Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

A Comprehensive Review of Essential Aspects of Molecular Pathophysiological Mechanisms with Emerging Interventions for Sarcopenia in Older People

Author(s): Priyanka Prajapati, Anand Kumar, Rishabh Chaudary, Shubhada Mangrulkar, Malti Arya and Sapana Kushwaha*

Volume 17, 2024

Published on: 03 May, 2023

Article ID: e080323214478 Pages: 42

DOI: 10.2174/1874467216666230308142137

Price: $65

Abstract

Background: As people age, physical impairments may have a deleterious role on skeletal muscles. Sarcopenia Clinical Practice Guidelines 2017 and the European Working Group on Sarcopenia in older people are two organizations that have published essential guidelines on the definition of “Sarcopenia”. Sarcopenia is a geriatric syndrome, characterized by skeletal muscle mass degeneration brought on by ageing, which lowers muscular function and quality. Moreover, Sarcopenia can be classified as primary or age-associated Sarcopenia and secondary Sarcopenia. Also, secondary Sarcopenia occurs when other diseases such as diabetes, obesity, cancer, cirrhosis, myocardial failure, chronic obstructive pulmonary disease, and inflammatory bowel disease also contribute to muscle loss. Furthermore, Sarcopenia is linked with a high risk of negative outcomes, considering a gradual reduction in physical mobility, poor balance, and increased fracture risks which ultimately leads to poor quality of life.

Objective: In this comprehensive review, we have elaborated on the pathophysiology, and various signaling pathways linked with Sarcopenia. Also, discussed the preclinical models and current interventional therapeutics to treat muscle wasting in older patients.

Conclusion: In a nutshell, a comprehensive description of the pathophysiology, mechanisms, animal models, and interventions of Sarcopenia. We also shed light on pharmacotherapeutics present in clinical trials which are being developed as potential therapeutic options for wasting diseases. Thus, this review could fill in the knowledge gaps regarding Sarcopenia-related muscle loss and muscle quality for both researchers and clinicians.

[1]
Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr., 1997, 127(S5), 990S-991S.
[http://dx.doi.org/10.1093/jn/127.5.990S] [PMID: 9164280]
[2]
Dhillon, R.J.S.; Hasni, S. Pathogenesis and management of Sarcopenia. Clin. Geriatr. Med., 2017, 33(1), 17-26.
[http://dx.doi.org/10.1016/j.cger.2016.08.002] [PMID: 27886695]
[3]
Rahman, R.; Wilson, B.P.; Paul, T.V.; Yadav, B.; Kango Gopal, G.; Viggeswarpu, S. Prevalence and factors contributing to primary Sarcopenia in relatively healthy older Indians attending the outpatient department in a tertiary care hospital: A cross-sectional study. Aging Med., 2021, 4(4), 257-265.
[http://dx.doi.org/10.1002/agm2.12186] [PMID: 34964006]
[4]
Therakomen, V.; Petchlorlian, A.; Lakananurak, N. Prevalence and risk factors of primary Sarcopenia in community-dwelling outpatient elderly: a cross-sectional study. Sci. Rep., 2020, 10(1), 19551.
[http://dx.doi.org/10.1038/s41598-020-75250-y] [PMID: 33177536]
[5]
Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; Schneider, S.M.; Sieber, C.C.; Topinkova, E.; Vandewoude, M.; Visser, M.; Zamboni, M.; Bautmans, I.; Baeyens, J-P.; Cesari, M.; Cherubini, A.; Kanis, J.; Maggio, M.; Martin, F.; Michel, J-P.; Pitkala, K.; Reginster, J-Y.; Rizzoli, R.; Sánchez-Rodríguez, D.; Schols, J. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing, 2019, 48(1), 16-31.
[http://dx.doi.org/10.1093/ageing/afy169] [PMID: 30312372]
[6]
Lim, W.S.; Cheong, C.Y.; Lim, J.P.; Tan, M.M.Y.; Chia, J.Q.; Malik, N.A.; Tay, L. Singapore clinical practice guidelines for Sarcopenia: Screening, diagnosis, management and prevention. J. Frailty Aging, 2022, 11(4), 348-369.
[http://dx.doi.org/10.14283/jfa.2022.59] [PMID: 36346721]
[7]
Bai, T.; Fang, F.; Li, F.; Ren, Y.; Hu, J.; Cao, J. Sarcopenia is associated with hypertension in older adults: A systematic review and meta-analysis. BMC Geriatr., 2020, 20(1), 279.
[http://dx.doi.org/10.1186/s12877-020-01672-y] [PMID: 32762638]
[8]
Chung, S.M.; Moon, J.S.; Chang, M.C. Prevalence of Sarcopenia and its association with diabetes: A meta-analysis of community-dwelling Asian population. Front. Med., 2021, 8, 681232.
[http://dx.doi.org/10.3389/fmed.2021.681232] [PMID: 34095184]
[9]
Lee, B.; Cho, Y.; Kim, J.W.; Jeung, H.C.; Lee, I.J. Prognostic significance of Sarcopenia in advanced biliary tract cancer patients. Front. Oncol., 2020, 10, 1581.
[http://dx.doi.org/10.3389/fonc.2020.01581] [PMID: 32984018]
[10]
Chun, H.S.; Lee, M.; Lee, H.A.; Oh, S.Y.; Baek, H.J.; Moon, J.W. Association of physical activity with risk of liver fibrosis, Sarcopenia, and cardiovascular disease in nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol., 2022, S1542-3565(22)01111-9.
[http://dx.doi.org/10.1016/j.cgh.2022.11.031] [PMID: 34998993]
[11]
Dierkes, J.; Dahl, H.; Lervaag Welland, N.; Sandnes, K.; Sæle, K.; Sekse, I.; Marti, H-P. High rates of central obesity and Sarcopenia in CKD irrespective of renal replacement therapy – an observational cross-sectional study. BMC Nephrol., 2018, 19(1), 259.
[http://dx.doi.org/10.1186/s12882-018-1055-6] [PMID: 29304774]
[12]
Bellafronte, N.T.; de Queirós, M.O.A.; Chiarello, P.G. Sarcopenic obesity in chronic kidney disease: Challenges in diagnosis using different diagnostic criteria. Med. Princ. Pract., 2021, 30(5), 477-486.
[http://dx.doi.org/10.1159/000517597] [PMID: 33271569]
[13]
Lee, D.Y.; Shin, S. Sarcopenia is associated with metabolic syndrome in korean adults aged over 50 years: A cross-sectional study. Int. J. Environ. Res. Public Health, 2022, 19(3), 1330.
[http://dx.doi.org/10.3390/ijerph19031330] [PMID: 35162353]
[14]
Bruyère, O.; Beaudart, C.; Ethgen, O.; Reginster, J.Y.; Locquet, M. The health economics burden of Sarcopenia: A systematic review. Maturitas, 2019, 119, 61-69.
[http://dx.doi.org/10.1016/j.maturitas.2018.11.003] [PMID: 30502752]
[15]
Dhar, M.; Kapoor, N.; Suastika, K.; Khamseh, M.E.; Selim, S.; Kumar, V.; Raza, S.A.; Azmat, U.; Pathania, M.; Rai Mahadeb, Y.P.; Singhal, S.; Naseri, M.W.; Aryana, I.G.P.S.; Thapa, S.D.; Jacob, J.; Somasundaram, N.; Latheef, A.; Dhakal, G.P.; Kalra, S. South Asian Working Action Group on Sarcopenia (SWAG-SARCO) – A consensus document. Osteoporos. Sarcopenia, 2022, 8(2), 35-57.
[http://dx.doi.org/10.1016/j.afos.2022.04.001] [PMID: 35832416]
[16]
Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; Cederholm, T.; Chandler, J.; De Meynard, C.; Donini, L.; Harris, T.; Kannt, A.; Keime Guibert, F.; Onder, G.; Papanicolaou, D.; Rolland, Y.; Rooks, D.; Sieber, C.; Souhami, E.; Verlaan, S.; Zamboni, M. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on Sarcopenia. J. Am. Med. Dir. Assoc., 2011, 12(4), 249-256.
[http://dx.doi.org/10.1016/j.jamda.2011.01.003] [PMID: 21527165]
[17]
Li, C.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W.; Miao, H.; Cao, W.; Liu, R.; Jiang, L.; Yu, S.; Li, C.; Liu, H.; Xu, L.; Liu, R.; Zhang, X.; Liu, G. Pathogenesis of Sarcopenia and the relationship with fat mass: descriptive review. J. Cachexia Sarcopenia Muscle, 2022, 13(2), 781-794.
[http://dx.doi.org/10.1002/jcsm.12901] [PMID: 35106971]
[18]
Zamboni, M.; Gattazzo, S.; Rossi, A.P. Myosteatosis: A relevant, yet poorly explored element of Sarcopenia; Springer, 2019, pp. 5-6.
[http://dx.doi.org/10.1007/s41999-018-0134-3]
[19]
Heymsfield, S.B.; Gonzalez, M.C.; Lu, J.; Jia, G.; Zheng, J. Skeletal muscle mass and quality: Evolution of modern measurement concepts in the context of Sarcopenia. Proc. Nutr. Soc., 2015, 74(4), 355-366.
[http://dx.doi.org/10.1017/S0029665115000129] [PMID: 25851205]
[20]
Ziaaldini, M.M.; Marzetti, E.; Picca, A.; Murlasits, Z. Biochemical pathways of Sarcopenia and their modulation by physical exercise: a narrative review. Front. Med., 2017, 4, 167.
[http://dx.doi.org/10.3389/fmed.2017.00167] [PMID: 29046874]
[21]
Speacht, T.L.; Krause, A.R.; Steiner, J.L.; Lang, C.H.; Donahue, H.J. Combination of hindlimb suspension and immobilization by casting exaggerates Sarcopenia by stimulating autophagy but does not worsen osteopenia. Bone, 2018, 110, 29-37.
[http://dx.doi.org/10.1016/j.bone.2018.01.026] [PMID: 29414598]
[22]
Ko, Y.C.; Chie, W.C.; Wu, T.Y.; Ho, C.Y.; Yu, W.R. A cross-sectional study about the relationship between physical activity and Sarcopenia in Taiwanese older adults. Sci. Rep., 2021, 11(1), 11488.
[http://dx.doi.org/10.1038/s41598-021-90869-1] [PMID: 34075104]
[23]
Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.T.; Mets, T.; Seal, C.; Wijers, S.L.; Ceda, G.P.; De Vito, G.; Donders, G.; Drey, M.; Greig, C.; Holmbäck, U.; Narici, M.; McPhee, J.; Poggiogalle, E.; Power, D.; Scafoglieri, A.; Schultz, R.; Sieber, C.C.; Cederholm, T. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of Sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc., 2015, 16(9), 740-747.
[http://dx.doi.org/10.1016/j.jamda.2015.05.021] [PMID: 26170041]
[24]
Fonseca, G.W.P.D.; Dworatzek, E.; Ebner, N.; Von Haehling, S. Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin. Investig. Drugs, 2020, 29(8), 881-891.
[http://dx.doi.org/10.1080/13543784.2020.1777275] [PMID: 32476495]
[25]
Long, D.E.; Peck, B.D.; Martz, J.L.; Tuggle, S.C.; Bush, H.M.; McGwin, G.; Kern, P.A.; Bamman, M.M.; Peterson, C.A. Metformin to Augment Strength Training Effective Response in Seniors (MASTERS): Study protocol for a randomized controlled trial. Trials, 2017, 18(1), 192.
[http://dx.doi.org/10.1186/s13063-017-1932-5] [PMID: 28441958]
[26]
Ata, A.M.; Kara, M.; Ekiz, T.; Kara, Ö.; Culha, M.A.; Ricci, V.; Koyuncu, E.G.; Özcan, F.; Kaymak, B.; Özçakar, L. Reassessing Sarcopenia in hypertension: STAR and ACE inhibitors excel. Int. J. Clin. Pract., 2021, 75(3), e13800.
[http://dx.doi.org/10.1111/ijcp.13800] [PMID: 33108697]
[27]
Pannérec, A.; Springer, M.; Migliavacca, E.; Ireland, A.; Piasecki, M.; Karaz, S.; Jacot, G.; Métairon, S.; Danenberg, E.; Raymond, F.; Descombes, P.; McPhee, J.S.; Feige, J.N. A robust neuromuscular system protects rat and human skeletal muscle from Sarcopenia. Aging, 2016, 8(4), 712-728.
[http://dx.doi.org/10.18632/aging.100926] [PMID: 27019136]
[28]
Jang, Y.C.; Lustgarten, M.S.; Liu, Y.; Muller, F.L.; Bhattacharya, A.; Liang, H.; Salmon, A.B.; Brooks, S.V.; Larkin, L.; Hayworth, C.R.; Richardson, A.; Van Remmen, H. Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J., 2010, 24(5), 1376-1390.
[http://dx.doi.org/10.1096/fj.09-146308] [PMID: 20040516]
[29]
Carnio, S.; LoVerso, F.; Baraibar, M.A.; Longa, E.; Khan, M.M.; Maffei, M.; Reischl, M.; Canepari, M.; Loefler, S.; Kern, H.; Blaauw, B.; Friguet, B.; Bottinelli, R.; Rudolf, R.; Sandri, M. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep., 2014, 8(5), 1509-1521.
[http://dx.doi.org/10.1016/j.celrep.2014.07.061] [PMID: 25176656]
[30]
Gungor, O.; Ulu, S.; Hasbal, N.B.; Anker, S.D.; Kalantar-Zadeh, K. Effects of hormonal changes on Sarcopenia in chronic kidney disease: where are we now and what can we do? J. Cachexia Sarcopenia Muscle, 2021, 12(6), 1380-1392.
[http://dx.doi.org/10.1002/jcsm.12839] [PMID: 34676694]
[31]
Bian, A.; Ma, Y.; Zhou, X.; Guo, Y.; Wang, W.; Zhang, Y.; Wang, X. Association between Sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet. Disord., 2020, 21(1), 214.
[http://dx.doi.org/10.1186/s12891-020-03236-y] [PMID: 32264885]
[32]
Delivanis, D.A.; Iñiguez-Ariza, N.M.; Zeb, M.H.; Moynagh, M.R.; Takahashi, N.; McKenzie, T.J.; Thomas, M.A.; Gogos, C.; Young, W.F.; Bancos, I.; Kyriazopoulou, V. Impact of hypercortisolism on skeletal muscle mass and adipose tissue mass in patients with adrenal adenomas. Clin. Endocrinol., 2018, 88(2), 209-216.
[http://dx.doi.org/10.1111/cen.13512] [PMID: 29115003]
[33]
Ascenzi, F.; Barberi, L.; Dobrowolny, G.; Villa Nova Bacurau, A.; Nicoletti, C.; Rizzuto, E.; Rosenthal, N.; Scicchitano, B.M.; Musarò, A. Effects of IGF-1 isoforms on muscle growth and Sarcopenia. Aging Cell, 2019, 18(3), e12954.
[http://dx.doi.org/10.1111/acel.12954] [PMID: 30953403]
[34]
Urano, T.; Shiraki, M.; Kuroda, T.; Tanaka, S.; Uenishi, K.; Inoue, S. Preventive effects of raloxifene treatment on agerelated weight loss in postmenopausal women. J. Bone Miner. Metab., 2017, 35(1), 108-113.
[http://dx.doi.org/10.1007/s00774-015-0733-8] [PMID: 26754796]
[35]
Saad, F.; Röhrig, G.; von Haehling, S.; Traish, A. Testosterone deficiency and testosterone treatment in older men. Gerontology, 2017, 63(2), 144-156.
[http://dx.doi.org/10.1159/000452499] [PMID: 27855417]
[36]
Chen, M.; Wang, Y.; Deng, S.; Lian, Z.; Yu, K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front. Cell Dev. Biol., 2022, 10, 964130.
[http://dx.doi.org/10.3389/fcell.2022.964130] [PMID: 36111339]
[37]
Bian, A.L.; Hu, H.Y.; Rong, Y.D.; Wang, J.; Wang, J.X.; Zhou, X.Z. A study on relationship between elderly Sarcopenia and inflammatory factors IL-6 and TNF-α. Eur. J. Med. Res., 2017, 22(1), 25.
[http://dx.doi.org/10.1186/s40001-017-0266-9] [PMID: 28701179]
[38]
Öztürk, Z.A.; Kul, S.; Türkbeyler, İ.H.; Sayıner, Z.A.; Abiyev, A. Is increased neutrophil lymphocyte ratio remarking the inflammation in Sarcopenia? Exp. Gerontol., 2018, 110, 223-229.
[http://dx.doi.org/10.1016/j.exger.2018.06.013] [PMID: 29928932]
[39]
Ying, L.; Zhang, Q.; Yang, Y.; Zhou, J. A combination of serum biomarkers in elderly patients with Sarcopenia: A cross-sectional observational study. Int. J. Endocrinol., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/4026940] [PMID: 35237317]
[40]
Asoudeh, F.; Dashti, F.; Raeesi, S.; Heshmat, R.; Bidkhori, M.; Jalilian, Z.; Hashemi, R. Inflammatory cytokines and Sarcopenia in Iranian adults-results from SARIR study. Sci. Rep., 2022, 12(1), 5471.
[http://dx.doi.org/10.1038/s41598-022-09139-3] [PMID: 35361818]
[41]
Chen, Y.Y.; Kao, T.W.; Chiu, Y.L.; Peng, T.C.; Yang, H.F.; Chen, W.L. Association between interleukin-12 and Sarcopenia. J. Inflamm. Res., 2021, 14, 2019-2029.
[http://dx.doi.org/10.2147/JIR.S313085] [PMID: 34040414]
[42]
Aoi, W. Myokines: A potential key factor in development, treatment, and biomarker of Sarcopenia. Sarcopenia; Elsevier, 2021, pp. 171-185.
[43]
Paris, M.T.; Bell, K.E.; Mourtzakis, M. Myokines and adipokines in Sarcopenia: understanding cross-talk between skeletal muscle and adipose tissue and the role of exercise. Curr. Opin. Pharmacol., 2020, 52, 61-66.
[http://dx.doi.org/10.1016/j.coph.2020.06.003] [PMID: 32668398]
[44]
Lee, M.J.; Lee, S.A.; Nam, B.Y.; Park, S.; Lee, S.H.; Ryu, H.J.; Kwon, Y.E.; Kim, Y.L.; Park, K.S.; Oh, H.J.; Park, J.T.; Han, S.H.; Ryu, D.R.; Kang, S.W.; Yoo, T.H. Irisin, a novel myokine is an independent predictor for Sarcopenia and carotid atherosclerosis in dialysis patients. Atherosclerosis, 2015, 242(2), 476-482.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.002] [PMID: 26298738]
[45]
Park, H.S.; Kim, H.C.; Zhang, D.; Yeom, H.; Lim, S.K. The novel myokine irisin: Clinical implications and potential role as a biomarker for Sarcopenia in postmenopausal women. Endocrine, 2019, 64(2), 341-348.
[http://dx.doi.org/10.1007/s12020-018-1814-y] [PMID: 30570737]
[46]
Kalinkovich, A.; Livshits, G. Sarcopenic obesity or obese Sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev., 2017, 35, 200-221.
[http://dx.doi.org/10.1016/j.arr.2016.09.008] [PMID: 27702700]
[47]
Corona-Meraz, F.I.; Vázquez-Del Mercado, M.; Ortega, F.J.; Ruiz-Quezada, S.L.; Guzmán-Ornelas, M.O.; Navarro-Hernández, R.E. Ageing influences the relationship of circulating miR-33a and miR-33b levels with insulin resistance and adiposity. Diab. Vasc. Dis. Res., 2019, 16(3), 244-253.
[http://dx.doi.org/10.1177/1479164118816659] [PMID: 30537863]
[48]
Correa-de-Araujo, R.; Addison, O.; Miljkovic, I.; Goodpaster, B.H.; Bergman, B.C.; Clark, R.V.; Elena, J.W.; Esser, K.A.; Ferrucci, L.; Harris-Love, M.O.; Kritchevsky, S.B.; Lorbergs, A.; Shepherd, J.A.; Shulman, G.I.; Rosen, C.J. Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the national institute on aging. Front. Physiol., 2020, 11, 963.
[http://dx.doi.org/10.3389/fphys.2020.00963] [PMID: 32903666]
[49]
Lortie, J.; Rush, B.; Osterbauer, K.; Colgan, T.; Tamada, D.; Garlapati, S. Myosteatosis as a shared biomarker for Sarcopenia and cachexia using MRI and ultrasound. Frontiers in Rehabilitation Sciences., 2022, 3
[http://dx.doi.org/10.1016/j.archger.2013.06.001]
[50]
Meister, F.A.; Lurje, G.; Verhoeven, S.; Wiltberger, G.; Heij, L.; Liu, W.J.; Jiang, D.; Bruners, P.; Lang, S.A.; Ulmer, T.F.; Neumann, U.P.; Bednarsch, J.; Czigany, Z. The role of Sarcopenia and myosteatosis in short- and long-term outcomes following curative-intent surgery for hepatocellular carcinoma in a european cohort. Cancers, 2022, 14(3), 720.
[http://dx.doi.org/10.3390/cancers14030720] [PMID: 35158988]
[51]
Zoico, E.; Corzato, F.; Bambace, C.; Rossi, A.P.; Micciolo, R.; Cinti, S.; Harris, T.B.; Zamboni, M. Myosteatosis and myofibrosis: Relationship with aging, inflammation and insulin resistance. Arch. Gerontol. Geriatr., 2013, 57(3), 411-416.
[http://dx.doi.org/10.1016/j.archger.2013.06.001] [PMID: 23809667]
[52]
Snijders, T.; Parise, G. Role of muscle stem cells in Sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care, 2017, 20(3), 186-190.
[http://dx.doi.org/10.1097/MCO.0000000000000360] [PMID: 28376051]
[53]
Guo, Y.; Niu, K.; Okazaki, T.; Wu, H.; Yoshikawa, T.; Ohrui, T.; Furukawa, K.; Ichinose, M.; Yanai, K.; Arai, H.; Huang, G.; Nagatomi, R. Coffee treatment prevents the progression of Sarcopenia in aged mice in vivo and in vitro. Exp. Gerontol., 2014, 50, 1-8.
[http://dx.doi.org/10.1016/j.exger.2013.11.005] [PMID: 24269808]
[54]
Abreu, P.; Kowaltowski, A.J. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J. Cachexia Sarcopenia Muscle, 2020, 11(6), 1661-1676.
[http://dx.doi.org/10.1002/jcsm.12601] [PMID: 32748470]
[55]
Fernández-Lázaro, D.; Garrosa, E.; Seco-Calvo, J.; Garrosa, M. Potential satellite cell-linked biomarkers in aging skeletal muscle tissue: Proteomics and proteogenomics to monitor sarcopenia. Proteomes, 2022, 10(3), 29.
[http://dx.doi.org/10.3390/proteomes10030029] [PMID: 35997441]
[56]
Budai, Z.; Balogh, L.; Sarang, Z. Altered gene expression of muscle satellite cells contributes to age-related Sarcopenia in mice. Curr. Aging Sci., 2019, 11(3), 165-172.
[http://dx.doi.org/10.2174/1874609811666180925104241] [PMID: 30251615]
[57]
Harper, C.; Gopalan, V.; Goh, J. Exercise rescues mitochondrial coupling in aged skeletal muscle: A comparison of different modalities in preventing Sarcopenia. J. Transl. Med., 2021, 19(1), 71.
[http://dx.doi.org/10.1186/s12967-021-02737-1] [PMID: 33593349]
[58]
Kitaoka, Y.; Tamura, Y.; Takahashi, K.; Takeda, K.; Takemasa, T.; Hatta, H. Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle. Physiol. Rep., 2019, 7(3), e13998.
[http://dx.doi.org/10.14814/phy2.13998] [PMID: 30756520]
[59]
Migliavacca, E.; Tay, S.K.H.; Patel, H.P.; Sonntag, T.; Civiletto, G.; McFarlane, C.; Forrester, T.; Barton, S.J.; Leow, M.K.; Antoun, E.; Charpagne, A.; Seng Chong, Y.; Descombes, P.; Feng, L.; Francis-Emmanuel, P.; Garratt, E.S.; Giner, M.P.; Green, C.O.; Karaz, S.; Kothandaraman, N.; Marquis, J.; Metairon, S.; Moco, S.; Nelson, G.; Ngo, S.; Pleasants, T.; Raymond, F.; Sayer, A.A.; Ming Sim, C.; Slater-Jefferies, J.; Syddall, H.E.; Fang Tan, P.; Titcombe, P.; Vaz, C.; Westbury, L.D.; Wong, G.; Yonghui, W.; Cooper, C.; Sheppard, A.; Godfrey, K.M.; Lillycrop, K.A.; Karnani, N.; Feige, J.N. Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human Sarcopenia across ethnicities. Nat. Commun., 2019, 10(1), 5808.
[http://dx.doi.org/10.1038/s41467-019-13694-1] [PMID: 31862890]
[60]
Semba, R.D.; Moaddel, R.; Zhang, P.; Ramsden, C.E.; Ferrucci, L. Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of Sarcopenia. Med. Hypotheses, 2019, 127, 142-149.
[http://dx.doi.org/10.1016/j.mehy.2019.04.015] [PMID: 31088638]
[61]
Vincent, A.E.; Grady, J.P.; Rocha, M.C.; Alston, C.L.; Rygiel, K.A.; Barresi, R.; Taylor, R.W.; Turnbull, D.M. Mitochondrial dysfunction in myofibrillar myopathy. Neuromuscul. Disord., 2016, 26(10), 691-701.
[http://dx.doi.org/10.1016/j.nmd.2016.08.004] [PMID: 27618136]
[62]
Isanejad, A.; Samadi, A.; Amini, H.; Amini, H. The effect of resistance training with theraband on the transforming growth factor-β in the elderly women. Immunoregulation, 2018, 1(2), 81-86.
[http://dx.doi.org/10.32598/IMMUNOREGULATION.1.2.75]
[63]
Liu, H.W.; Chang, S.J. Moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPK-PGC1α Axis to attenuate muscle loss in diabetic db/db mice. Front. Physiol., 2018, 9, 636.
[http://dx.doi.org/10.3389/fphys.2018.00636] [PMID: 29896118]
[64]
Shang, G.K.; Han, L.; Wang, Z.H.; Liu, Y.P.; Yan, S.B.; Sai, W.W.; Wang, D.; Li, Y.H.; Zhang, W.; Zhong, M. Sarcopenia is attenuated by TRB3 knockout in aging mice via the alleviation of atrophy and fibrosis of skeletal muscles. J. Cachexia Sarcopenia Muscle, 2020, 11(4), 1104-1120.
[http://dx.doi.org/10.1002/jcsm.12560] [PMID: 32096609]
[65]
Li, T.C.; Wu, C.W.; Li, C.I.; Wu, F.Y.; Liao, L.N.; Liu, C.S.; Lin, C.H.; Wang, M.C.; Yang, C.W.; Lin, C.C. Interactions among IGF-1, AKT2, FOXO1, and FOXO3 variations and between genes and physical activities on physical performance in community-dwelling elders. PLoS One, 2020, 15(9), e0239530.
[http://dx.doi.org/10.1371/journal.pone.0239530] [PMID: 32986769]
[66]
Reggio, A.; Rosina, M.; Palma, A.; Cerquone Perpetuini, A.; Petrilli, L.L.; Gargioli, C.; Fuoco, C.; Micarelli, E.; Giuliani, G.; Cerretani, M.; Bresciani, A.; Sacco, F.; Castagnoli, L.; Cesareni, G. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ., 2020, 27(10), 2921-2941.
[http://dx.doi.org/10.1038/s41418-020-0551-y] [PMID: 32382110]
[67]
Barclay, R.D.; Burd, N.A.; Tyler, C.; Tillin, N.A.; Mackenzie, R.W. The role of the IGF-1 signaling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle. Front. Nutr., 2019, 6, 146.
[http://dx.doi.org/10.3389/fnut.2019.00146] [PMID: 31552262]
[68]
Shang, Y.; Kuang, M.; Wang, Z.; Huang, Y.; Liu, L.; Zhao, X.; Zhang, R.; Zhao, Y.; Peng, R.; Sun, S.; Yang, Q.; Yang, Z. An ultrashort peptide-based supramolecular hydrogel mimicking IGF-1 to alleviate glucocorticoid-induced Sarcopenia. ACS Appl. Mater. Interfaces, 2020, 12(31), 34678-34688.
[http://dx.doi.org/10.1021/acsami.0c09973] [PMID: 32668906]
[69]
Huang, L.; Li, M.; Deng, C.; Qiu, J.; Wang, K.; Chang, M.; Zhou, S.; Gu, Y.; Shen, Y.; Wang, W.; Huang, Z.; Sun, H. Potential therapeutic strategies for skeletal muscle atrophy. Antioxidants, 2022, 12(1), 44.
[http://dx.doi.org/10.3390/antiox12010044] [PMID: 36670909]
[70]
Sung, B.; Hwang, S.Y.; Kim, M.J.; Kim, M.; Jeong, J.W.; Kim, C.M.; Chung, H.Y.; Kim, N.D. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats. Int. J. Mol. Med., 2015, 36(3), 792-800.
[http://dx.doi.org/10.3892/ijmm.2015.2286] [PMID: 26178971]
[71]
Møller, A.B.; Vendelbo, M.H.; Schjerling, P.; Couppé, C.; Møller, N.; Kjær, M.; Hansen, M.; Jessen, N. Immobilization decreases FOXO3a phosphorylation and increases autophagy-related gene and protein expression in human skeletal muscle. Front. Physiol., 2019, 10, 736.
[http://dx.doi.org/10.3389/fphys.2019.00736] [PMID: 31258486]
[72]
Milan, G.; Romanello, V.; Pescatore, F.; Armani, A.; Paik, J.H.; Frasson, L.; Seydel, A.; Zhao, J.; Abraham, R.; Goldberg, A.L.; Blaauw, B.; DePinho, R.A.; Sandri, M. Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nat. Commun., 2015, 6(1), 6670.
[http://dx.doi.org/10.1038/ncomms7670] [PMID: 25858807]
[73]
Hirose, Y.; Onishi, T.; Miura, S.; Hatazawa, Y.; Kamei, Y. Vitamin D attenuates FOXO1-target atrophy gene expression in C2C12 muscle cells. J. Nutr. Sci. Vitaminol., 2018, 64(3), 229-232.
[http://dx.doi.org/10.3177/jnsv.64.229] [PMID: 29962435]
[74]
Fan, J.; Yang, X.; Li, J.; Shu, Z.; Dai, J.; Liu, X.; Li, B.; Jia, S.; Kou, X.; Yang, Y.; Chen, N. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway. Oncotarget, 2017, 8(11), 17475-17490.
[http://dx.doi.org/10.18632/oncotarget.15728] [PMID: 28407698]
[75]
Son, Y.H.; Jang, E.J.; Kim, Y.W.; Lee, J.H. Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes. Biomed. Pharmacother., 2017, 95, 1486-1492.
[http://dx.doi.org/10.1016/j.biopha.2017.09.002] [PMID: 28946211]
[76]
Dowling, L.; Duseja, A.; Vilaca, T.; Walsh, J.S.; Goljanek-Whysall, K. MicroRNAs in obesity, Sarcopenia, and commonalities for sarcopenic obesity: a systematic review. J. Cachexia Sarcopenia Muscle, 2022, 13(1), 68-85.
[http://dx.doi.org/10.1002/jcsm.12878] [PMID: 34984856]
[77]
Jang, Y.J.; Son, H.J.; Kim, J.S.; Jung, C.H.; Ahn, J.; Hur, J.; Ha, T.Y. Coffee consumption promotes skeletal muscle hypertrophy and myoblast differentiation. Food Funct., 2018, 9(2), 1102-1111.
[http://dx.doi.org/10.1039/C7FO01683B] [PMID: 29359224]
[78]
Han, X.; Møller, L.L.V.; De Groote, E.; Bojsen-Møller, K.N.; Davey, J.; Henríquez-Olguin, C.; Li, Z.; Knudsen, J.R.; Jensen, T.E.; Madsbad, S.; Gregorevic, P.; Richter, E.A.; Sylow, L. Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle. J. Cachexia Sarcopenia Muscle, 2019, 10(6), 1241-1257.
[http://dx.doi.org/10.1002/jcsm.12474] [PMID: 31402604]
[79]
Lee, K.P.; Shin, Y.J.; Kwon, K.S. microRNA for determining the age-related myogenic capabilities of skeletal muscle. BMB Rep., 2015, 48(11), 595-596.
[http://dx.doi.org/10.5483/BMBRep.2015.48.11.211] [PMID: 26521942]
[80]
Weng, S.; Gao, F.; Wang, J.; Li, X.; Chu, B.; Wang, J.; Yang, G. Improvement of muscular atrophy by AAV–SaCas9-mediated myostatin gene editing in aged mice. Cancer Gene Ther., 2020, 27(12), 960-975.
[http://dx.doi.org/10.1038/s41417-020-0178-7] [PMID: 32398787]
[81]
Parenté, A.; Boukredine, A.; Baraige, F.; Duprat, N.; Gondran-Tellier, V.; Magnol, L.; Blanquet, V. GASP-2 overexpressing mice exhibit a hypermuscular phenotype with contrasting molecular effects compared to GASP-1 transgenics. FASEB J., 2020, 34(3), 4026-4040.
[http://dx.doi.org/10.1096/fj.201901220R] [PMID: 31960486]
[82]
Owen, ED; Pollock, N; Jackson, MJ; Vasilaki, A; McArdle, A Characterisation of NF-Kappa Beta activation in regenerating fibres of old mice. FASEB J, 2018, 32, 907.5-5.
[http://dx.doi.org/10.1096/fasebj.2018.32.1_supplement.907.5]
[83]
Liu, H.W.; Chen, Y.J.; Chang, Y.C.; Chang, S.J. Oligonol, a low-molecular weight polyphenol derived from lychee, alleviates muscle loss in diabetes by suppressing Atrogin-1 and MuRF1. Nutrients, 2017, 9(9), 1040.
[http://dx.doi.org/10.3390/nu9091040] [PMID: 28930190]
[84]
Zhang, N.; Valentine, J.M.; Zhou, Y.; Li, M.E.; Zhang, Y.; Bhattacharya, A.; Walsh, M.E.; Fischer, K.E.; Austad, S.N.; Osmulski, P.; Gaczynska, M.; Shoelson, S.E.; Van Remmen, H.; Chen, H.I.; Chen, Y.; Liang, H.; Musi, N. Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health. Aging Cell, 2017, 16(4), 847-858.
[http://dx.doi.org/10.1111/acel.12613] [PMID: 28556540]
[85]
Oh, J.; Sinha, I.; Tan, K.Y.; Rosner, B.; Dreyfuss, J.M.; Gjata, O.; Tran, P.; Shoelson, S.E.; Wagers, A.J. Age-associated NF-κB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function. Aging, 2016, 8(11), 2871-2896.
[http://dx.doi.org/10.18632/aging.101098] [PMID: 27852976]
[86]
Tomida, T; Adachi-Akahane, S. Roles of p38 MAPK signaling in the skeletal muscle formation, regeneration, and pathology. Nihon Yakurigaku Zasshi, 2020, 155(4), 241-247.
[http://dx.doi.org/10.1254/fpj20030]
[87]
Lee, H.; Tuong, L.T.; Jeong, J.H.; Lee, S.J.; Bae, G.U.; Ryu, J.H. Isoquinoline alkaloids from Coptis japonica stimulate the myoblast differentiation via p38 MAP-kinase and Akt signaling pathway. Bioorg. Med. Chem. Lett., 2017, 27(6), 1401-1404.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.003] [PMID: 28228365]
[88]
Kinoshita, H.; Orita, S.; Inage, K.; Yamauchi, K.; Abe, K.; Inoue, M.; Norimoto, M.; Umimura, T.; Eguchi, Y.; Fujimoto, K.; Shiga, Y.; Kanamoto, H.; Aoki, Y.; Furuya, T.; Suzuki, M.; Akazawa, T.; Takahashi, K.; Ohtori, S. Skeletal muscle cell oxidative stress as a possible therapeutic target in a denervation-induced experimental sarcopenic model. Spine, 2019, 44(8), E446-E455.
[http://dx.doi.org/10.1097/BRS.0000000000002891] [PMID: 30299418]
[89]
Yuasa, K.; Okubo, K.; Yoda, M.; Otsu, K.; Ishii, Y.; Nakamura, M.; Itoh, Y.; Horiuchi, K. Targeted ablation of p38α MAPK suppresses denervation-induced muscle atrophy. Sci. Rep., 2018, 8(1), 9037.
[http://dx.doi.org/10.1038/s41598-018-26632-w] [PMID: 29311619]
[90]
Ding, H.; Zhang, G.; Sin, K.W.T.; Liu, Z.; Lin, R.K.; Li, M.; Li, Y.P. Activin A induces skeletal muscle catabolism via p38β mitogen-activated protein kinase. J. Cachexia Sarcopenia Muscle, 2017, 8(2), 202-212.
[http://dx.doi.org/10.1002/jcsm.12145] [PMID: 27897407]
[91]
Zheng, Y.; Kong, J.; Li, Q.; Wang, Y.; Li, J. Role of miRNAs in skeletal muscle aging. Clin. Interv. Aging, 2018, 13, 2407-2419.
[http://dx.doi.org/10.2147/CIA.S169202] [PMID: 30538437]
[92]
Liu, S.; Gao, F.; Wen, L.; Ouyang, M.; Wang, Y.; Wang, Q.; Luo, L.; Jian, Z. Osteocalcin induces proliferation via positive activation of the PI3K/Akt, P38 MAPK pathways and promotes differentiation through activation of the GPRC6A-ERK1/2 pathway in C2C12 myoblast cells. Cell. Physiol. Biochem., 2017, 43(3), 1100-1112.
[http://dx.doi.org/10.1159/000481752] [PMID: 28977794]
[93]
Ackers, I.; Malgor, R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diab. Vasc. Dis. Res., 2018, 15(1), 3-13.
[http://dx.doi.org/10.1177/1479164117738442] [PMID: 29113510]
[94]
Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999.
[http://dx.doi.org/10.1016/j.cell.2017.05.016] [PMID: 28575679]
[95]
Mumford, P.W.; Romero, M.A.; Mao, X.; Mobley, C.B.; Kephart, W.C.; Haun, C.T.; Roberson, P.A.; Young, K.C.; Martin, J.S.; Yarrow, J.F.; Beck, D.T.; Roberts, M.D. Cross talk between androgen and Wnt signaling potentially contributes to age-related skeletal muscle atrophy in rats. J. Appl. Physiol., 2018, 125(2), 486-494.
[http://dx.doi.org/10.1152/japplphysiol.00768.2017] [PMID: 29722624]
[96]
Liu, S.; Liu, H.; Liu, Y.; Zhang, J.; Liu, Z.; Zheng, Z.; Luo, E. Adiponectin receptors activation performs dual effects on regulating myogenesis and adipogenesis of young and aged muscle satellite cells. Cell Prolif., 2022, e13370, e13370.
[http://dx.doi.org/10.1111/cpr.13370] [PMID: 36484401]
[97]
Lukjanenko, L; Karaz, S; Stuelsatz, P; Gurriaran-Rodriguez, U; Michaud, J; Dammone, G Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors. Cell stem cell., 2019, 24(3), 433-46.e7.
[http://dx.doi.org/10.1016/j.stem.2018.12.014]
[98]
Yoshida, N.; Endo, J.; Kinouchi, K.; Kitakata, H.; Moriyama, H.; Kataoka, M.; Yamamoto, T.; Shirakawa, K.; Morimoto, S.; Nishiyama, A.; Hashiguchi, A.; Higuchi, I.; Fukuda, K.; Ichihara, A.; Sano, M. (Pro)renin receptor accelerates development of Sarcopenia via activation of Wnt/YAP signaling axis. Aging Cell, 2019, 18(5), e12991.
[http://dx.doi.org/10.1111/acel.12991] [PMID: 31282603]
[99]
Gilbert, M.J.H.; Zerulla, T.C.; Tierney, K.B. Zebrafish (Danio rerio) as a model for the study of aging and exercise: Physical ability and trainability decrease with age. Exp. Gerontol., 2014, 50, 106-113.
[http://dx.doi.org/10.1016/j.exger.2013.11.013] [PMID: 24316042]
[100]
Fellner, C.; Schick, F.; Kob, R.; Hechtl, C.; Vorbuchner, M.; Büttner, R.; Hamer, O.W.; Sieber, C.C.; Stroszczynski, C.; Bollheimer, L.C. Diet-induced and age-related changes in the quadriceps muscle: MRI and MRS in a rat model of Sarcopenia. Gerontology, 2014, 60(6), 530-538.
[http://dx.doi.org/10.1159/000360289] [PMID: 24924578]
[101]
Tardif, N.; Salles, J.; Guillet, C.; Tordjman, J.; Reggio, S.; Landrier, J.F.; Giraudet, C.; Patrac, V.; Bertrand-Michel, J.; Migne, C.; Collin, M.L.; Chardigny, J.M.; Boirie, Y.; Walrand, S. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through e IF 2α activation. Aging Cell, 2014, 13(6), 1001-1011.
[http://dx.doi.org/10.1111/acel.12263] [PMID: 25139155]
[102]
Kung, T.A.; Cederna, P.S.; van der Meulen, J.H.; Urbanchek, M.G.; Kuzon, W.M., Jr; Faulkner, J.A. Motor unit changes seen with skeletal muscle Sarcopenia in oldest old rats. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(6), 657-665.
[http://dx.doi.org/10.1093/gerona/glt135] [PMID: 24077596]
[103]
Kob, R.; Fellner, C.; Bertsch, T.; Wittmann, A.; Mishura, D.; Sieber, C.C.; Fischer, B.E.; Stroszczynski, C.; Bollheimer, C.L. Gender-specific differences in the development of Sarcopenia in the rodent model of the ageing high-fat rat. J. Cachexia Sarcopenia Muscle, 2015, 6(2), 181-191.
[http://dx.doi.org/10.1002/jcsm.12019] [PMID: 26136194]
[104]
Gatineau, E.; Savary-Auzeloux, I.; Migné, C.; Polakof, S.; Dardevet, D.; Mosoni, L. Chronic intake of sucrose accelerates Sarcopenia in older male rats through alterations in insulin sensitivity and muscle protein synthesis. J. Nutr., 2015, 145(5), 923-930.
[http://dx.doi.org/10.3945/jn.114.205583] [PMID: 25809681]
[105]
Fry, C.S.; Lee, J.D.; Mula, J.; Kirby, T.J.; Jackson, J.R.; Liu, F.; Yang, L.; Mendias, C.L.; Dupont-Versteegden, E.E.; McCarthy, J.J.; Peterson, C.A. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting Sarcopenia. Nat. Med., 2015, 21(1), 76-80.
[http://dx.doi.org/10.1038/nm.3710] [PMID: 25501907]
[106]
Liu, W.; Klose, A.; Forman, S.; Paris, N.D.; Wei-LaPierre, L.; Cortés-Lopéz, M.; Tan, A.; Flaherty, M.; Miura, P.; Dirksen, R.T.; Chakkalakal, J.V. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. eLife, 2017, 6, e26464.
[http://dx.doi.org/10.7554/eLife.26464] [PMID: 28583253]
[107]
Choi, R.H.; McConahay, A.; Jeong, H.W.; McClellan, J.L.; Hardee, J.P.; Carson, J.A.; Hirshman, M.F.; Goodyear, L.J.; Koh, H.J. Tribbles 3 regulates protein turnover in mouse skeletal muscle. Biochem. Biophys. Res. Commun., 2017, 493(3), 1236-1242.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.134] [PMID: 28962861]
[108]
Takayama, K.; Kawakami, Y.; Lavasani, M.; Mu, X.; Cummins, J.H.; Yurube, T.; Kuroda, R.; Kurosaka, M.; Fu, F.H.; Robbins, P.D.; Niedernhofer, L.J.; Huard, J. mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging. J. Orthop. Res., 2017, 35(7), 1375-1382.
[http://dx.doi.org/10.1002/jor.23409] [PMID: 27572850]
[109]
Seldeen, KL; Lasky, G; Leiker, MM; Pang, M; Personius, KE; Troen, BR High intensity interval training improves physical performance and frailty in aged mice. J. Gerontol., 2018, 73(4), 429-437.
[http://dx.doi.org/10.1093/gerona/glx120]
[110]
Onishi, S.; Ishino, M.; Kitazawa, H.; Yoto, A.; Shimba, Y.; Mochizuki, Y.; Unno, K.; Meguro, S.; Tokimitsu, I.; Miura, S. Green tea extracts ameliorate high-fat diet–induced muscle atrophy in senescence-accelerated mouse prone-8 mice. PLoS One, 2018, 13(4), e0195753.
[http://dx.doi.org/10.1371/journal.pone.0195753] [PMID: 29630667]
[111]
Zhao, J.; Tian, Z.; Kadomatsu, T.; Xie, P.; Miyata, K.; Sugizaki, T.; Endo, M.; Zhu, S.; Fan, H.; Horiguchi, H.; Morinaga, J.; Terada, K.; Yoshizawa, T.; Yamagata, K.; Oike, Y. Age-dependent increase in angiopoietin-like protein 2 accelerates skeletal muscle loss in mice. J. Biol. Chem., 2018, 293(5), 1596-1609.
[http://dx.doi.org/10.1074/jbc.M117.814996] [PMID: 29191837]
[112]
Sayed, RK; Fernández-Ortiz, M; Diaz-Casado, ME; Aranda-Martínez, P; Fernández-Martínez, J; Guerra-Librero, A Lack of NLRP3 inflammasome activation reduces age-dependent Sarcopenia and mitochondrial dysfunction, favoring the prophylactic effect of melatonin. J Gerontol A Biol Sci Med Sci, 2019, 74(11), 1699-1708.
[http://dx.doi.org/10.1093/gerona/glz079]
[113]
Takigawa, K.; Matsuda, R.; Uchitomi, R.; Onishi, T.; Hatazawa, Y.; Kamei, Y. Effects of long-term physical exercise on skeletal muscles in senescence-accelerated mice (SAMP8). Biosci. Biotechnol. Biochem., 2019, 83(3), 518-524.
[http://dx.doi.org/10.1080/09168451.2018.1547625] [PMID: 30537907]
[114]
Joseph, G.A.; Wang, S.X.; Jacobs, C.E.; Zhou, W.; Kimble, G.C.; Tse, H.W.; Eash, J.K.; Shavlakadze, T.; Glass, D.J. Partial inhibition of mTORC1 in aged rats counteracts the decline in muscle mass and reverses molecular signaling associated with Sarcopenia. Mol. Cell. Biol., 2019, 39(19), e00141-19.
[http://dx.doi.org/10.1128/MCB.00141-19] [PMID: 31308131]
[115]
Huang, D.D.; Fan, S.D.; Chen, X.Y.; Yan, X.L.; Zhang, X.Z.; Ma, B.W.; Yu, D.Y.; Xiao, W.Y.; Zhuang, C.L.; Yu, Z. Nrf2 deficiency exacerbates frailty and Sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner. Exp. Gerontol., 2019, 119, 61-73.
[http://dx.doi.org/10.1016/j.exger.2019.01.022] [PMID: 30690066]
[116]
Hernández-Álvarez, D.; Mena-Montes, B.; Toledo-Pérez, R.; Pedraza-Vázquez, G.; López-Cervantes, S.P.; Morales-Salazar, A.; Hernández-Cruz, E.; Lazzarini-Lechuga, R.; Vázquez-Cárdenas, R.R.; Vilchis-DeLaRosa, S.; Posadas-Rodríguez, P.; Santín-Márquez, R.; Rosas-Carrasco, O.; Ibañez-Contreras, A.; Alarcón-Aguilar, A.; López-Díazguerrero, N.E.; Luna-López, A.; Königsberg, M. Long-term moderate exercise combined with metformin treatment induces an hormetic response that prevents strength and muscle mass loss in old female wistar rats. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/3428543] [PMID: 31814870]
[117]
Choi, R.H.; McConahay, A.; Silvestre, J.G.; Moriscot, A.S.; Carson, J.A.; Koh, H.J. TRB3 regulates skeletal muscle mass in food deprivation–induced atrophy. FASEB J., 2019, 33(4), 5654-5666.
[http://dx.doi.org/10.1096/fj.201802145RR] [PMID: 30681896]
[118]
Chen, L.H.; Huang, S.Y.; Huang, K.C.; Hsu, C.C.; Yang, K.C.; Li, L.A.; Chan, C.H.; Huang, H.Y. Lactobacillus paracasei PS23 decelerated age-related muscle loss by ensuring mitochondrial function in SAMP8 mice. Aging (Albany NY), 2019, 11(2), 756-770.
[http://dx.doi.org/10.18632/aging.101782] [PMID: 30696799]
[119]
Delrio-Lorenzo, A.; Rojo-Ruiz, J.; Alonso, M.T.; García-Sancho, J. Sarcoplasmic reticulum Ca2+ decreases with age and correlates with the decline in muscle function in Drosophila. J. Cell Sci., 2020, 133(6), jcs.240879.
[http://dx.doi.org/10.1242/jcs.240879] [PMID: 32005702]
[120]
Li, J.; Yi, X.; Yao, Z.; Chakkalakal, J.V.; Xing, L.; Boyce, B.F. TNF receptor-associated factor 6 mediates TNFα-induced skeletal muscle atrophy in mice during aging. J. Bone Miner. Res., 2020, 35(8), 1535-1548.
[http://dx.doi.org/10.1002/jbmr.4021] [PMID: 32267572]
[121]
Chen, Q.N.; Fan, Z.; Lyu, A.K.; Wu, J.; Guo, A.; Yang, Y.F.; Chen, J.L.; Xiao, Q. Effect of sarcolipin-mediated cell transdifferentiation in Sarcopenia-associated skeletal muscle fibrosis. Exp. Cell Res., 2020, 389(1), 111890.
[http://dx.doi.org/10.1016/j.yexcr.2020.111890] [PMID: 32035132]
[122]
Aoki, K.; Konno, M.; Honda, K.; Abe, T.; Nagata, T.; Takehara, M.; Sugasawa, T.; Takekoshi, K.; Ohmori, H. Habitual aerobic exercise diminishes the effects of Sarcopenia in senescence-accelerated mice Prone8 model. Geriatrics (Basel), 2020, 5(3), 48.
[http://dx.doi.org/10.3390/geriatrics5030048] [PMID: 32916898]
[123]
Graber, TG; Maroto, R; Fry, CS; Brightwell, CR; Rasmussen, BB Measuring exercise capacity and physical function in adult and older mice. J. Gerontol. A Biol. Sci. Med. Sci., 2021, 76(5), 819-824.
[http://dx.doi.org/10.1093/gerona/glaa205]
[124]
Palus, S.; Springer, J.I.; Doehner, W.; von Haehling, S.; Anker, M.; Anker, S.D.; Springer, J. Models of Sarcopenia: Short review. Int. J. Cardiol., 2017, 238, 19-21.
[http://dx.doi.org/10.1016/j.ijcard.2017.03.152] [PMID: 28465116]
[125]
Morey-Holton, E.; Globus, R.K.; Kaplansky, A.; Durnova, G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv. Space Biol. Med., 2005, 10, 7-40.
[http://dx.doi.org/10.1016/S1569-2574(05)10002-1] [PMID: 16101103]
[126]
Lawler, J.; Song, W.; Demaree, S.R. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic. Biol. Med., 2003, 35(1), 9-16.
[http://dx.doi.org/10.1016/S0891-5849(03)00186-2] [PMID: 12826251]
[127]
Oliveira, J.R.S.; Mohamed, J.S.; Myers, M.J.; Brooks, M.J.; Alway, S.E. Effects of hindlimb suspension and reloading on gastrocnemius and soleus muscle mass and function in geriatric mice. Exp. Gerontol., 2019, 115, 19-31.
[http://dx.doi.org/10.1016/j.exger.2018.11.011] [PMID: 30448397]
[128]
Huang, W.; Chen, C.; Liu, X. Hindlimb suspension-induced cell apoptosis in the posterior parietal cortex and lateral geniculate nucleus: corresponding changes in c-Fos protein and the PI3K/Akt signaling pathway. Acta Neurobiol. Exp. (Warsz.), 2018, 78(3), 220-230. Available from: https://pubmed.ncbi.element.nih.gov/30295679/
[http://dx.doi.org/10.21307/ane-2018-020] [PMID: 30295679]
[129]
Mortreux, M.; Riveros, D.; Bouxsein, M.L.; Rutkove, S.B. Mimicking a space mission to mars using hindlimb unloading and partial weight bearing in rats. J. Vis. Exp., 2019, 4(146), e59327.
[http://dx.doi.org/10.3791/59327-v] [PMID: 31009001]
[130]
Bar-Shai, M.; Carmeli, E.; Coleman, R.; Rozen, N.; Perek, S.; Fuchs, D.; Reznick, A.Z. The effect of hindlimb immobilization on acid phosphatase, metalloproteinases and nuclear factor-κB in muscles of young and old rats. Mech. Ageing Dev., 2005, 126(2), 289-297.
[http://dx.doi.org/10.1016/j.mad.2004.08.030] [PMID: 15621209]
[131]
Burks, TN; Andres-Mateos, E; Marx, R; Mejias, R; Van Erp, C; Simmers, JL Losartan restores skeletal muscle remodeling and protects against disuse atrophy in Sarcopenia. Sci Transl Med, 2011, 3(82), 82ra37-82ra37.
[http://dx.doi.org/10.1126/scitranslmed.3002227]
[132]
Caron, A.Z.; Drouin, G.; Desrosiers, J.; Trensz, F.; Grenier, G. A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse. J. Appl. Physiol., 2009, 106(6), 2049-2059.
[http://dx.doi.org/10.1152/japplphysiol.91505.2008] [PMID: 19342435]
[133]
Baptista, I.L.; Silva, W.J.; Artioli, G.G.; Guilherme, J.P.L.F.; Leal, M.L.; Aoki, M.S.; Miyabara, E.H.; Moriscot, A.S. Leucine and HMB differentially modulate proteasome system in skeletal muscle under different sarcopenic conditions. PLoS One, 2013, 8(10), e76752.
[http://dx.doi.org/10.1371/journal.pone.0076752] [PMID: 24124592]
[134]
Romanick, M.; Thompson, L.V.; Brown-Borg, H.M. Murine models of atrophy, cachexia, and Sarcopenia in skeletal muscle. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(9), 1410-1420.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.011] [PMID: 23523469]
[135]
Mankhong, S.; Kim, S.; Moon, S.; Kwak, H.B.; Park, D.H.; Kang, J.H. Experimental models of Sarcopenia: bridging molecular mechanism and therapeutic strategy. Cells, 2020, 9(6), 1385.
[http://dx.doi.org/10.3390/cells9061385] [PMID: 32498474]
[136]
Brioche, T.; Pagano, A.F.; Py, G.; Chopard, A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol. Aspects Med., 2016, 50, 56-87.
[http://dx.doi.org/10.1016/j.mam.2016.04.006] [PMID: 27106402]
[137]
Daya, A.; Donaka, R.; Karasik, D. Zebrafish models of Sarcopenia. Dis. Model. Mech., 2020, 13(3), dmm042689.
[http://dx.doi.org/10.1242/dmm.042689] [PMID: 32298234]
[138]
Tournadre, A.; Vial, G.; Capel, F.; Soubrier, M.; Boirie, Y. Sarcopenia. Joint Bone Spine, 2019, 86(3), 309-314.
[http://dx.doi.org/10.1016/j.jbspin.2018.08.001] [PMID: 30098424]
[139]
Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY), 2019, 11(8), 2217-2240.
[http://dx.doi.org/10.18632/aging.101910] [PMID: 30988232]
[140]
Jin, H.; Oh, H.J.; Nah, S.Y.; Lee, B.Y. Gintonin-enriched fraction protects against sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy in high-fat diet-fed mice. J. Ginseng Res., 2022, 46(3), 454-463.
[http://dx.doi.org/10.1016/j.jgr.2021.10.003] [PMID: 35600770]
[141]
Shin, J.E.; Jeon, S.H.; Lee, S.J.; Choung, S.Y. The Administration of Panax Ginseng Berry Extract Attenuates High-Fat-Diet-Induced Sarcopenic Obesity in C57BL/6 Mice. Nutrients, 2022, 14(9), 1747.
[http://dx.doi.org/10.3390/nu14091747] [PMID: 35565712]
[142]
Christian, C.J.; Benian, G.M. Animal models of Sarcopenia. Aging Cell, 2020, 19(10), e13223.
[http://dx.doi.org/10.1111/acel.13223] [PMID: 32857472]
[143]
Jin, H.; Yoo, H.J.; Kim, Y.A.; Lee, J.H.; Lee, Y.; Kwon, S.; Seo, Y.J.; Lee, S.H.; Koh, J.M.; Ji, Y.; Do, A.R.; Won, S.; Seo, J.H. Unveiling genetic variants for age-related Sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci. Rep., 2022, 12(1), 3501.
[http://dx.doi.org/10.1038/s41598-022-07567-9] [PMID: 35241739]
[144]
Cho, J.; Lee, I.; Kang, H. ACTN3 gene and susceptibility to Sarcopenia and osteoporotic status in older Korean adults. BioMed Res. Int., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/4239648] [PMID: 28626757]
[145]
Walsh, S.; Ludlow, A.T.; Metter, E.J.; Ferrucci, L.; Roth, S.M. Replication study of the vitamin D receptor (VDR) genotype association with skeletal muscle traits and Sarcopenia. Aging Clin. Exp. Res., 2016, 28(3), 435-442.
[http://dx.doi.org/10.1007/s40520-015-0447-8] [PMID: 26415498]
[146]
Lin, C-H.; Lin, C-C.; Tsai, C-W.; Chang, W-S.; Yang, M-D.; Bau, D-T. A novel caveolin-1 biomarker for clinical outcome of Sarcopenia. in vivo, 2014, 28(3), 383-389.
[PMID: 24815842]
[147]
Urzi, F.; Pokorny, B.; Buzan, E. Pilot study on genetic associations with age-related Sarcopenia. Front. Genet., 2021, 11, 615238.
[http://dx.doi.org/10.3389/fgene.2020.615238] [PMID: 33505434]
[148]
Singh, A.N.; Gasman, B. Disentangling the genetics of Sarcopenia: prioritization of NUDT3 and KLF5 as genes for lean mass & HLA-DQB1-AS1 for hand grip strength with the associated enhancing SNPs & a scoring system. BMC Med. Genet., 2020, 21(1), 40.
[http://dx.doi.org/10.1186/s12881-020-0977-6] [PMID: 32093658]
[149]
Ali, S.; Garcia, J.M. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology, 2014, 60(4), 294-305.
[http://dx.doi.org/10.1159/000356760] [PMID: 24731978]
[150]
Zhu, L.Y.; Chan, R.; Kwok, T.; Cheng, K.C.C.; Ha, A.; Woo, J. Effects of exercise and nutrition supplementation in community-dwelling older Chinese people with Sarcopenia: a randomized controlled trial. Age Ageing, 2019, 48(2), 220-228.
[http://dx.doi.org/10.1093/ageing/afy179] [PMID: 30462162]
[151]
Hsu, K-J.; Liao, C-D.; Tsai, M-W.; Chen, C-N. Effects of exercise and nutritional intervention on body composition, metabolic health, and physical performance in adults with sarcopenic obesity: a meta-analysis. Nutrients, 2019, 11(9), 2163.
[http://dx.doi.org/10.3390/nu11092163] [PMID: 31505890]
[152]
Seo, J.H.; Lee, Y. Association of physical activity with Sarcopenia evaluated based on muscle mass and strength in older adults: 2008–2011 and 2014 − 2018 Korea National Health and Nutrition Examination Surveys. BMC Geriatr., 2022, 22(1), 217.
[http://dx.doi.org/10.1186/s12877-022-02900-3] [PMID: 35296249]
[153]
Ribeiro Santos, V.; Dias Correa, B.; De Souza Pereira, C.G.; Alberto Gobbo, L. Physical activity decreases the risk of Sarcopenia and sarcopenic obesity in older adults with the incidence of clinical factors: 24-month prospective study. Exp. Aging Res., 2020, 46(2), 166-177.
[http://dx.doi.org/10.1080/0361073X.2020.1716156] [PMID: 31971091]
[154]
Yeung, S.S.Y.; Zhu, Z.L.Y.; Kwok, T.; Woo, J. Serum amino acids patterns and 4-year sarcopenia risk in community-dwelling chinese older adults. Gerontology, 2022, 68(7), 736-745.
[http://dx.doi.org/10.1159/000518412] [PMID: 34515116]
[155]
Dai, M.; Lin, T.; Yue, J.; Dai, L. Signatures and clinical significance of amino acid flux in Sarcopenia: a systematic review and Meta-Analysis. Front. Endocrinol. (Lausanne), 2021, 12, 725518.
[http://dx.doi.org/10.3389/fendo.2021.725518] [PMID: 34589057]
[156]
Englund, DA; Kirn, DR; Koochek, A; Zhu, H; Travison, TG; Reid, KF Nutritional supplementation with physical activity improves muscle composition in mobility-limited older adults, the VIVE2 study: A randomized, double-blind, placebo-controlled trial. J Gerontol A Biol Sci Med Sci, 2018, 73(1), 95-101.
[http://dx.doi.org/10.1093/gerona/glx141]
[157]
Boutry-Regard, C.; Vinyes-Parés, G.; Breuillé, D.; Moritani, T. Supplementation with whey protein, omega-3 fatty acids and polyphenols combined with electrical muscle stimulation increases muscle strength in elderly adults with limited mobility: a randomized controlled trial. Nutrients, 2020, 12(6), 1866.
[http://dx.doi.org/10.3390/nu12061866] [PMID: 32585837]
[158]
Wang, X.; Wei, H.; Cao, J.; Li, Z.; He, P. Metabolomics analysis of muscle from piglets fed low protein diets supplemented with branched chain amino acids using HPLC-high-resolution MS. Electrophoresis, 2015, 36(18), 2250-2258.
[http://dx.doi.org/10.1002/elps.201500007] [PMID: 25820777]
[159]
Gilmartin, S.; O’Brien, N.; Giblin, L. Whey for Sarcopenia; Can whey peptides, hydrolysates or proteins play a beneficial role? Foods, 2020, 9(6), 750.
[http://dx.doi.org/10.3390/foods9060750] [PMID: 32517136]
[160]
Xia, Z.; Cholewa, J.; Zhao, Y.; Shang, H.Y.; Yang, Y.Q.; Araújo Pessôa, K.; Su, Q.S.; Lima-Soares, F.; Zanchi, N.E. Targeting inflammation and downstream protein metabolism in Sarcopenia: a brief up-dated description of concurrent exercise and leucine-based multimodal intervention. Front. Physiol., 2017, 8, 434.
[http://dx.doi.org/10.3389/fphys.2017.00434] [PMID: 28690550]
[161]
Sanders, L.H.; McCoy, J.; Hu, X.; Mastroberardino, P.G.; Dickinson, B.C.; Chang, C.J.; Chu, C.T.; Van Houten, B.; Greenamyre, J.T. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson’s disease. Neurobiol. Dis., 2014, 70, 214-223.
[http://dx.doi.org/10.1016/j.nbd.2014.06.014] [PMID: 24981012]
[162]
Kobayashi, H. Amino acid nutrition in the prevention and treatment of Sarcopenia. Yakugaku Zasshi. Yakugaku Zasshi, 2018, 138(10), 1277-1283.
[http://dx.doi.org/10.1248/yakushi.18-00091-4] [PMID: 30270272]
[163]
Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with Sarcopenia: A randomized controlled trial. Nutrition, 2019, 58, 1-6.
[http://dx.doi.org/10.1016/j.nut.2018.05.028] [PMID: 30273819]
[164]
Luiking, Y.C.; Deutz, N.E.P.; Memelink, R.G.; Verlaan, S.; Wolfe, R.R. Postprandial muscle protein synthesis is higher after a high whey protein, leucine-enriched supplement than after a dairy-like product in healthy older people: a randomized controlled trial. Nutr. J., 2014, 13(1), 9.
[http://dx.doi.org/10.1186/1475-2891-13-9] [PMID: 24450500]
[165]
Rondanelli, M.; Nichetti, M.; Peroni, G.; Faliva, M.A.; Naso, M.; Gasparri, C.; Perna, S.; Oberto, L.; Di Paolo, E.; Riva, A.; Petrangolini, G.; Guerreschi, G.; Tartara, A. Where to find leucine in food and how to feed elderly with Sarcopenia in order to counteract loss of muscle mass: Practical advice. Front. Nutr., 2021, 7, 622391.
[http://dx.doi.org/10.3389/fnut.2020.622391] [PMID: 33585538]
[166]
Verreijen, A.M.; Verlaan, S.; Engberink, M.F.; Swinkels, S.; de Vogel-van den Bosch, J.; Weijs, P.J.M. A high whey protein–, leucine-, and vitamin D–enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am. J. Clin. Nutr., 2015, 101(2), 279-286.
[http://dx.doi.org/10.3945/ajcn.114.090290] [PMID: 25646324]
[167]
Liberman, K.; Njemini, R.; Luiking, Y.; Forti, L.N.; Verlaan, S.; Bauer, J.M.; Memelink, R.; Brandt, K.; Donini, L.M.; Maggio, M.; Mets, T.; Wijers, S.L.J.; Sieber, C.; Cederholm, T.; Bautmans, I. Thirteen weeks of supplementation of vitamin D and leucine-enriched whey protein nutritional supplement attenuates chronic low-grade inflammation in sarcopenic older adults: the PROVIDE study. Aging Clin. Exp. Res., 2019, 31(6), 845-854.
[http://dx.doi.org/10.1007/s40520-019-01208-4] [PMID: 31049877]
[168]
El Hajj, C.; Fares, S.; Chardigny, J.M.; Boirie, Y.; Walrand, S. Vitamin D supplementation and muscle strength in pre-sarcopenic elderly Lebanese people: a randomized controlled trial. Arch. Osteoporos., 2019, 14(1), 4.
[http://dx.doi.org/10.1007/s11657-018-0553-2] [PMID: 30569340]
[169]
Cheng, S.H.; Chen, K.H.; Chen, C.; Chu, W.C.; Kang, Y.N. The optimal strategy of vitamin d for Sarcopenia: A network meta-analysis of randomized controlled trials. Nutrients, 2021, 13(10), 3589.
[http://dx.doi.org/10.3390/nu13103589] [PMID: 34684590]
[170]
Yang, A.; Lv, Q.; Chen, F.; Wang, Y.; Liu, Y.; Shi, W.; Liu, Y.; Wang, D. The effect of vitamin D on Sarcopenia depends on the level of physical activity in older adults. J. Cachexia Sarcopenia Muscle, 2020, 11(3), 678-689.
[http://dx.doi.org/10.1002/jcsm.12545] [PMID: 32020783]
[171]
Kim, Y.S.; Hong, K.W.; Han, K.; Park, Y.C.; Park, J.M.; Kim, K.; Kim, B.T. Longitudinal observation of muscle mass over 10 years according to serum calcium levels and calcium intake among Korean adults aged 50 and older: The Korean Genome and Epidemiology Study. Nutrients, 2020, 12(9), 2856.
[http://dx.doi.org/10.3390/nu12092856] [PMID: 32961901]
[172]
van Dronkelaar, C; van Velzen, A; Abdelrazek, M; van der Steen, A; Weijs, PJ; Tieland, M Minerals and Sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J. Am. Med. Dir. Assoc., 2018, 19(1), 6-11.
[http://dx.doi.org/10.1016/j.jamda.2017.05.026]
[173]
Du, Y.; Oh, C.; No, J. Is Calcium the Main Nutrient in the Diet Plan for Sarcopenia among the Elderly?: A Systematic Review and Meta-Analysis. Europe PMC. 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1359964/v1]
[174]
Bird, J.K.; Troesch, B.; Warnke, I.; Calder, P.C. The effect of long chain omega-3 polyunsaturated fatty acids on muscle mass and function in Sarcopenia: A scoping systematic review and meta-analysis. Clin. Nutr. ESPEN, 2021, 46, 73-86.
[http://dx.doi.org/10.1016/j.clnesp.2021.10.011] [PMID: 34857251]
[175]
Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil–derived n−3 PUFA therapy increases muscle mass and function in healthy older adults1. Am. J. Clin. Nutr., 2015, 102(1), 115-122.
[http://dx.doi.org/10.3945/ajcn.114.105833] [PMID: 25994567]
[176]
Boirie, Y.; Guillet, C. Fast digestive proteins and Sarcopenia of aging. Curr. Opin. Clin. Nutr. Metab. Care, 2018, 21(1), 37-41.
[http://dx.doi.org/10.1097/MCO.0000000000000427] [PMID: 29028650]
[177]
Rondanelli, M.; Rigon, C.; Perna, S.; Gasparri, C.; Iannello, G.; Akber, R.; Alalwan, T.A.; Freije, A.M. Novel insights on intake of fish and prevention of Sarcopenia: All reasons for an adequate consumption. Nutrients, 2020, 12(2), 307.
[http://dx.doi.org/10.3390/nu12020307] [PMID: 31991560]
[178]
Lalia, A.Z.; Dasari, S.; Robinson, M.M.; Abid, H.; Morse, D.M.; Klaus, K.A.; Lanza, I.R. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging (Albany NY), 2017, 9(4), 1096-1129.
[http://dx.doi.org/10.18632/aging.101210] [PMID: 28379838]
[179]
Candow, D.G.; Forbes, S.C.; Chilibeck, P.D.; Cornish, S.M.; Antonio, J.; Kreider, R.B. Variables influencing the effectiveness of creatine supplementation as a therapeutic intervention for Sarcopenia. Front. Nutr., 2019, 6, 124.
[http://dx.doi.org/10.3389/fnut.2019.00124] [PMID: 31448281]
[180]
Chilibeck, P.D.; Candow, D.G.; Landeryou, T.; Kaviani, M.; Paus-Jenssen, L. Effects of creatine and resistance training on bone health in postmenopausal women. Med. Sci. Sports Exerc., 2015, 47(8), 1587-1595.
[http://dx.doi.org/10.1249/MSS.0000000000000571] [PMID: 25386713]
[181]
Dolan, E.; Artioli, G.G.; Pereira, R.M.R.; Gualano, B. Muscular atrophy and Sarcopenia in the elderly: is there a role for creatine supplementation? Biomolecules, 2019, 9(11), 642.
[http://dx.doi.org/10.3390/biom9110642] [PMID: 31652853]
[182]
Villani, A.; Wright, H.; Slater, G.; Buckley, J. A randomised controlled intervention study investigating the efficacy of carotenoid-rich fruits and vegetables and extra-virgin olive oil on attenuating sarcopenic symptomology in overweight and obese older adults during energy intake restriction: protocol paper. BMC Geriatr., 2018, 18(1), 2.
[http://dx.doi.org/10.1186/s12877-017-0700-4] [PMID: 29304744]
[183]
Besora-Moreno, M.; Llauradó, E.; Valls, R.M.; Tarro, L.; Pedret, A.; Solà, R. Antioxidant-rich foods, antioxidant supplements, and Sarcopenia in old-young adults ≥55 years old: A systematic review and meta-analysis of observational studies and randomized controlled trials. Clin. Nutr., 2022, 41(10), 2308-2324.
[http://dx.doi.org/10.1016/j.clnu.2022.07.035] [PMID: 36099667]
[184]
Welch, A.A.; Jennings, A.; Kelaiditi, E.; Skinner, J.; Steves, C.J. Cross-sectional associations between dietary antioxidant vitamins C, E and carotenoid intakes and sarcopenic indices in women aged 18–79 years. Calcif. Tissue Int., 2020, 106(4), 331-342.
[http://dx.doi.org/10.1007/s00223-019-00641-x] [PMID: 31813016]
[185]
Otsuka, Y.; Iidaka, T.; Horii, C.; Muraki, S.; Oka, H.; Nakamura, K.; Izumo, T.; Rogi, T.; Shibata, H.; Tanaka, S.; Yoshimura, N. Dietary intake of vitamin E and fats associated with Sarcopenia in community-dwelling older Japanese people: a cross-sectional study from the fifth survey of the ROAD study. Nutrients, 2021, 13(5), 1730.
[http://dx.doi.org/10.3390/nu13051730] [PMID: 34065253]
[186]
Ministry of Health L, Welfare. Dietary reference intakes for Japanese. 2015. Available from: https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/Full_DRIs2015.pdf
[187]
Chung, E.; Mo, H.; Wang, S.; Zu, Y.; Elfakhani, M.; Rios, S.R.; Chyu, M.C.; Yang, R.S.; Shen, C.L. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr. Res., 2018, 49, 23-36.
[http://dx.doi.org/10.1016/j.nutres.2017.09.005] [PMID: 29420990]
[188]
Salucci, S.; Falcieri, E. Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr. Res., 2020, 74, 10-22.
[http://dx.doi.org/10.1016/j.nutres.2019.11.004] [PMID: 31895993]
[189]
Kou, X.; Li, J.; Liu, X.; Yang, X.; Fan, J.; Chen, N. Ampelopsin attenuates the atrophy of skeletal muscle from d -gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade. Biomed. Pharmacother., 2017, 90, 311-320.
[http://dx.doi.org/10.1016/j.biopha.2017.03.070] [PMID: 28364603]
[190]
Ito, M.; Kudo, N.; Miyake, Y.; Imai, T.; Unno, T.; Yamashita, Y.; Hirota, Y.; Ashida, H.; Osakabe, N. Flavan 3-ol delays the progression of disuse atrophy induced by hindlimb suspension in mice. Exp. Gerontol., 2017, 98, 120-123.
[http://dx.doi.org/10.1016/j.exger.2017.07.010] [PMID: 28807824]
[191]
Asami, Y.; Aizawa, M.; Kinoshita, M.; Ishikawa, J.; Sakuma, K. Resveratrol attenuates denervation-induced muscle atrophy due to the blockade of atrogin-1 and p62 accumulation. Int. J. Med. Sci., 2018, 15(6), 628-637.
[http://dx.doi.org/10.7150/ijms.22723] [PMID: 29725254]
[192]
Chang, Y.C.; Liu, H.W.; Chan, Y.C.; Hu, S.H.; Liu, M.Y.; Chang, S.J. The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin. Arch. Biochem. Biophys., 2020, 692, 108511.
[http://dx.doi.org/10.1016/j.abb.2020.108511] [PMID: 32710883]
[193]
Annunziata, G.; Jimenez-García, M.; Tejada, S.; Moranta, D.; Arnone, A.; Ciampaglia, R.; Tenore, G.C.; Sureda, A.; Novellino, E.; Capó, X. Grape polyphenols ameliorate muscle decline reducing oxidative stress and oxidative damage in aged rats. Nutrients, 2020, 12(5), 1280.
[http://dx.doi.org/10.3390/nu12051280] [PMID: 32365992]
[194]
Kwon, I.S.; Park, D.S.; Shin, H.C.; Seok, M.G.; Oh, J.K. Effects of marine oligomeric polyphenols on body composition and physical ability of elderly individuals with Sarcopenia: a pilot study. Phys. Act. Nutr., 2021, 25(3), 1-7.
[http://dx.doi.org/10.20463/pan.2021.0014] [PMID: 34727682]
[195]
Felice, F.; Cesare, M.M.; Fredianelli, L.; De Leo, M.; Conti, V.; Braca, A.; Di Stefano, R. Effect of tomato peel extract grown under drought stress condition in a sarcopenia model. Molecules, 2022, 27(8), 2563.
[http://dx.doi.org/10.3390/molecules27082563] [PMID: 35458760]
[196]
D’ERRICO A, MASULLO M, ARCONE R. Effects of physical exercise and plant polyphenols on human mitochondrial health. J. Phys. Educ. Sport, 2022, 22(7)
[http://dx.doi.org/10.7752/jpes.2022.07229]
[197]
Kim, C.; Hwang, J.K. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci. Biotechnol., 2020, 29(12), 1619-1640.
[http://dx.doi.org/10.1007/s10068-020-00816-5] [PMID: 33282430]
[198]
Priego, T.; Martín, A.; González-Hedström, D.; Granado, M.; López-Calderón, A. Role of hormones in Sarcopenia. Vitamins and Hormones. 115; Elsevier, 2021, pp. 535-570
[199]
Shin, M.J.; Jeon, Y.K.; Kim, I.J. Testosterone and Sarcopenia. World J. Mens Health, 2018, 36(3), 192-198.
[http://dx.doi.org/10.5534/wjmh.180001] [PMID: 29756416]
[200]
Moctezuma-Velázquez, C.; Low, G.; Mourtzakis, M.; Ma, M.; Burak, K.W.; Tandon, P.; Montano-Loza, A.J. Association between low testosterone levels and Sarcopenia in cirrhosis: a cross-sectional study. Ann. Hepatol., 2018, 17(4), 615-623.
[http://dx.doi.org/10.5604/01.3001.0012.0930] [PMID: 29893704]
[201]
Diago-Galmés, A.; Guillamón-Escudero, C.; Tenías-Burillo, J.M.; Soriano, J.M.; Fernández-Garrido, J. Salivary testosterone and cortisol as biomarkers for the diagnosis of Sarcopenia and Sarcopenic obesity in community-dwelling older adults. Biology (Basel), 2021, 10(2), 93.
[http://dx.doi.org/10.3390/biology10020093] [PMID: 33513704]
[202]
Rhee, H.; Navaratnam, A.; Oleinikova, I.; Gilroy, D.; Scuderi, Y.; Heathcote, P.; Nguyen, T.; Wood, S.; Ho, K.K.Y. A novel liver-targeted testosterone therapy for Sarcopenia in androgen deprived men with prostate cancer. J. Endocr. Soc., 2021, 5(9), bvab116.
[http://dx.doi.org/10.1210/jendso/bvab116] [PMID: 34308090]
[203]
Gharahdaghi, N.; Rudrappa, S.; Brook, M.S.; Idris, I.; Crossland, H.; Hamrock, C.; Abdul Aziz, M.H.; Kadi, F.; Tarum, J.; Greenhaff, P.L.; Constantin-Teodosiu, D.; Cegielski, J.; Phillips, B.E.; Wilkinson, D.J.; Szewczyk, N.J.; Smith, K.; Atherton, P.J. Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men. J. Cachexia Sarcopenia Muscle, 2019, 10(6), 1276-1294.
[http://dx.doi.org/10.1002/jcsm.12472] [PMID: 31568675]
[204]
Urban, R.J.; Dillon, E.L.; Choudhary, S.; Zhao, Y.; Horstman, A.M.; Tilton, R.G.; Sheffield-Moore, M. Translational studies in older men using testosterone to treat Sarcopenia. Trans. Am. Clin. Climatol. Assoc., 2014, 125, 27-42. Available from: https://pubmed.ncbi.element.nih.gov/25125716/
[PMID: 25125716]
[205]
Sinclair, M.; Grossmann, M.; Hoermann, R.; Angus, P.W.; Gow, P.J. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J. Hepatol., 2016, 65(5), 906-913.
[http://dx.doi.org/10.1016/j.jhep.2016.06.007] [PMID: 27312945]
[206]
Narayanan, R.; Coss, C.C.; Dalton, J.T. Development of selective androgen receptor modulators (SARMs). Mol. Cell. Endocrinol., 2018, 465, 134-142.
[http://dx.doi.org/10.1016/j.mce.2017.06.013] [PMID: 28624515]
[207]
Papanicolaou, D.A.; Ather, S.N.; Zhu, H.; Zhou, Y.; Lutkiewicz, J.; Scott, B.B.; Chandler, J. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with Sarcopenia. J. Nutr. Health Aging, 2013, 17(6), 533-543.
[http://dx.doi.org/10.1007/s12603-013-0335-x] [PMID: 23732550]
[208]
Morimoto, M.; Aikawa, K.; Hara, T.; Yamaoka, M. Prevention of body weight loss and Sarcopenia by a novel selective androgen receptor modulator in cancer cachexia models. Oncol. Lett., 2017, 14(6), 8066-8071.
[http://dx.doi.org/10.3892/ol.2017.7200] [PMID: 29344250]
[209]
Muta, Y.; Tanaka, T.; Hamaguchi, Y.; Hamanoue, N.; Motonaga, R.; Tanabe, M.; Nomiyama, T.; Nawata, H.; Yanase, T. Selective androgen receptor modulator, S42 has anabolic and anti-catabolic effects on cultured myotubes. Biochem. Biophys. Rep., 2019, 17, 177-181.
[http://dx.doi.org/10.1016/j.bbrep.2019.01.006] [PMID: 30705972]
[210]
Roch, P.J.; Wolgast, V.; Gebhardt, M.M.; Böker, K.O.; Hoffmann, D.B.; Saul, D.; Schilling, A.F.; Sehmisch, S.; Komrakova, M. Combination of selective androgen and estrogen receptor modulators in orchiectomized rats. J. Endocrinol. Invest., 2022, 45(8), 1555-1568.
[http://dx.doi.org/10.1007/s40618-022-01794-7] [PMID: 35429299]
[211]
Young, J.A.; Zhu, S.; List, E.O.; Duran-Ortiz, S.; Slama, Y.; Berryman, D.E. Musculoskeletal Effects of Altered GH Action. Front. Physiol., 2022, 13, 867921.
[http://dx.doi.org/10.3389/fphys.2022.867921] [PMID: 35665221]
[212]
Brioche, T.; Kireev, R.A.; Cuesta, S.; Gratas-Delamarche, A.; Tresguerres, J.A.; Gomez-Cabrera, M.C.; Viña, J. Growth hormone replacement therapy prevents Sarcopenia by a dual mechanism: improvement of protein balance and of antioxidant defenses. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(10), 1186-1198.
[http://dx.doi.org/10.1093/gerona/glt187] [PMID: 24300031]
[213]
Gasco, V.; Caputo, M.; Lanfranco, F.; Ghigo, E.; Grottoli, S. Management of GH treatment in adult GH deficiency. Best Pract. Res. Clin. Endocrinol. Metab., 2017, 31(1), 13-24.
[http://dx.doi.org/10.1016/j.beem.2017.03.001] [PMID: 28477728]
[214]
Sgrò, P.; Sansone, M.; Sansone, A.; Sabatini, S.; Borrione, P.; Romanelli, F.; Di Luigi, L. Physical exercise, nutrition and hormones: three pillars to fight Sarcopenia. Aging Male, 2019, 22(2), 75-88.
[http://dx.doi.org/10.1080/13685538.2018.1439004] [PMID: 29451419]
[215]
Chen, J.; Splenser, A.; Guillory, B.; Luo, J.; Mendiratta, M.; Belinova, B.; Halder, T.; Zhang, G.; Li, Y.P.; Garcia, J.M. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J. Cachexia Sarcopenia Muscle, 2015, 6(2), 132-143.
[http://dx.doi.org/10.1002/jcsm.12023] [PMID: 26136189]
[216]
Fujitsuka, N.; Asakawa, A.; Morinaga, A.; Amitani, M.S.; Amitani, H.; Katsuura, G.; Sawada, Y.; Sudo, Y.; Uezono, Y.; Mochiki, E.; Sakata, I.; Sakai, T.; Hanazaki, K.; Yada, T.; Yakabi, K.; Sakuma, E.; Ueki, T.; Niijima, A.; Nakagawa, K.; Okubo, N.; Takeda, H.; Asaka, M.; Inui, A. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1. Mol. Psychiatry, 2016, 21(11), 1613-1623.
[http://dx.doi.org/10.1038/mp.2015.220] [PMID: 26830139]
[217]
Temel, J.S.; Abernethy, A.P.; Currow, D.C.; Friend, J.; Duus, E.M.; Yan, Y.; Fearon, K.C. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol., 2016, 17(4), 519-531.
[http://dx.doi.org/10.1016/S1470-2045(15)00558-6] [PMID: 26906526]
[218]
Tamaki, M.; Miyashita, K.; Hagiwara, A.; Wakino, S.; Inoue, H.; Fujii, K.; Fujii, C.; Endo, S.; Uto, A.; Mitsuishi, M.; Sato, M.; Doi, T.; Itoh, H. Ghrelin treatment improves physical decline in Sarcopenia model mice through muscular enhancement and mitochondrial activation. Endocr. J., 2017, 64(Suppl.), S47-S51.
[http://dx.doi.org/10.1507/endocrj.64.S47] [PMID: 28652544]
[219]
Guillory, B.; Chen, J.; Patel, S.; Luo, J.; Splenser, A.; Mody, A.; Ding, M.; Baghaie, S.; Anderson, B.; Iankova, B.; Halder, T.; Hernandez, Y.; Garcia, J.M. Deletion of ghrelin prevents aging-associated obesity and muscle dysfunction without affecting longevity. Aging Cell, 2017, 16(4), 859-869.
[http://dx.doi.org/10.1111/acel.12618] [PMID: 28585250]
[220]
Wu, C.N.; Tien, K.J. The impact of antidiabetic agents on Sarcopenia in type 2 diabetes: a literature review. J. Diabetes Res., 2020, 2020, 1-6.
[http://dx.doi.org/10.1155/2020/9368583] [PMID: 32695832]
[221]
Ma, X.; Lin, L.; Yue, J.; Wu, C.S.; Guo, C.; Wang, R.; Yu, K.J.; Devaraj, S.; Murano, P.; Chen, Z.; Sun, Y. Suppression of ghrelin exacerbates HFCS-induced adiposity and insulin resistance. Int. J. Mol. Sci., 2017, 18(6), 1302.
[http://dx.doi.org/10.3390/ijms18061302] [PMID: 28629187]
[222]
Ryan, A.S.; Serra, M.C.; Addison, O. The role of skeletal muscle myostatin in Sarcopenia in older adults. Innov. Aging, 2017, 1(Suppl. 1), 361.
[http://dx.doi.org/10.1093/geroni/igx004.1317]
[223]
Bergen, H.R., III; Farr, J.N.; Vanderboom, P.M.; Atkinson, E.J.; White, T.A.; Singh, R.J.; Khosla, S.; LeBrasseur, N.K. Myostatin as a mediator of Sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skelet. Muscle, 2015, 5(1), 21.
[http://dx.doi.org/10.1186/s13395-015-0047-5] [PMID: 26180626]
[224]
Becker, C.; Lord, S.R.; Studenski, S.A.; Warden, S.J.; Fielding, R.A.; Recknor, C.P.; Hochberg, M.C.; Ferrari, S.L.; Blain, H.; Binder, E.F.; Rolland, Y.; Poiraudeau, S.; Benson, C.T.; Myers, S.L.; Hu, L.; Ahmad, Q.I.; Pacuch, K.R.; Gomez, E.V.; Benichou, O. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol., 2015, 3(12), 948-957.
[http://dx.doi.org/10.1016/S2213-8587(15)00298-3] [PMID: 26516121]
[225]
de Sire, A.; Baricich, A.; Renò, F.; Cisari, C.; Fusco, N.; Invernizzi, M. Myostatin as a potential biomarker to monitor Sarcopenia in hip fracture patients undergoing a multidisciplinary rehabilitation and nutritional treatment: a preliminary study. Aging Clin. Exp. Res., 2020, 32(5), 959-962.
[http://dx.doi.org/10.1007/s40520-019-01436-8] [PMID: 31838642]
[226]
Chew, J.; Tay, L.; Lim, J.P.; Leung, B.P.; Yeo, A.; Yew, S.; Ding, Y.Y.; Lim, W.S. Serum myostatin and IGF-1 as gender-specific biomarkers of frailty and low muscle mass in community-dwelling older adults. J. Nutr. Health Aging, 2019, 23(10), 979-986.
[http://dx.doi.org/10.1007/s12603-019-1255-1] [PMID: 31781728]
[227]
Egerman, M.A.; Cadena, S.M.; Gilbert, J.A.; Meyer, A.; Nelson, H.N.; Swalley, S.E.; Mallozzi, C.; Jacobi, C.; Jennings, L.L.; Clay, I.; Laurent, G.; Ma, S.; Brachat, S.; Lach-Trifilieff, E.; Shavlakadze, T.; Trendelenburg, A.U.; Brack, A.S.; Glass, D.J. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab., 2015, 22(1), 164-174.
[http://dx.doi.org/10.1016/j.cmet.2015.05.010] [PMID: 26001423]
[228]
Ryan, A.S.; Li, G. Skeletal muscle myostatin gene expression and Sarcopenia in overweight and obese middle-aged and older adults. JCSM Clin. Rep., 2021, 6(4), 137-142.
[http://dx.doi.org/10.1002/crt2.43] [PMID: 35311023]
[229]
Lach-Trifilieff, E.; Minetti, G.C.; Sheppard, K.; Ibebunjo, C.; Feige, J.N.; Hartmann, S.; Brachat, S.; Rivet, H.; Koelbing, C.; Morvan, F.; Hatakeyama, S.; Glass, D.J. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol. Cell. Biol., 2014, 34(4), 606-618.
[http://dx.doi.org/10.1128/MCB.01307-13] [PMID: 24298022]
[230]
Rooks, D.; Praestgaard, J.; Hariry, S.; Laurent, D.; Petricoul, O.; Perry, R.G.; Lach-Trifilieff, E.; Roubenoff, R. Treatment of Sarcopenia with bimagrumab: results from a phase II, randomized, controlled, proof-of-concept study. J. Am. Geriatr. Soc., 2017, 65(9), 1988-1995.
[http://dx.doi.org/10.1111/jgs.14927] [PMID: 28653345]
[231]
Polkey, M.I.; Praestgaard, J.; Berwick, A.; Franssen, F.M.E.; Singh, D.; Steiner, M.C.; Casaburi, R.; Tillmann, H.C.; Lach-Trifilieff, E.; Roubenoff, R.; Rooks, D.S. Activin type II receptor blockade for treatment of muscle depletion in chronic obstructive pulmonary disease. A randomized trial. Am. J. Respir. Crit. Care Med., 2019, 199(3), 313-320.
[http://dx.doi.org/10.1164/rccm.201802-0286OC] [PMID: 30095981]
[232]
Heymsfield, SB; Coleman, LA; Miller, R; Rooks, DS; Laurent, D; Petricoul, O Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: A phase 2 randomized clinical trial. JAMA Netw Open, 2021, 4(1), e2033457.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.33457]
[233]
Lodberg, A. Principles of the activin receptor signaling pathway and its inhibition. Cytokine Growth Factor Rev., 2021, 60, 1-17.
[http://dx.doi.org/10.1016/j.cytogfr.2021.04.001] [PMID: 33933900]
[234]
Ma, X.Y.; Chen, F.Q. Effects of anti-diabetic drugs on Sarcopenia: Best treatment options for elderly patients with type 2 diabetes mellitus and Sarcopenia. World J. Clin. Cases, 2021, 9(33), 10064-10074.
[http://dx.doi.org/10.12998/wjcc.v9.i33.10064] [PMID: 34904076]
[235]
Kjøbsted, R.; Hingst, J.R.; Fentz, J.; Foretz, M.; Sanz, M.N.; Pehmøller, C.; Shum, M.; Marette, A.; Mounier, R.; Treebak, J.T.; Wojtaszewski, J.F.P.; Viollet, B.; Lantier, L. AMPK in skeletal muscle function and metabolism. FASEB J., 2018, 32(4), 1741-1777.
[http://dx.doi.org/10.1096/fj.201700442R] [PMID: 29242278]
[236]
Pavlidou, T.; Marinkovic, M.; Rosina, M.; Fuoco, C.; Vumbaca, S.; Gargioli, C.; Castagnoli, L.; Cesareni, G. Metformin delays satellite cell activation and maintains quiescence. Stem Cells Int., 2019, 2019, 5980465.
[http://dx.doi.org/10.1155/2019/5980465] [PMID: 31249600]
[237]
Chen, F.; Xu, S.; Wang, Y.; Chen, F.; Cao, L.; Liu, T.; Huang, T.; Wei, Q.; Ma, G.; Zhao, Y.; Wang, D. Risk factors for Sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin. J. Diabetes Res., 2020, 2020, 3950404.
[http://dx.doi.org/10.1155/2020/3950404] [PMID: 33083494]
[238]
Rennie, K.J.; Witham, M.; Bradley, P.; Clegg, A.; Connolly, S.; Hancock, H.C.; Hiu, S.; Marsay, L.; McDonald, C.; Robertson, L.; Simms, L.; Steel, A.J.; Steves, C.J.; Storey, B.; Wason, J.; Wilson, N.; von Zglinicki, T.; Sayer, A.A.P. MET-PREVENT: metformin to improve physical performance in older people with Sarcopenia and physical prefrailty/frailty – protocol for a double-blind, randomised controlled proof-of-concept trial. BMJ Open, 2022, 12(7), e061823.
[http://dx.doi.org/10.1136/bmjopen-2022-061823] [PMID: 35851031]
[239]
Lyu, Q.; Wen, Y.; He, B.; Zhang, X.; Chen, J.; Sun, Y.; Zhao, Y.; Xu, L.; Xiao, Q.; Deng, H. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice. Biochim. Biophys. Acta Mol. Basis Dis., 2022, 1868(11), 166508.
[http://dx.doi.org/10.1016/j.bbadis.2022.166508] [PMID: 35905940]
[240]
Lee, C.G.; Boyko, E.J.; Barrett-Connor, E.; Miljkovic, I.; Hoffman, A.R.; Everson-Rose, S.A.; Lewis, C.E.; Cawthon, P.M.; Strotmeyer, E.S.; Orwoll, E.S. Insulin sensitizers may attenuate lean mass loss in older men with diabetes. Diabetes Care, 2011, 34(11), 2381-2386.
[http://dx.doi.org/10.2337/dc11-1032] [PMID: 21926282]
[241]
Miyazaki, Y.; Mahankali, A.; Matsuda, M.; Mahankali, S.; Hardies, J.; Cusi, K.; Mandarino, L.J.; DeFronzo, R.A. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab., 2002, 87(6), 2784-2791.
[http://dx.doi.org/10.1210/jcem.87.6.8567] [PMID: 12050251]
[242]
Asp, M.L.; Tian, M.; Wendel, A.A.; Belury, M.A. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int. J. Cancer, 2010, 126(3), 756-763.
[http://dx.doi.org/10.1002/ijc.24784] [PMID: 19634137]
[243]
Wang, X.; Hu, Z.; Hu, J.; Du, J.; Mitch, W.E. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology, 2006, 147(9), 4160-4168.
[http://dx.doi.org/10.1210/en.2006-0251] [PMID: 16777975]
[244]
Marsh, A.P.; Kyla Shea, M.; Vance Locke, R.M.; Miller, M.E.; Isom, S.; Miller, G.D.; Nicklas, B.J.; Lyles, M.F.; Carr, J.J.; Kritchevsky, S.B. Resistance training and pioglitazone lead to improvements in muscle power during voluntary weight loss in older adults. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(7), 828-836.
[http://dx.doi.org/10.1093/gerona/gls258] [PMID: 23292287]
[245]
Ekiz, T.; Kara, M.; Ata, A.M.; Ricci, V.; Kara, Ö.; Özcan, F.; Özçakar, L. Rewinding Sarcopenia: a narrative review on the renin–angiotensin system. Aging Clin. Exp. Res., 2021, 33(9), 2379-2392.
[http://dx.doi.org/10.1007/s40520-020-01761-3] [PMID: 33394457]
[246]
Caulfield, L; Heslop, P; Walesby, KE; Sumukadas, D; Sayer, AA; Witham, MD Effect of angiotensin system inhibitors on physical performance in older people–a systematic review and meta-analysis. J. Am. Med. Dir. Assoc., 2021, 22(6), 1215-1221.
[http://dx.doi.org/10.1016/j.jamda.2020.07.012]
[247]
Spira, D.; Walston, J.; Buchmann, N.; Nikolov, J.; Demuth, I.; Steinhagen-Thiessen, E.; Eckardt, R.; Norman, K. Angiotensin-converting enzyme inhibitors and parameters of Sarcopenia: relation to muscle mass, strength and function: data from the Berlin Aging Study-II (BASE-II). Drugs Aging, 2016, 33(11), 829-837.
[http://dx.doi.org/10.1007/s40266-016-0396-8] [PMID: 27665105]
[248]
Coelho, V.A.; Probst, V.S.; Nogari, B.M.; Teixeira, D.C.; Felcar, J.M.; Santos, D.C.; Gomes, M.V.M.; Andraus, R.A.C.; Fernandes, K.B.P. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults. J. Phys. Ther. Sci., 2016, 28(2), 547-552.
[http://dx.doi.org/10.1589/jpts.28.547] [PMID: 27065543]
[249]
Di Raimondo, D.; Tuttolomondo, A.; Buttà, C.; Miceli, S.; Licata, G.; Pinto, A. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr. Pharm. Des., 2012, 18(28), 4385-4413.
[http://dx.doi.org/10.2174/138161212802481282] [PMID: 22283779]
[250]
White, WB; Marfatia, R; Schmidt, J; Wakefield, DB; Kaplan, RF; Bohannon, RW INtensive versus standard ambulatory blood pressure lowering to prevent functional DeclINe in the ElderlY (INFINITY). Am. Heart J., 2013, 165(3), 258-265.
[http://dx.doi.org/10.1016/j.ahj.2012.11.008]
[251]
Band, M.M.; Sumukadas, D.; Struthers, A.D.; Avenell, A.; Donnan, P.T.; Kemp, P.R.; Smith, K.T.; Hume, C.L.; Hapca, A.; Witham, M.D. Leucine and ACE inhibitors as therapies for Sarcopenia (LACE trial): study protocol for a randomised controlled trial. Trials, 2018, 19(1), 6.
[http://dx.doi.org/10.1186/s13063-017-2390-9] [PMID: 29301558]
[252]
Kostka, J.; Sikora, J.; Guligowska, A.; Kostka, T. Associations between ACE-Inhibitors, angiotensin receptor blockers, and lean body mass in community dwelling older women. J Aging Res, 2021, 2018, 8491092.
[http://dx.doi.org/10.12688/f1000research.51208.2]
[253]
Mile, M.; Balogh, L.; Papp, G.; Pucsok, J.M.; Szabó, K.; Barna, L.; Csiki, Z.; Lekli, I. Effects of functional training on Sarcopenia in elderly women in the presence or absence of ACE inhibitors. Int. J. Environ. Res. Public Health, 2021, 18(12), 6594.
[http://dx.doi.org/10.3390/ijerph18126594] [PMID: 34205250]
[254]
Kingsley, J.; Torimoto, K.; Hashimoto, T.; Eguchi, S. Angiotensin II inhibition: a potential treatment to slow the progression of Sarcopenia. Clin. Sci. (Lond.), 2021, 135(21), 2503-2520.
[http://dx.doi.org/10.1042/CS20210719] [PMID: 34751393]
[255]
Sukhanov, S.; Yoshida, T.; Michael Tabony, A.; Higashi, Y.; Galvez, S.; Delafontaine, P.; Semprun-Prieto, L. Angiotensin II, oxidative stress and skeletal muscle wasting. Am. J. Med. Sci., 2011, 342(2), 143-147.
[http://dx.doi.org/10.1097/MAJ.0b013e318222e620] [PMID: 21747283]
[256]
Bea, J.W.; Wassertheil-Smoller, S.; Wertheim, B.C.; Klimentidis, Y.; Chen, Z.; Zaslavsky, O.; Manini, T.M.; Womack, C.R.; Kroenke, C.H.; LaCroix, A.Z.; Thomson, C.A. Associations between ACE-Inhibitors, angiotensin receptor blockers, and lean body mass in community dwelling older women. J. Aging Res., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/8491092] [PMID: 29670769]
[257]
Yabumoto, C.; Akazawa, H.; Yamamoto, R.; Yano, M.; Kudo-Sakamoto, Y.; Sumida, T.; Kamo, T.; Yagi, H.; Shimizu, Y.; Saga-Kamo, A.; Naito, A.T.; Oka, T.; Lee, J.K.; Suzuki, J.; Sakata, Y.; Uejima, E.; Komuro, I. Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression. Sci. Rep., 2015, 5(1), 14453.
[http://dx.doi.org/10.1038/srep14453] [PMID: 26571361]
[258]
Brink, M.; Price, S.R.; Chrast, J.; Bailey, J.L.; Anwar, A.; Mitch, W.E.; Delafontaine, P. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology, 2001, 142(4), 1489-1496.
[http://dx.doi.org/10.1210/endo.142.4.8082] [PMID: 11250929]
[259]
Bedair, H.S.; Karthikeyan, T.; Quintero, A.; Li, Y.; Huard, J. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am. J. Sports Med., 2008, 36(8), 1548-1554.
[http://dx.doi.org/10.1177/0363546508315470] [PMID: 18550776]
[260]
Takagi, H.; Mizuno, Y.; Yamamoto, H.; Goto, S.; Umemoto, T. Effects of telmisartan therapy on interleukin-6 and tumor necrosis factor-alpha levels: a meta-analysis of randomized controlled trials. Hypertens. Res., 2013, 36(4), 368-373.
[http://dx.doi.org/10.1038/hr.2012.196] [PMID: 23235712]
[261]
Ng, T.P.; Nguyen, T.N.; Gao, Q.; Nyunt, M.S.Z.; Yap, K.B.; Wee, S.L. Angiotensin receptor blockers use and changes in frailty, muscle mass, and function indexes: Singapore Longitudinal Ageing Study. JCSM Rapid Commun., 2021, 4(2), 111-121.
[http://dx.doi.org/10.1002/rco2.31]
[262]
Lin, C.H.; Yang, H.; Xue, Q.L.; Chuang, Y.F.; Roy, C.N.; Abadir, P.; Walston, J.D. Losartan improves measures of activity, inflammation, and oxidative stress in older mice. Exp. Gerontol., 2014, 58, 174-178.
[http://dx.doi.org/10.1016/j.exger.2014.07.017] [PMID: 25077714]
[263]
Pereira, M.G.; Silva, M.T.; da Cunha, F.M.; Moriscot, A.S.; Aoki, M.S.; Miyabara, E.H. Leucine supplementation improves regeneration of skeletal muscles from old rats. Exp. Gerontol., 2015, 72, 269-277.
[http://dx.doi.org/10.1016/j.exger.2015.10.006] [PMID: 26481769]
[264]
Ferraro, E.; Pin, F.; Gorini, S.; Pontecorvo, L.; Ferri, A.; Mollace, V.; Costelli, P.; Rosano, G. Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine. J. Cachexia Sarcopenia Muscle, 2016, 7(4), 449-457.
[http://dx.doi.org/10.1002/jcsm.12097] [PMID: 27239426]
[265]
Cramer, J.T.; Cruz-Jentoft, A.J.; Landi, F.; Hickson, M.; Zamboni, M.; Pereira, S.L.; Hustead, D.S.; Mustad, V.A. Impacts of high-protein oral nutritional supplements among malnourished men and women with Sarcopenia: a multicenter, randomized, double-blinded, controlled trial. J. Am. Med. Dir. Assoc., 2016, 17(11), 1044-1055.
[http://dx.doi.org/10.1016/j.jamda.2016.08.009] [PMID: 27780567]
[266]
Kolosova, N.G.; Vitovtov, A.O.; Stefanova, N.A. Metformin reduces the signs of Sarcopenia in old OXYS rats. Adv. Gerontol., 2016, 6(1), 70-74. Available from: https://pubmed.ncbi.element.nih. gov/28509488/
[http://dx.doi.org/10.1134/S2079057016010069] [PMID: 28509488]
[267]
Hofmann, M.; Schober-Halper, B.; Oesen, S.; Franzke, B.; Tschan, H.; Bachl, N.; Strasser, E.M.; Quittan, M.; Wagner, K.H.; Wessner, B. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS). Eur. J. Appl. Physiol., 2016, 116(5), 885-897.
[http://dx.doi.org/10.1007/s00421-016-3344-8] [PMID: 26931422]
[268]
Camporez, J.P.G.; Petersen, M.C.; Abudukadier, A.; Moreira, G.V.; Jurczak, M.J.; Friedman, G.; Haqq, C.M.; Petersen, K.F.; Shulman, G.I. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc. Natl. Acad. Sci. USA, 2016, 113(8), 2212-2217.
[http://dx.doi.org/10.1073/pnas.1525795113] [PMID: 26858428]
[269]
Yasuda, T.; Fukumura, K.; Tomaru, T.; Nakajima, T. Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women. Oncotarget, 2016, 7(23), 33595-33607.
[http://dx.doi.org/10.18632/oncotarget.9564] [PMID: 27244884]
[270]
Borack, M.S.; Reidy, P.T.; Husaini, S.H.; Markofski, M.M.; Deer, R.R.; Richison, A.B.; Lambert, B.S.; Cope, M.B.; Mukherjea, R.; Jennings, K.; Volpi, E.; Rasmussen, B.B. Soy-dairy protein blend or whey protein isolate ingestion induces similar postexercise muscle mechanistic target of rapamycin complex 1 signaling and protein synthesis responses in older men. J. Nutr., 2016, 146(12), 2468-2475.
[http://dx.doi.org/10.3945/jn.116.231159] [PMID: 27798330]
[271]
Trappe, T.A.; Ratchford, S.M.; Brower, B.E.; Liu, S.Z.; Lavin, K.M.; Carroll, C.C.; Jemiolo, B.; Trappe, S.W. COX inhibitor influence on skeletal muscle fiber size and metabolic adaptations to resistance exercise in older adults. J. Gerontol. A Biol. Sci. Med. Sci., 2016, 71(10), 1289-1294.
[http://dx.doi.org/10.1093/gerona/glv231] [PMID: 26817469]
[272]
Laksmi, P.W.; Setiati, S.; Tamin, T.Z.; Soewondo, P.; Rochmah, W.; Nafrialdi, N.; Prihartono, J. Effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life: a double blind randomized controlled trial among non-diabetic pre-frail elderly patients. Acta Med. Indones., 2017, 49(2), 118-127. Available from: https://pubmed.ncbi.element.nih.gov/28790226/
[PMID: 28790226]
[273]
Fujii, C.; Miyashita, K.; Mitsuishi, M.; Sato, M.; Fujii, K.; Inoue, H.; Hagiwara, A.; Endo, S.; Uto, A.; Ryuzaki, M.; Nakajima, M.; Tanaka, T.; Tamaki, M.; Muraki, A.; Kawai, T.; Itoh, H. Treatment of Sarcopenia and glucose intolerance through mitochondrial activation by 5-aminolevulinic acid. Sci. Rep., 2017, 7(1), 4013.
[http://dx.doi.org/10.1038/s41598-017-03917-0] [PMID: 28638045]
[274]
Liao, C.D.; Tsauo, J.Y.; Lin, L.F.; Huang, S.W.; Ku, J.W.; Chou, L.C.; Liou, T.H. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity. Medicine (Baltimore), 2017, 96(23), e7115.
[http://dx.doi.org/10.1097/MD.0000000000007115] [PMID: 28591061]
[275]
Kemmler, W.; Weissenfels, A.; Teschler, M.; Willert, S.; Bebenek, M.; Shojaa, M.; Kohl, M.; Freiberger, E.; Sieber, C.; von Stengel, S. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: the randomized controlled FranSO study. Clin. Interv. Aging, 2017, 12, 1503-1513.
[http://dx.doi.org/10.2147/CIA.S137987] [PMID: 28989278]
[276]
Gagliano-Jucá, T.; Storer, T.W.; Pencina, K.M.; Travison, T.G.; Li, Z.; Huang, G.; Hettwer, S.; Dahinden, P.; Bhasin, S.; Basaria, S. Testosterone does not affect agrin cleavage in mobility-limited older men despite improvement in physical function. Andrology, 2018, 6(1), 29-36.
[http://dx.doi.org/10.1111/andr.12424] [PMID: 28950424]
[277]
Kim, J.A.; Kim, S.M.; Ha, S.E.; Vetrivel, P.; Saralamma, V.V.G.; Kim, E.H.; Kim, G.S. Sinensetin regulates age-related Sarcopenia in cultured primary thigh and calf muscle cells. BMC Complement. Altern. Med., 2019, 19(1), 287.
[http://dx.doi.org/10.1186/s12906-019-2714-2] [PMID: 31660942]
[278]
Azeemuddin, M.M.; Rao, C.M.; Rafiq, M.; Babu, U.V.; Rangesh, P. Pharmacological investigation of ‘HIM-CHX’: A herbal combination in the experimental muscle wasting condition. Exp. Gerontol., 2019, 125, 110663.
[http://dx.doi.org/10.1016/j.exger.2019.110663] [PMID: 31319130]
[279]
Kim, C.; Hwang, J.K. The 5, 7-dimethoxyflavone suppresses Sarcopenia by regulating protein turnover and mitochondria biogenesis-related pathways. Nutrients, 2020, 12(4), 1079.
[http://dx.doi.org/10.3390/nu12041079] [PMID: 32295051]
[280]
Russ, D.W.; Dimova, K.; Morris, E.; Pacheco, M.; Garvey, S.M.; Scordilis, S.P. Dietary fish oil supplement induces age-specific contractile and proteomic responses in muscles of male rats. Lipids Health Dis., 2020, 19(1), 165.
[http://dx.doi.org/10.1186/s12944-020-01333-4] [PMID: 32646455]
[281]
Kang, M.J.; Moon, J.W.; Lee, J.O.; Kim, J.H.; Jung, E.J.; Kim, S.J.; Oh, J.Y.; Wu, S.W.; Lee, P.R.; Park, S.H.; Kim, H.S. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. J. Cachexia Sarcopenia Muscle, 2022, 13(1), 605-620.
[http://dx.doi.org/10.1002/jcsm.12833] [PMID: 34725961]
[282]
Kim, J.H.; Lee, H.; Kim, J.M.; Lee, B.J.; Kim, I.J.; Pak, K.; Jeon, Y.K.; Kim, K. Effect of oligonol, a lychee-derived polyphenol, on skeletal muscle in ovariectomized rats by regulating body composition, protein turnover, and mitochondrial quality signaling. Food Sci. Nutr., 2022, 10(4), 1184-1194.
[http://dx.doi.org/10.1002/fsn3.2750] [PMID: 35432979]
[283]
Sarcopenia and Its Associated Factors Among Hip Fractures Patients. Patent NCT05141981, Available from: https://ClinicalTrials.gov/show/NCT05141981
[284]
Sarcopenia and Diabetes Mellitus. Patent NCT04407819, Available from: https://ClinicalTrials.gov/show/NCT04407819
[285]
Impact of Sarcopenia Using an Easy Psoas Area Measurement. Patent NCT05323604, Available from: https://ClinicalTrials.gov/show/NCT05323604
[286]
Interest of a Tongue Strength Measurement in the Screening for Sarcopenia in Hospitalized Elderly Patients. Patent NCT03417609, Available from: https://ClinicalTrials.gov/show/NCT03417609
[287]
High-definition Surface Electromyography Markers for the Diagnosis of Sarcopenia. Patent NCT04987814, Available from: https://ClinicalTrials.gov/show/NCT04987814
[288]
Muscle Assessment Through Ultrasound in the Evaluation of Acute Sarcopenia. Patent NCT03740061, Available from: https://ClinicalTrials.gov/show/NCT03740061
[289]
Interest of a Tongue Strength Measurement in the Screening for Sarcopenia in Hospitalized Elderly Patients. Patent NCT04842773, Available from: https://ClinicalTrials.gov/show/NCT04842773
[290]
Association of uremic Sarcopenia and mitochondrial copy number and its clinical correlates. Patent NCT03929458, Available from: https://ClinicalTrials.gov/show/NCT03929458
[291]
The presence of Sarcopenia in patients with knee osteoarthritis. Patent NCT04828200, Available from: https://ClinicalTrials.gov/show/NCT04828200
[292]
Sarcopenia And Balance In Postmenopausal Osteoporosis. Patent NCT03832088, Available from: https://ClinicalTrials.gov/show/NCT03832088
[293]
Sarcopenia and Outcomes of Neuroplasty in Lumbar Spinal Stenosis. Patent NCT04374669, Available from: https://ClinicalTrials.gov/show/NCT04374669
[294]
Sarcopenia in Acute Care Patients: Protocol for Sarcopenia 9+. Patent NCT03917667, Available from: https://ClinicalTrials.gov/show/NCT03917667
[295]
Sarcopenia measured by ultrasound in hospitalized older adults. Patent NCT05113758, Available from: https://ClinicalTrials.gov/show/NCT05113758
[296]
Diagnostic Evaluation of Sarcopenia in Elderly Patients. Patent NCT04451005, Available from: https://ClinicalTrials.gov/show/NCT04451005
[297]
Prevalence of Sarcopenia in Geriatric Patients. Patent NCT04124575, Available from: https://ClinicalTrials.gov/show/NCT04124575
[298]
Prevalence of Sarcopenia and Its Geriatric Features. Patent NCT02664376 Available from: https://ClinicalTrials.gov/show/NCT02664376
[299]
Evaluation of a Screening Strategy for Sarcopenia: a Monocentric Prospective Cohort Study (STRAS). Patent NCT04827758, Available from: https://ClinicalTrials.gov/show/NCT04827758
[300]
Efficacy on Walking Ability of Electroacupuncture Therapy in Elderly Patients With Sarcopenia. Patent NCT05431010, Available from: https://ClinicalTrials.gov/show/NCT05431010
[301]
Using Bedside Ultrasound to Screen for Sarcopenia in Older Adults. Patent NCT04370912, Available from: https://ClinicalTrials.gov/show/NCT04370912
[302]
Sarcopenia and Nutritional Status in a Rehabilitation Setting. Patent NCT04791540, Available from: https://ClinicalTrials.gov/show/NCT04791540
[303]
Sarcopenia Physical Activity and Metabolomic. Patent NCT05199207, Available from: https://ClinicalTrials.gov/show/NCT05199207
[304]
VR-based rehabilitation in the treatment and prevention of Sarcopenia of older residents. Patent NCT03809104, Available from: https://ClinicalTrials.gov/show/NCT03809104
[305]
Validation of a Screening Test for Sarcopenia in Older People. Patent NCT03196622, Available from: https://ClinicalTrials.gov/show/NCT03196622
[306]
Sarcopenia and Physical Activity Intervention: a Randomized-controlled Trial. Patent NCT05071040, Available from: https://ClinicalTrials.gov/show/NCT05071040
[307]
Sarcopenia and Combined-modality Exercise. Patent NCT04806152, Available from: https://ClinicalTrials.gov/show/NCT04806152
[308]
Effects of a Resistance Training Program in Older Women With Sarcopenia. Patent NCT02628145, Available from: https://ClinicalTrials.gov/show/NCT02628145
[309]
Muscle Capillarization and Sarcopenia. Patent NCT03984994, Available from: https://ClinicalTrials.gov/show/NCT03984994
[310]
Sarcopenia, Active Aging and Oral Microbiota. Effects of HIIT in Older Adults. Patent NCT05220670, Available from: https://ClinicalTrials.gov/show/NCT05220670
[311]
Effectiveness of Interactive Exergame in Older Adults With Sarcopenia. Patent NCT04770558, Available from: https://ClinicalTrials.gov/show/NCT04770558
[312]
Effect of Home-Based Exercise Program in Older Adults With Sarcopenia. Patent NCT04598464, Available from: https://ClinicalTrials.gov/show/NCT04598464
[313]
Metabonomic of Patients With Hepatitis B Cirrhosis Complicated With Sarcopenia. Patent NCT05041348, Available from: https://ClinicalTrials.gov/show/NCT05041348
[314]
Time Course Adaptations Using Deuterated Creatine (D3Cr) Method. Patent NCT03573583, Available from: https://ClinicalTrials.gov/show/NCT03573583
[315]
A Pilot Study of the Impact of Vitamin D3 on Muscle Performance in Elderly Women. Patent NCT00986596, Available from: https://ClinicalTrials.gov/show/NCT00986596
[316]
Nutritional Biomarkers of Sarcopenia. Patent NCT05117112, Available from: https://ClinicalTrials.gov/show/NCT05117112
[317]
Protein Supplementation Intervention for Improving Muscle Mass and Physical Performance in Older People With Sarcopenia. Patent NCT04516421, Available from: https://ClinicalTrials.gov/show/NCT04516421
[318]
Fish Protein Supplementation and Sarcopenia Outcomes in the Community. Patent NCT05356559, Available from: https://ClinicalTrials.gov/show/NCT05356559
[319]
Nutritional Intervention for Sarcopenia. Patent NCT03891134, Available from: https://ClinicalTrials.gov/show/NCT03891134
[320]
Creatine-Guanidinoacetic Acid Supplementation for Sarcopenia (CREGAAS). Patent NCT04652921, Available from: https://ClinicalTrials.gov/show/NCT04652921
[321]
Effect of Aureobasidium Pullulans Produced β-glucan on Musculoskeletal Biomarkers in Adults With Relative Sarcopenia. Patent NCT05106686, Available from: https://ClinicalTrials.gov/show/NCT05106686
[322]
Effect of Ishige okamurae extract on musculoskeletal biomarkers in adults with relative Sarcopenia. Patent NCT04617951, Available from: https://ClinicalTrials.gov/show/NCT04617951
[323]
Improvement of Sarcopenia in Patients Following Two Different Diets. Patent NCT03405727, Available from: https://ClinicalTrials.gov/show/NCT03405727
[324]
Novel Nutrition Solutions for Sarcopenia. Patent NCT03429491, Available from: https://ClinicalTrials.gov/show/NCT03429491
[325]
Insect Protein and Muscle Protein Signaling. Patent NCT04633694, Available from: https://ClinicalTrials.gov/show/NCT04633694
[326]
Omega-3 Fatty Acids to Combat Sarcopenia. Patent NCT02103842, Available from: https://ClinicalTrials.gov/show/NCT02103842
[327]
The Effect of Calcium β-hydroxy-β-methylbutyrate (CaHMB) Supplementation in Sarcopenia in Liver Cirrhosis. Patent NCT03605147, Available from: https://ClinicalTrials.gov/show/NCT03605147
[328]
Effect Study of Marine Protein Hydrolysates to Prevent Loss of Muscle Mass and Physical Function in Frail Elderly. Patent NCT02890290, Available from: https://ClinicalTrials.gov/show/NCT02890290
[329]
Effect of branch chain amino acid therapy on Sarcopenia in children with chronic liver disease. Patent NCT05093218, Available from: https://ClinicalTrials.gov/show/NCT05093218
[330]
Hyperprotein Nutritional Intervention in Elderly Patients With Hip Fracture and Sarcopenia Patent NCT01404195, Available from: https://ClinicalTrials.gov/show/NCT01404195
[331]
Effect of Fermented Milk Containing Lactobacillus casei Strain Shirota in Sarcopenia Elderly. patent NCT04985877, Available from: https://ClinicalTrials.gov/show/NCT04985877
[332]
Estimation of Muscle Mass in Older Adults Using Deuterated Creatine. Patent NCT02062086, Available from: https://ClinicalTrials.gov/show/NCT02062086
[333]
Effect of Silkworms (Bombyx mori L.) Pupae Extracts on Musculoskeletal Biomarkers in Adults. Patent NCT04994054, Available from: https://ClinicalTrials.gov/show/NCT04994054
[334]
Citrulline Supplementation Combined With Exercise: Effect on Muscle Function in Elderly People (CITEX Study). Patent NCT02417428, Available from: https://ClinicalTrials.gov/show/NCT02417428
[335]
Melatonin Plus Aminoacids for Sarcopenic Elderly. Patent NCT03784495, Available from: https://ClinicalTrials.gov/show/NCT03784495
[336]
Effects of High-velocity Resistance Training and Creatine Supplementation in Healthy Aging Males. Patent NCT03530202, Available from: https://ClinicalTrials.gov/show/NCT03530202
[337]
Determining the Muscle Anabolic Properties of Phosphatidic Acid. Patent NCT03446924, Available from: https://ClinicalTrials.gov/show/NCT03446924
[338]
Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation After Liver Transplantation. Patent NCT03234920, Available from: https://ClinicalTrials.gov/show/NCT03234920
[339]
Effect of L-arginine on Microcirculation, Myogenesis and Angiogenesis Associated With Aging, Sarcopenia and Diabetes. Patent NCT04112875, Available from: https://ClinicalTrials.gov/show/NCT04112875
[340]
Effect of Ursolic Acid of Loquat Extract on Function of Muscle. Patent NCT02401113, Available from: https://ClinicalTrials.gov/show/NCT02401113
[341]
Nutritional Intervention for Age-related Muscular Function and Strength Losses-Study 2. Patent NCT02043171, Available from: https://ClinicalTrials.gov/show/NCT02043171
[342]
Impact of Fat Co-ingestion With Protein on the Post-prandial Anabolic Response in Elderly Men. Patent NCT01680146, Available from: https://ClinicalTrials.gov/show/NCT01680146
[343]
Fish Oil and Muscle Function. Patent NCT01308957, Available from: https://ClinicalTrials.gov/show/NCT01308957
[344]
Effects of PS-IPC Supplementation on Muscle Mass and Functional Outcomes in Older Adults. Patent NCT00926250, Available from: https://ClinicalTrials.gov/show/NCT00926250
[345]
Omega-3 Supplementation in Cervix Cancer Patients Undergoing Chemoradiotherapy. Patent NCT02779868, Available from: https://ClinicalTrials.gov/show/NCT02779868
[346]
Krill Oil and Muscle in Older Adults. Patent NCT04048096, Available from: https://ClinicalTrials.gov/show/NCT04048096
[347]
Integrated Physical Training With Protein Diet in Older Adults With Sarcopenia Symptoms. Patent NCT05224453, Available from: https://ClinicalTrials.gov/show/NCT05224453
[348]
Combined Exercise and Nutrition Intervention for Spinal Sarcopenia. Patent NCT04810312, Available from: https://ClinicalTrials.gov/show/NCT04810312
[349]
Feasibility Study of a Post-hospitalization Self-rehabilitation Program for Elderly Suffering of Sarcopenia. Patent NCT03834103, Available from: https://ClinicalTrials.gov/show/NCT03834103
[350]
Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults. Patent NCT04015479, Available from: https://ClinicalTrials.gov/show/NCT04015479
[351]
Effect of Nutrition Supplementation Combined With Resistance Exercise in Elderly With Sarcopenia. Patent NCT05035121, Available from: https://ClinicalTrials.gov/show/NCT05035121
[352]
Combined Effects of Resistance Training and Nutritional Supplements in the Treatment of Sarcopenia. Patent NCT00748696, Available from: https://ClinicalTrials.gov/show/NCT00748696
[353]
Vitamin D and Physical Activity for Prevention of Sarcopenia in Osteoporosis. Patent NCT01666522, Available from: https://ClinicalTrials.gov/show/NCT01666522
[354]
Clinical Trial of Astaxanthin Formulation With Exercise in Sarcopenia Elderly. Patent NCT03368872, Available from: https://ClinicalTrials.gov/show/NCT03368872
[355]
Resistance Exercise or Vibration With HMB for Sarcopenia. Patent NCT04028206, Available from: https://ClinicalTrials.gov/show/NCT04028206
[356]
Postacute Sarcopenia: Supplementation With β-hydroxyMethylbutyrate After Resistance Training. Patent NCT02679742, Available from: https://ClinicalTrials.gov/show/NCT02679742
[357]
Multidisciplinary Combined Exercise and Nutrition Intervention for Sarcopenia. Patent NCT04948736, Available from: https://ClinicalTrials.gov/show/NCT04948736
[358]
Effect of Carnitine Supplementation and Resistance Training on Skeletal Muscle Function. Patent NCT03907592, Available from: https://ClinicalTrials.gov/show/NCT03907592
[359]
Physical Activity Program for Counteracting Sarcopenia. Patent NCT04172285, Available from: https://ClinicalTrials.gov/show/NCT04172285
[360]
Dose Range Finding Study of Bimagrumab in Sarcopenia. Patent NCT02333331, Available from: https://ClinicalTrials.gov/show/NCT02333331
[361]
Insulin and Sarcopenia in the Elderly. Patent NCT00690534, Available from: https://ClinicalTrials.gov/show/NCT00690534
[362]
A 24-week Off-drug Extension Study in Sarcopenic Elderly Who Completed Treatment in the 6-month Core Study. Patent NCT02468674, Available from: https://ClinicalTrials.gov/show/NCT02468674
[363]
A Study to Assess the Efficacy, Safety, and Tolerability of Oral LPCN 1148 in Male Subjects With Cirrhosis of the Liver and Sarcopenia. Patent NCT04874350, Available from: https://ClinicalTrials.gov/show/NCT04874350
[364]
Effects of Insulin on Hypotension and Sarcopenia. Patent NCT03248271, Available from: https://ClinicalTrials.gov/show/NCT03248271
[365]
The Effects of Long Term Cyclic Testosterone Administration on Muscle Function and Bone in Older Men. Patent NCT01417364, Available from: https://ClinicalTrials.gov/show/NCT01417364
[366]
Testosterone in Older Men With Sarcopenia. Patent NCT00240981, Available from: https://ClinicalTrials.gov/show/NCT00240981
[367]
Anabolic and Inflammatory Responses to Short-Term Testosterone Administration in Older Men. Patent NCT00957801, Available from: https://ClinicalTrials.gov/show/NCT00957801
[368]
IGF-1, Sarcopenia and Mortality: a Cohort Study in Patient With Cognitive Impairment. Patent NCT02139410, Available from: https://ClinicalTrials.gov/show/NCT02139410
[369]
Effects of Aromatase Inhibition versus Testosterone in Older Men With Low Testosterone: Randomized-Controlled Trial. Patent NCT00104572, Available from: https://ClinicalTrials.gov/show/NCT00104572
[370]
Growth Hormone in Decompensated Liver Cirrhosis. Patent NCT05253287, Available from: https://ClinicalTrials.gov/show/NCT05253287
[371]
Effect of a Ghrelin Receptor Agonist on Muscle and Bone. Patent NCT04021706, Available from: https://ClinicalTrials.gov/show/NCT04021706
[372]
Understanding Acute Sarcopenia. Patent NCT03858192, Available from: https://ClinicalTrials.gov/show/NCT03858192
[373]
Clinical Trial to Assess the Preventive Effects of Cetylpyridinium Chloride on Sarcopenia. Patent NCT02575235, Available from: https://ClinicalTrials.gov/show/NCT02575235
[374]
A Study of the Safety and Efficacy of MK-0773 in Women With Sarcopenia (Loss of Muscle Mass)(MK-0773-005). Patent NCT00529659, Available from: https://ClinicalTrials.gov/show/NCT00529659
[375]
Study of the Safety and Efficacy of REGN1033 (SAR391786) in Patients With Sarcopenia. Patent NCT01963598, Available from: https://ClinicalTrials.gov/show/NCT01963598
[376]
Impact of Orally Administered BPM31510 on Mitochondrial Energetics in Older Adults With Sarcopenia. Patent NCT04999488, Available from: https://ClinicalTrials.gov/show/NCT04999488
[377]
Allopurinol in Functional Impairment (ALFIE) Trial: 'Improving Muscle Strength. Patent NCT01550107, Available from: https://ClinicalTrials.gov/show/NCT01550107
[378]
Evaluation of Efficacy, Tolerability, and Pharmacokinetics of MYMD1 for Chronic Inflammation and Sarcopenia/Frailty. Patent NCT05283486, Available from: https://ClinicalTrials.gov/show/NCT05283486
[379]
A Study of Muscle Strength Maintenance in Older Adults. Patent NCT01989793, Available from: https://ClinicalTrials.gov/show/NCT01989793
[380]
Nutritional and Contractile Regulation of Muscle Growth. Patent NCT00891696, Available from: https://ClinicalTrials.gov/show/NCT00891696
[381]
Characterizing the Incretin Effect of Amino Acids and Defining GLP-1 Role on Skeletal Muscle. Patent NCT02370745, Available from: https://ClinicalTrials.gov/show/NCT02370745
[382]
A Double-blind, Placebo Controlled, Randomized INTerventional Clinical Trial (SARA-INT). Patent NCT03452488, Available from: https://ClinicalTrials.gov/show/NCT03452488
[383]
Evaluation of a New Screening Method for Sarcopenia in Rheumatoid Arthritis. Patent NCT04933097, Available from: https://ClinicalTrials.gov/show/NCT04933097
[384]
Role of AST120 for Sarcopenia Prevention in Pre-dialysis Chronic Kidney Disease. Patent NCT03788252, Available from: https://ClinicalTrials.gov/show/NCT03788252
[385]
TWK10 improves muscle mass and functional performance in frail older adults. Patent NCT04893746, Available from: https://ClinicalTrials.gov/show/NCT04893746
[386]
The Effect of Bovine Colostrum Supplementation in Older Adults. Patent NCT01792297, Available from: https://ClinicalTrials.gov/show/NCT01792297
[387]
Effect of Immunocal® With Exercise Versus Casein With Exercise on Aging Processes in Elderly Persons. Patent NCT00935610, Available from: https://ClinicalTrials.gov/show/NCT00935610
[388]
The Effect of Thyroid Hormone Therapy on Muscle Mass and Function in Older Adults With Subclinical Hypothyroidism. Patent NCT04354896, Available from: https://ClinicalTrials.gov/show/NCT04354896
[389]
Does Potassium Bicarbonate Improve the Effect of Dietary Protein on Bone and Muscle? Patent NCT00730184, Available from: https://ClinicalTrials.gov/show/NCT00730184
[390]
Ibuprofen Supplementation After Resistance Training and Its Effects on Bone in Older Women. Patent NCT01886196, Available from: https://ClinicalTrials.gov/show/NCT01886196
[391]
Effect of Obesity-derived Cytokines on Protein Turnover and Carbohydrate Metabolism in Human Skeletal Muscle. Patent NCT02305069, Available from: https://ClinicalTrials.gov/show/NCT02305069
[392]
Effect of Potassium Bicarbonate Supplementation on Bone and Muscle in Older Adults. Patent NCT00357214, Available from: https://ClinicalTrials.gov/show/NCT00357214
[393]
Impacts of Mechanistic Target of Rapamycin (mTOR) Inhibition on Aged Human Muscle (Rapamune). Patent NCT05414292, Available from: https://ClinicalTrials.gov/show/NCT05414292
[394]
Impacts of Nicotinamide Riboside on Functional Capacity and Muscle Physiology in Older Veterans. Patent NCT04691986, Available from: https://ClinicalTrials.gov/show/NCT04691986
[395]
Systemic Hormones and Muscle Protein Synthesis. Patent NCT03054168, Available from: https://ClinicalTrials.gov/show/NCT03054168
[396]
Impact of Fat-free Mass in the Carboplatin Calculated Dose and Chemotherapeutic Toxicity in Patients With Advanced NSCLC. Patent NCT02734069, Available from: https://ClinicalTrials.gov/show/NCT02734069
[397]
Angiotensin Receptors and Age Related Mitochondrial Decline in HIV Patients. Patent NCT02606279, Available from: https://ClinicalTrials.gov/show/NCT02606279
[398]
Mediterranean Diet, Circuit Resistance Training, Empagliflozin in Elderly With Type 2 Diabetes: a Study Protocol. Patent NCT03560375, Available from: https://ClinicalTrials.gov/show/NCT03560375
[399]
Trial of Nicotinamide Riboside and Co-enzyme Q10 in Chronic Kidney Disease. Patent NCT03579693, Available from: https://ClinicalTrials.gov/show/NCT03579693
[400]
The Effect of Intradialytic Parenteral Nutrition on Nutritional Status and Quality of Life in Hemodialysis Patients. Patent NCT04094038, Available from: https://ClinicalTrials.gov/show/NCT04094038
[401]
The Physiologic Effects of Intranasal Oxytocin on Sarcopenic Obesity. Patent NCT03119610, Available from: https://ClinicalTrials.gov/show/NCT03119610
[402]
The Effect of Alfacalcidol on Muscle Strength in Elderly Indonesian Women : A Randomized Controlled Trial. Patent NCT02327091, Available from: https://ClinicalTrials.gov/show/NCT02327091

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy