.) root and its effect on carbohydrate metabolism in streptozotocin-diabetic rats. Eur J Pharmacol 2008; 590(1-3): 437-43.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.082 ] [PMID: 18635165]
[622]
Kwon YI, Apostolidis E, Shetty K. Evaluation of pepper (Capsicum annuum) for management of diabetes and hypertension. J Food Biochem 2007; 31(3): 370-85.
[http://dx.doi.org/10.1111/j.1745-4514.2007.00120.x]
[623]
Tundis R, Loizzo MR, Menichini F, et al. Comparative study on the chemical composition, antioxidant properties and hypoglycaemic activities of two Capsicum annuum L. cultivars (Acuminatum small and Cerasiferum). Plant Foods Hum Nutr 2011; 66(3): 261-9.
[http://dx.doi.org/10.1007/s11130-011-0248-y ] [PMID: 21792679]
[624]
Yuan LJ, Qin Y, Wang L, et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin Nutr 2016; 35(2): 388-93.
[http://dx.doi.org/10.1016/j.clnu.2015.02.011 ] [PMID: 25771490]
[625]
Gao D, Li Q, Liu Z, et al. Hypoglycemic effects and mechanisms of action of Cortex Lycii Radicis on alloxan-induced diabetic mice. Yakugaku Zasshi 2007; 127(10): 1715-21.
[http://dx.doi.org/10.1248/yakushi.127.1715 ] [PMID: 17917429]
[626]
Wang D, Ye Z. Cortex lyciiradicis extracts protect pancreatic beta cells under high glucose conditions. Curr Mol Med 2016; 16(6): 591-5.
[http://dx.doi.org/10.2174/1566524016666160523143757 ] [PMID: 27211801]
[627]
Asghari B, Salehi P, Farimani MM, Ebrahimi SN. α- Glucosidase Inhibitors from Fruits of Rosa canina L. Rec Nat Prod 2015; 9(3): 276-83.
[628]
Sohrabipour S, Kharazmi F, Soltani N, Kamalinejad M. Effect of the administration of Solanum nigrum fruit on blood glucose, lipid profiles, and sensitivity of the vascular mesenteric bed to phenylephrine in streptozotocin-induced diabetic rats. Med Sci Monit Basic Res 2013; 19(19): 133-40.
[http://dx.doi.org/10.12659/MSMBR.883892 ] [PMID: 23660828]
[629]
Umamageswari MS, Karthikeyan TM, Maniyar YA. Antidiabetic activity of aqueous extract of Solanum nigrum linn berries in alloxan induced diabetic wistar albino rats. J Clin Diagn Res 2017; 11(7): FC16-9.
[http://dx.doi.org/10.7860/JCDR/2017/26563.10312 ] [PMID: 28892926]
[630]
Maharana L, Pattnaik S, Kar DM, Sahu PK, Si SC. Assessment of antihyperglycaemic and antioxidant and potential of leaves of Solanum nigrum Linn. in alloxan induced diabetic rats. Pharmacologyonline 2011; 1: 942-63.
[631]
Kasali FM, Masunda AT, Madarhi JK, et al. Assessment of antidiabetic activity and acute toxicity of leaf extracts from Solanum nigrum L. (Solanaceae) in guinea-pigs. Int J Herb Med 2016; 4(6): 14-9.
[632]
Jayachandran M, Zhang T, Ganesan K, Xu B, Chung SSM. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur J Pharmacol 2018; 829: 112-20.
[http://dx.doi.org/10.1016/j.ejphar.2018.04.015 ] [PMID: 29665363]
[633]
Hemalatha S, Wahi AK, Singh PN, Chansouria JPN. Hypoglycemic activity of Withania coagulans Dunal in streptozotocin induced diabetic rats. J Ethnopharmacol 2004; 93(2-3): 261-4.
[http://dx.doi.org/10.1016/j.jep.2004.03.043 ] [PMID: 15234762]
[634]
Jaiswal D, Rai PK, Watal G. Antidiabetic effect of Withania coagulans in experimental rats. Indian J Clin Biochem 2009; 24(1): 88-93.
[http://dx.doi.org/10.1007/s12291-009-0015-0 ] [PMID: 23105813]
[635]
Gupta V, Upadhyay BN. A clinical study on the effect of Rishyagandha (Withania coagulans) in the management of Prameha (Type II Diabetes Mellitus). Ayu 2011; 32(4): 507-11.
[http://dx.doi.org/10.4103/0974-8520.96124 ] [PMID: 22661845]
[636]
Bagchi C, Das S, Mitra A, Pati AD, Tripathi SK, Datta A. Antidiabetic and antihyperlipidemic activity of hydroalcoholic extract of Withania coagulans Dunal dried fruit in experimental rat models. J Ayurveda Integr Med 2013; 4(2): 99-106.
[http://dx.doi.org/10.4103/0975-9476.113880 ] [PMID: 23930042]
[637]
Meeran SB, Subburaya U, Narasimhan G. In silico and in vitro screening of ethanolic extract of fruits of Withania coagulans against diabetes. Res J Pharm Tech 2020; 13(2): 631-5.
[http://dx.doi.org/10.5958/0974-360X.2020.00120.1]
[638]
Bharti SK, Kumar A, Sharma NK, et al. Antidiabetic effect of aqueous extract of Withania coagulans flower in Poloxamer-407 induced type 2 diabetic rats. J Med Plants Res 2012; 6(45): 5706-13.
[http://dx.doi.org/10.5897/JMPR12.646]
[639]
Maurya R, Akanksha , Jayendra , Singh AB, Srivastava AK. Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorg Med Chem Lett 2008; 18(24): 6534-7.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.050 ] [PMID: 18952419]
[640]
Udayakumar R, Kasthurirengan S, Mariashibu TS, et al. Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 2009; 10(5): 2367-82.
[http://dx.doi.org/10.3390/ijms10052367 ] [PMID: 19564954]
[641]
Gorelick J, Rosenberg R, Smotrich A, Hanuš L, Bernstein N. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry 2015; 116: 283-9.
[http://dx.doi.org/10.1016/j.phytochem.2015.02.029 ] [PMID: 25796090]
[642]
Al-Attar AM, Zari TA. Influences of crude extract of tea leaves, Camellia sinensis, on streptozotocin diabetic male albino mice. Saudi J Biol Sci 2010; 17(4): 295-301.
[http://dx.doi.org/10.1016/j.sjbs.2010.05.007 ] [PMID: 23961092]
[643]
Islam MS. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. Phytomedicine 2011; 19(1): 25-31.
[http://dx.doi.org/10.1016/j.phymed.2011.06.025 ] [PMID: 21802923]
[644]
Roghani M, Baluchnejadmojarad T. Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology 2010; 17(1): 55-9.
[http://dx.doi.org/10.1016/j.pathophys.2009.07.004 ] [PMID: 19682872]
[645]
Wang H, Shi S, Bao B, Li X, Wang S. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohydr Polym 2015; 124: 98-108.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.070 ] [PMID: 25839799]
[646]
Bnouham M, Merhfour FZ, Ziyyat A, Mekhfi H, Aziz M, Legssyer A. Antihyperglycemic activity of the aqueous extract of Urtica dioica. Fitoterapia 2003; 74(7-8): 677-81.
[http://dx.doi.org/10.1016/S0367-326X(03)00182-5 ] [PMID: 14630172]
[647]
Golalipour MJ, Khori V. The protective activity of Urtica dioica leaves on blood glucose concentration and beta-cells in streptozotocin-diabetic rats. Pak J Biol Sci 2007; 10(8): 1200-4.
[http://dx.doi.org/10.3923/pjbs.2007.1200.1204 ] [PMID: 19069917]
[648]
Kianbakht S, Khalighi-Sigaroodi F, Dabaghian F. Improved glycemic control in patients with advanced type 2 diabetes mellitus taking Urtica dioica leaf extract: a randomized double-blind placebo-controlled clinical trial. Clin Lab 2013; 59(09+10/2013): 1071-6.
[http://dx.doi.org/10.7754/Clin.Lab.2012.121019] [PMID: 24273930]
[649]
Ong KW, Hsu A, Tan BKH. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol 2013; 85(9): 1341-51.
[http://dx.doi.org/10.1016/j.bcp.2013.02.008 ] [PMID: 23416115]
[650]
Majumder P, Mazumder S, Chakraborty M, Chowdhury SG, Karmakar S, Haldar PK. Preclinical evaluation of Kali Haldi (Curcuma caesia): a promising herb to treat type-2 diabetes. Orient Pharm Exp Med 2017; 17(2): 161-9.
[http://dx.doi.org/10.1007/s13596-017-0259-9]
[651]
Misra BB, Dey S. Evaluation of in vivo anti-hyperglycemic and antioxidant potentials of α-santalol and sandalwood oil. Phytomedicine 2013; 20(5): 409-16.
[http://dx.doi.org/10.1016/j.phymed.2012.12.017 ] [PMID: 23369343]
[652]
Mohankumar S, McFarlane JR. An aqueous extract of Curcum longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro. Phytother Res 2010; 25(3): 396-401.
[http://dx.doi.org/10.1002/ptr.3275 ] [PMID: 20734343]
[653]
GHorbani Z, Hekmatdoost A, Mirmiran P. Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab 2014; 12(4): e18081.
[http://dx.doi.org/10.5812/ijem.18081 ] [PMID: 25745485]
[654]
Babu PS, Srinivasan K. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol Cell Biochem 1997; 166(1/2): 169-75.
[http://dx.doi.org/10.1023/A:1006819605211 ] [PMID: 9046034]
[655]
Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012; 35(11): 2121-7.
[http://dx.doi.org/10.2337/dc12-0116 ] [PMID: 22773702]
[656]
Kuroda M, Mimaki Y, Nishiyama T, et al. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 2005; 28(5): 937-9.
[http://dx.doi.org/10.1248/bpb.28.937 ] [PMID: 15863912]
[657]
Ponnusamy S, Zinjarde S, Bhargava S, Rajamohanan PR, RaviKumar A. Discovering Bisdemethoxycurcumin from Curcuma longa rhizome as a potent small molecule inhibitor of human pancreatic α-amylase, a target for type-2 diabetes. Food Chem 2012; 135(4): 2638-42.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.110 ] [PMID: 22980852]
[658]
Nitasha Bhat GM, Nayak N, Vinodraj K, Chandralekha N, Mathai P, Cherian J. Comparison of the efficacy of cardamom (Elettaria cardamomum) with pioglitazone on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in albino rats. J Adv Pharm Technol Res 2015; 6(3): 136-40.
[http://dx.doi.org/10.4103/2231-4040.157981 ] [PMID: 26317079]
[659]
Ahmed AS, Ahmed Q, Saxena AK, Jamal P. Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) Maton (Zingiberaceae), Piper cubeba L. f. (Piperaceae), and Plumeria rubra L. (Apocynaceae). Pak J Pharm Sci 2017; 30(1): 113-26.
[PMID: 28603121]
[660]
Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br J Nutr 2006; 96(4): 660-6.
[http://dx.doi.org/10.1079/BJN20061849 ] [PMID: 17010224]
[661]
Li Y, Tran VH, Duke CC, Roufogalis BD. Preventive and Protective Properties of Zingiber officinale (Ginger) in Diabetes Mellitus, Diabetic Complications, and Associated Lipid and Other Metabolic Disorders: A Brief Review. Evid Based Complement Alternat Med 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/516870 ] [PMID: 23243452]
[662]
Mahluji S, Attari VE, Mobasseri M, Payahoo L, Ostadrahimi A, Golzari SEJ. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int J Food Sci Nutr 2013; 64(6): 682-6.
[http://dx.doi.org/10.3109/09637486.2013.775223 ] [PMID: 23496212]
[663]
Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med 2015; 12(2): 165-70.
[http://dx.doi.org/10.1515/jcim-2014-0021 ] [PMID: 25719344]
[664]
Kazeem MI, Akanji MA, Yakubu MT. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome. Pathophysiology 2015; 22(4): 203-9.
[http://dx.doi.org/10.1016/j.pathophys.2015.08.004 ] [PMID: 26349770]
[665]
Jafarnejad S, Keshavarz SA, Mahbubi S, et al. Effect of ginger (Zingiber officinale) on blood glucose and lipid concentrations in diabetic and hyperlipidemic subjects: A meta-analysis of randomized controlled trials. J Funct Foods 2017; 29: 127-34.
[http://dx.doi.org/10.1016/j.jff.2016.12.006]
[666]
Singh AB. Akansha, Singh N, Maurya R, Srivastava AK. Anti-hyperglycaemic, lipid lowering and anti-oxidant properties of [6]-gingerol in db/db mice. Int J Med Med Sci 2009; 1(12): 536-44.
[667]
Samad MB, Mohsin MNAB, Razu BA, et al. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement Altern Med 2017; 17(1): 395.
[http://dx.doi.org/10.1186/s12906-017-1903-0 ] [PMID: 28793909]
[668]
Ahmad B, Rehman MU, Amin I, et al. Zingerone (4-(4-hydroxy-3-methylphenyl) butan-2-one) protects against alloxan-induced diabetes via alleviation of oxidative stress and inflammation: Probable role of NF-kB activation. Saudi Pharm J 2018; 26(8): 1137-45.
[http://dx.doi.org/10.1016/j.jsps.2018.07.001 ] [PMID: 30532634]
[669]
Anwer T, Alkarbi ZA, Najmi AH, et al. Modulatory effect of zingerone against STZ-nicotinamide induced type-2 diabetes mellitus in rats. Arch Physiol Biochem 2019; 127(4): 304.
[http://dx.doi.org/10.1080/13813455.2019.1637436]
[670]
El-Tantawy WH, Hassanin LA. Hypoglycemic and hypolipidemic effects of alcoholic extract of Tribulus alatus in streptozotocin-induced diabetic rats: a comparative study with T. terrestris (Caltrop). Indian J Exp Biol 2007; 45(9): 785-90.
[PMID: 17907744]
[671]
Samani NB, Jokar A, Soveid M, Heydari M, Mosavat SH. Efficacy of the hydroalcoholic extract of Tribulus terrestris on the serum glucose and lipid profile of women with diabetes mellitus: A double-blind randomized placebo-controlled clinical trial. J Evid Based Complementary Altern Med 2016; 21(4): NP91-7.
[http://dx.doi.org/10.1177/2156587216650775] [PMID: 27255456]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy