Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

The Discussion of the Influence of Eccentricity Ratio on Lubrication Characteristics of Fluid Lubricated Bearings

Author(s): Xiaodong Yang, Feilin Liu, Hongbo Liu*, Jian Zhang, Weifeng Liu and Yue Meng

Volume 18, Issue 2, 2024

Published on: 07 April, 2023

Article ID: e010323214189 Pages: 13

DOI: 10.2174/1872212118666230301095238

Price: $65

Abstract

The operating quality of bearings has also led to higher criteria with the growing status of the manufacturing industry in social production. The eccentricity ratio of the bearing system is particularly susceptible to change during operation as a result of the external load, which has a direct impact on the lubricating properties. On the one hand, a reasonable eccentricity ratio will improve the bearing's lubrication performance, increase stability, and better meet processing requirements; on the other hand, it will result in uncontrollable bearing behavior and may even cause the real world to deviate from the theoretical design model. The study aimed to analyze and discuss the current findings on the change in bearing eccentricity ratio. More than 100 related articles have been summarized, and bearing behavior research results, such as lubrication and load-bearing characteristics, are discussed. This paper discusses the progress of research on the eccentricity ratio problem of fluid-lubricated bearings, as well as the effect of eccentricity ratio change on bearing lubrication characteristics for bearings using different lubricating media. Active control measures to mitigate the negative impact of changing bearing eccentricity ratios are also presented. After analyzing and summarizing the relevant literature, it has been found that the eccentricity is one of the important factors affecting the lubrication characteristics of bearings.

Graphical Abstract

[1]
R. Liu, B. Yang, E. Zio, and X. Chen, "Artificial intelligence for fault diagnosis of rotating machinery: A review", Mech. Syst. Signal Process., vol. 108, pp. 33-47, 2018.
[http://dx.doi.org/10.1016/j.ymssp.2018.02.016]
[2]
X. Yu, Y. Wang, J. Wang, W. Zhou, H. Bi, G. Wu, and W. Gao, "Review of research on hydrostatic bearings", Recent Pat. Mech. Eng., vol. 14, no. 3, pp. 276-288, 2021.
[http://dx.doi.org/10.2174/2212797613999201217124359]
[3]
Z. Liu, Y. Wang, L. Cai, Y. Zhao, Q. Cheng, and X. Dong, "A review of hydrostatic bearing system: Researches and applications", Adv. Mech. Eng., vol. 9, no. 10, 2017.
[http://dx.doi.org/10.1177/1687814017730536]
[4]
Z. Cao, N. He, and L. Li, "Development of micro milling machine tool system and evperimental study of machining miniaturized parts", Tool Eng., vol. 43, pp. 11-15, 2009.
[5]
Z. Cheng, Y. Zhang, Z. Zhang, and S. Huang, "Load capacity analysis of aerostatic bearing with orifice restrictors", Lubr. Eng., vol. 42, p. 24-29+112, 2017.
[6]
E.N. Santos, C.J.C. Blanco, E.N. Macêdo, C.E.A. Maneschy, and J.N.N. Quaresma, "Integral transform solutions for the analysis of hydrodynamic lubrication of journal bearings", Tribol. Int., vol. 52, pp. 161-169, 2012.
[http://dx.doi.org/10.1016/j.triboint.2012.03.016]
[7]
Y.Q. Wang, and C. Li, "Numerical analysis of hydrodynamic lubrication on water-lubricated rubber bearings", Adv. Mat. Res., vol. 299, pp. 12-16, 2011.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.299-300.12]
[8]
D.L. Cabrera, N.H. Woolley, D.R. Allanson, and Y.D. Tridimas, "Film pressure distribution in water-lubricated rubber journal bearings", Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., vol. 219, no. 2, pp. 125-132, 2005.
[http://dx.doi.org/10.1243/135065005X9754]
[9]
E. Abele, Y. Altintas, and C. Brecher, "Machine tool spindle units", CIRP Ann., vol. 59, no. 2, pp. 781-802, 2010.
[http://dx.doi.org/10.1016/j.cirp.2010.05.002]
[10]
L. Feng, L. Bin, and Z. Xiaofeng, "Numerical design method for water-lubricated hybrid sliding bearings", Int. J. Precis. Eng. Manuf., vol. 9, pp. 47-50, 2008.
[11]
S. Yoshimoto, S. Oshima, S. Danbara, and T. Shitara, "Stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles", J. Tribol., vol. 124, no. 2, pp. 398-405, 2002.
[http://dx.doi.org/10.1115/1.1405815]
[12]
H. Feng, and S. Jiang, "Dynamics of a motorized spindle supported on water-lubricated bearings", Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci., vol. 231, no. 3, pp. 459-472, 2017.
[http://dx.doi.org/10.1177/0954406215616653]
[13]
H. Lian, H. Wu, Y. Li, and C. Rong, "New start-up method for a closed-cycle compression system with gas bearings and its characteristics", Chin. J. Mech. Eng., vol. 33, no. 98, 2020.
[http://dx.doi.org/10.1186/s10033-020-00512-9]
[14]
K. Ishibashi, A. Kondo, S. Kawada, M. Miyatake, S. Yoshimoto, and T. Stolarski, "Static and dynamic characteristics of a downsized aerostatic circular thrust bearing with a single feed hole", Precis. Eng., vol. 60, pp. 448-457, 2019.
[http://dx.doi.org/10.1016/j.precisioneng.2019.08.014]
[15]
Q. Gao, W. Chen, L. Lu, D. Huo, and K. Cheng, "Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives", Tribol. Int., vol. 135, pp. 1-17, 2019.
[http://dx.doi.org/10.1016/j.triboint.2019.02.020]
[16]
M. Huang, Q. Xu, M. Li, B. Wang, and J. Wang, "A calculation method on the performance analysis of the thrust aerostatic bearing with vacuum pre-load", Tribol. Int., vol. 110, pp. 125-130, 2017.
[http://dx.doi.org/10.1016/j.triboint.2017.02.017]
[17]
L. Sun, S. Sun, H. Zhang, and L. Wang, "Numerical analysis of externally pressurized gas bearing", Cryog. Superconduct., vol. 38, pp. 56-60, 2010.
[18]
W-q. Ma, H. Yu, and A. Sun, "Research situation of gas-bearing/rotor system", Lubr. Eng., vol. 35, pp. 121-125, 2010.
[19]
G. Li, S. Lv, and P. Zhang, "Analysis on load capacity of aerostatic radial bearings with orifice based on fluent", In: Bearing, 2011, pp. 17-21.
[20]
H. Feng, Y. Hou, R. Chen, and H. Zhao, "Development of hydrostatic gas lubrication technology in China", Lubr. Eng., vol. 36, pp. 108-113, 2011.
[21]
X. Wang, K. Kato, K. Adachi, and K. Aizawa, "Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water", Tribol. Int., vol. 36, no. 3, pp. 189-197, 2003.
[http://dx.doi.org/10.1016/S0301-679X(02)00145-7]
[22]
W.B. Rowe, Hydrostatic and hybrid bearing design., Elsevier: Amster Clam, 2013.
[23]
P. Liang, C. Lu, W. Pan, and S. Li, "A new method for calculating the static performance of hydrostatic journal bearing", Tribol. Int., vol. 77, pp. 72-77, 2014.
[http://dx.doi.org/10.1016/j.triboint.2014.04.019]
[24]
P. Liang, C. Lu, and F. Yang, "A fast computing approach concerning recess pressure", Ind. Lubr. Tribol., vol. 70, no. 1, pp. 1-7, 2018.
[http://dx.doi.org/10.1108/ILT-12-2015-0196]
[25]
Y. Zhang, S. Yu, C. Lu, H. Zhao, and P. Liang, "An improved lumped parameter method for calculating static characteristics of multi-recess hydrostatic journal bearings", Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., vol. 234, no. 2, pp. 301-310, 2020.
[http://dx.doi.org/10.1177/1350650119855242]
[26]
V. Castelli, and W. Shapiro, "Improved method for numerical solutions of the general incompressible fluid film lubrication problem", J. Lubr. Tech., vol. 89, no. 2, pp. 211-218, 1967.
[http://dx.doi.org/10.1115/1.3616950]
[27]
J. Du, and G. Liang, "Dynamic coefficients and stability analysis of a water-lubricated hydrostatic bearing by solving the uncoupled Reynolds equation", Chin. J. Aeronauti., vol. 33, no. 8, pp. 2110-2122, 2020.
[http://dx.doi.org/10.1016/j.cja.2019.09.030]
[28]
Z. Xie, J. Jiao, K. Yang, T. He, R. Chen, and W. Zhu, "Experime-ntal and numerical exploration on the nonlinear dynamic behaviors of a novel bearing lubricated by low viscosity lubricant", Mech. Syst. Signal Process., vol. 182, p. 109349, 2023.
[http://dx.doi.org/10.1016/j.ymssp.2022.109349]
[29]
P. Liang, C. Lu, J. Ding, and S. Chen, "A method for measuring the hydrodynamic effect on the bearing land", Tribol. Int., vol. 67, pp. 146-153, 2013.
[http://dx.doi.org/10.1016/j.triboint.2013.07.020]
[30]
S.I. Moldovan, M.J. Braun, and A.M. Balasoiu, "A three-dimensional parametric study and numerical/experimental flow visualization of a six-pocket hydrostatic journal bearing", Tribol. Trans., vol. 56, no. 1, pp. 1-26, 2013.
[http://dx.doi.org/10.1080/10402004.2011.649512]
[31]
M.P. Kumar, P. Samanta, and N.C. Murmu, "Investigation of velocity slip effect on steady state characteristics of finite hydrostatic double-layered porous oil journal bearing", Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., vol. 229, no. 7, pp. 773-784, 2015.
[http://dx.doi.org/10.1177/1350650115569553]
[32]
Y. Song, Y. Yang, and G. Zhao, "Numerical simulation of internal self-controlled restrictor hydrostatic bearing with discrete oil pocket area", Adv. Eng. Res., vol. 162, pp. 216-221, 2017.
[http://dx.doi.org/10.2991/icammce-17.2017.43]
[33]
Y. Song, X. Zhang, F. Meng, and X. Lou, "Numerical simulation and analysis of load characteristics on self-controlled hydrostatic bearing with large diameter", Tool Eng., vol. 51, pp. 124-127, 2017.
[34]
J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, "Thermal issues in machine tools", CIRP Ann., vol. 61, no. 2, pp. 771-791, 2012.
[http://dx.doi.org/10.1016/j.cirp.2012.05.008]
[35]
A-F. Cristea, M. Pascovici, and M. Fillon, "Clearance and lubricant selection for avoiding seizure in a circumferential groove journal bearing based on a lumped model analysis", Mech. Ind., vol. 12, pp. 399-408, 2011.
[36]
M. Pascovici, and B. Kucinschi, Seizure of a concentric circumferential-groove journal bearing., vol. 19. 2017, pp. F1-F8.
[37]
G. Xu, J. Zhou, H. Geng, M. Lu, L. Yang, and L. Yu, "Research on the static and dynamic characteristics of misaligned journal bearing considering the turbulent and thermohydrodynamic effects", J. Tribol., vol. 137, no. 2, p. 024504, 2015.
[http://dx.doi.org/10.1115/1.4029333]
[38]
S. Bab, S.E. Khadem, and M. Shahgholi, "Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink", Meccanica, vol. 50, no. 9, pp. 2441-2460, 2015.
[http://dx.doi.org/10.1007/s11012-015-0156-6]
[39]
P.B. Davies, "A general analysis of multi-recess hydrostatic journal bearings", Proc.- Inst. Mech. Eng., vol. 184, no. 1, pp. 827-838, 1969.
[http://dx.doi.org/10.1243/PIME_PROC_1969_184_060_02]
[40]
D.V. Singh, R. Sinhasan, and R.C. Ghai, "Finite element analysis of orifice-compensated hydrostatic journal bearings", Tribol. Int., vol. 9, no. 6, pp. 281-284, 1976.
[http://dx.doi.org/10.1016/0301-679X(76)90018-9]
[41]
L. Roy, and S.K. Laha, "Steady state and dynamic characteristics of axial grooved journal bearings", Tribol. Int., vol. 42, no. 5, pp. 754-761, 2009.
[http://dx.doi.org/10.1016/j.triboint.2008.10.010]
[42]
S. Cui, C. Zhang, M. Fillon, and L. Gu, "Optimization performance of plain journal bearings with partial wall slip", Tribol. Int., vol. 145, p. 106137, 2020.
[http://dx.doi.org/10.1016/j.triboint.2019.106137]
[43]
M. Phani Kumar, P. Samanta, and N.C. Murmu, "Rigid rotor stability analysis on finite hydrostatic double-layer porous oil journal bearing with velocity slip", Tribol. Trans., vol. 58, no. 5, pp. 930-940, 2015.
[http://dx.doi.org/10.1080/10402004.2015.1030054]
[44]
N. Saha, and B.C. Majumdar, "Steady-state and stability characteristics of hydrostatic two-layered porous oil journal bearings", Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., vol. 218, no. 2, pp. 99-108, 2004.
[http://dx.doi.org/10.1177/135065010421800205]
[45]
S. Some, and S.K. Guha, "Linear stability analysis of double-layered porous journal bearings under coupled-stress lubrication with slip flow and percolation effect of additives", Ind. Lubr. Tribol., vol. 71, no. 3, pp. 447-458, 2019.
[http://dx.doi.org/10.1108/ILT-05-2018-0189]
[46]
S. Some, and S.K. Guha, "Static characteristics of hydrostatic doubled-layered porous journal bearings with slip flow including additives percolation into pores under coupled stress lubrication", Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., vol. 232, no. 8, pp. 927-939, 2018.
[http://dx.doi.org/10.1177/1350650117748096]
[47]
G.S. Beavers, and D.D. Joseph, "Boundary conditions at a naturally permeable wall", J. Fluid Mech., vol. 30, no. 1, pp. 197-207, 1967.
[http://dx.doi.org/10.1017/S0022112067001375]
[48]
S. Kango, D. Singh, and R.K. Sharma, "Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing", Meccanica, vol. 47, no. 2, pp. 469-482, 2012.
[http://dx.doi.org/10.1007/s11012-011-9460-y]
[49]
S.H. Wang, J.H. Zheng, and X.Y. Wu, "Influence of surface texture configuration and depth on tribological performance of hydrodynamic journal bearing", Appl. Mech. Mater., vol. 155-156, pp. 318-323, 2012.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.155-156.318]
[50]
F.M. Meng, L. Zhang, Y. Liu, and T.T. Li, "Effect of compound dimple on tribological performances of journal bearing", Tribol. Int., vol. 91, pp. 99-110, 2015.
[http://dx.doi.org/10.1016/j.triboint.2015.06.030]
[51]
Q. Lin, Q. Bao, K. Li, M.M. Khonsari, and H. Zhao, "An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach", Tribol. Int., vol. 118, pp. 246-255, 2018.
[http://dx.doi.org/10.1016/j.triboint.2017.09.026]
[52]
L. Wang, Z. Han, G. Chen, and H. Su, "Thermo-hydrodynamic analysis of large-eccentricity hydrodynamic bearings with texture on journal surface", Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci., vol. 232, no. 19, pp. 3564-3569, 2018.
[http://dx.doi.org/10.1177/0954406217739646]
[53]
S. Sharma, G. Jamwal, and R.K. Awasthi, "Numerical study on steady state performance enhancement of partial textured hydrodynamic journal bearing", Ind. Lubr. Tribol., vol. 71, no. 9, pp. 1055-1063, 2019.
[http://dx.doi.org/10.1108/ILT-03-2019-0083]
[54]
S. Sharma, G. Jamwal, and R.K. Awasthi, "“Enhancement of steady state performance of hydrodynamic journal bearing using chevron-shaped surface texture”, Proc. Inst. Mech. Eng., Part J", Eng. Tribol., vol. 233, no. 12, pp. 1833-1843, 2019.
[http://dx.doi.org/10.1177/1350650119847369]
[55]
N. Singh, and R.K. Awasthi, "“Theoretical investigation of surface texture effects on the performance characteristics of hydrodynamic two-lobe journal bearing”, Proc. Inst. Mech. Eng., Part J", Eng. Tribol., vol. 234, no. 11, pp. 1712-1725, 2020.
[http://dx.doi.org/10.1177/1350650120915053]
[56]
D. Byotra, and S. Sharma, "Performance analysis of textured journal bearing operating with and without nanoparticles in the lubricant", Ind. Lubr. Tribol., vol. 74, no. 9, pp. 1028-1039, 2022.
[http://dx.doi.org/10.1108/ILT-03-2022-0078]
[57]
Z. Zhang, F. Wang, X. Wu, and C. Li, "The influence of structure parameters on the dynamic pressure effect of water-lubricated journal bearing", Hydraulics Pneumat. Seals, vol. 39, pp. 9-14, 2019.
[58]
K. Lei, and K. Wang, "Influence of eccentricity and radial clearance on performance of water-lubricated bearings based on numerical calculation", Mech. Eng., pp. 46-49, 2021.
[59]
J. Hu, Y. Xue, D. Zhang, X. Ye, R. Gu, and J. Wang, "Pressure distribution in liquid film in water lubricated bearings of high-pressure pump for desalination", Paiguan Jixie Gongcheng Xuebao, vol. 32, pp. 235-241, 2014.
[60]
Y. Zhou, J. Liao, and B. Xiao, "Analysis on fluid-structure interraction of water-lubricated rubber alloy bearing", Lubr. Eng., vol. 40, pp. 6-11, 2015.
[61]
G. Gao, Z. Yin, D. Jiang, and X. Zhang, "Numerical analysis of plain journal bearing under hydrodynamic lubrication by water", Tribol. Int., vol. 75, pp. 31-38, 2014.
[http://dx.doi.org/10.1016/j.triboint.2014.03.009]
[62]
Z. Xie, P. Song, L. Hao, N. Shen, W. Zhu, H. Liu, J. Shi, Y. Wang, and W. Tian, "Investigation on effects of Fluid-Structure-Interaction (FSI) on the lubrication performances of water lubricated bearing in primary circuit loop system of nuclear power plant", Ann. Nucl. Energy, vol. 141, p. 107355, 2020.
[http://dx.doi.org/10.1016/j.anucene.2020.107355]
[63]
Y. Gu, J. Cheng, H. Sun, A. Liang, and L. Cheng, "A three-dimensional slip velocity model for water-lubricated hydrodynamic journal bearings", J. Mar. Sci. Eng., vol. 10, no. 7, p. 927, 2022.
[http://dx.doi.org/10.3390/jmse10070927]
[64]
H.H. Feng, C.D. Xu, and J. Wan, "Mathematical model and analysis of the water-lubricated hydrostatic journal bearings considering the translational and tilting motions", Math. Probl. Eng., vol. 2014, pp. 1-15, 2014.
[http://dx.doi.org/10.1155/2014/353769]
[65]
H. Feng, S. Jiang, and A. Ji, "Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects", Tribol. Int., vol. 130, pp. 245-260, 2019.
[http://dx.doi.org/10.1016/j.triboint.2018.09.007]
[66]
L. Fukang, and J. Shuyun, "Temperature rise characteristics of high-speed water-lubricated hydrostatic thrust bearing", J. Phys., vol. 1906, no. 1, 2021.
[http://dx.doi.org/10.1088/1742-6596/1906/1/012050]
[67]
M. Tauviqirrahman, J. Jamari, S. Susilowati, C. Pujiastuti, B. Setiyana, A.H. Pasaribu, and M.I. Ammarullah, "Performance comparison of newtonian and non-newtonian fluid on a heterogeneous slip/no-slip journal bearing system based on CFD-FSI method", Fluids, vol. 7, no. 7, p. 225, 2022.
[http://dx.doi.org/10.3390/fluids7070225]
[68]
E. Benini, "Progress in gas turbine performance: BoD–Books on Demand",
[69]
A. Gimelli, and R. Sannino, "Thermodynamic model validation of Capstone C30 micro gas turbine", Energy Procedia, vol. 126, pp. 955-962, 2017.
[http://dx.doi.org/10.1016/j.egypro.2017.08.184]
[70]
W.A. Gross, "Gas bearings: A survey", Wear, vol. 6, no. 6, pp. 423-443, 1963.
[http://dx.doi.org/10.1016/0043-1648(63)90279-5]
[71]
M. Cao, H. Zhao, S. Zhu, L. Zhao, Y. Gu, and M. Liu, "Performance analysis of high-precision aerostatic bearing based on FLUENT", In: China Plant Engineering., InTech Open: London, UK, 2013, 2019, p. 124-125.
[72]
C. JIa, "Z. Cui, M. Qiu, W. Ma, J. Gao, and J. Zhang, “Analysis on steady performance and dynamic characteristics of spherical hybrid gas bearing based on CFD”", Lubr. Eng., vol. 44, pp. 47-54, 2019.
[73]
H. Yu, W.-q. Ma, G. Zhao, Z. Wang, L. Chen, and H. Liu, "Dynamic characteristics of an aerostatic bearing-rotor system with a ship turbocharger", J. Vibr. Shock, vol. 30, p. 1-6+27, 2011.
[74]
P. Zheng, L. Li, J. Li, and S. Xu, "Analysis on load characteristic of hydrostatic bearings for main shaft of supercritical CO2 turbine", In: Bearing, 2021, pp. 11-16.
[75]
X. Bian, and M. Li, "Study on load distribution of externally pressurized air bearing", Aviat. Precis. Manuf. Technol., vol. 41, pp. 17-19, 2005.
[76]
D. Si, W. Zahng, and M. Duan, Research on load carrying capacity of aerostatic radial bearing based on simulation and orthogonal test.In., Bearing, 2013, pp. 37-39.
[77]
S. Duan, X. Zhang, Y. Liu, Y. Li, and S. Wang, "Inclination performance study of porous aerostatic journal bearing", In: Lubrication Engineering, vol. 46. 2021, p. 10-14.
[78]
W. Li, S. Wang, Z. Zhao, K. Zhang, K. Feng, and W. Hou, "Numerical and experimental investigation on the performance of hybrid porous gas journal bearings", Lubr. Sci., vol. 33, no. 2, pp. 60-78, 2021.
[http://dx.doi.org/10.1002/ls.1527]
[79]
X. Wang, W-q. Ma, and H. Yu, "Performance analysis of hydrostatic radial gas bearing with different structure", In: Chinese Hydraulics & Pneumatics., 2010, p. 49-52.
[80]
Y. Wang, Q. Wang, A. Chen, and N. Liu, "Numerical simulation of radial aerostatic bearings with ring orifice", In: Machinery, vol. 39. 2012, pp. 31-34.
[81]
A. Hao, and Y. Jia, "Research on hydrodynamic and hydrostatic coupling effect of high-speed air bearing", Lubr. Eng., vol. 37, pp. 39-44, 2012.
[82]
H. Yu, W-q. Ma, Z. Wang, and L. Xu, "Research on static characteristics of radial aerostatic bearings based on FLUENT", Lubr. Eng., vol. 34, pp. 77-81, 2009.
[83]
B. Meng, X. Leng, Z. Zhang, Y. Xiao, and L. Chen, "Analysis on static and dynamic behaviors of self-acting gas bearings under different rotational speeds", In: Bearing, 2020, pp. 30-34.
[84]
W. Ma, Z. Chen, Y. Jiao, and R.G. Kirk, "Effects of rotor speed on plain bearing dynamic coefficients", J. Vibrat. Shock, vol. 33, pp. 8-13, 2014.
[85]
E. Iseli, E. Guenat, R. Tresch, and J. Schiffmann, "Analysis of spiral-grooved gas journal bearings by the narrow-groove theory and the finite element method at large eccentricities", J. Tribol., vol. 142, no. 4, p. 041802, 2020.
[http://dx.doi.org/10.1115/1.4045636]
[86]
C.C. Wang, "Application of a hybrid method to the nonlinear dynamic analysis of a flexible rotor supported by a spherical gas-lubricated bearing system", Nonlinear Anal., vol. 70, no. 5, pp. 2035-2053, 2009.
[http://dx.doi.org/10.1016/j.na.2008.02.108]
[87]
C.C. Wang, "Nonlinear dynamic behavior and bifurcation analysis of a rigid rotor supported by a relatively short externally pressurized porous gas journal bearing system", Acta Mech., vol. 183, no. 1-2, pp. 41-60, 2006.
[http://dx.doi.org/10.1007/s00707-006-0323-x]
[88]
W. Li, W-q. Ma, and X-q. Qiu, "Research on attitude of rotor of high-speed motorized spindle based on fluid-structure interaction", In 2019 IEEE 8th International Conference on Fluid Power and Mechatronics, (FPM. Wuhan, China)p. 931-936
[http://dx.doi.org/10.1109/FPM45753.2019.9035756]
[89]
J. Hesselbach, and C. Abel-Keilhack, "Active hydrostatic bearing with magnetorheological fluid", J. Appl. Phys., vol. 93, no. 10, pp. 8441-8443, 2003.
[http://dx.doi.org/10.1063/1.1555850]
[90]
K.P. Gertzos, P.G. Nikolakopoulos, and C.A. Papadopoulos, "CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant", Tribol. Int., vol. 41, no. 12, pp. 1190-1204, 2008.
[http://dx.doi.org/10.1016/j.triboint.2008.03.002]
[91]
J. de Vicente, D.J. Klingenberg, and R. Hidalgo-Alvarez, "Magnetorheological fluids: A review", In: Soft Matter, vol. 7, no. 8, pp. 3701-3710, 2011.
[92]
A. Bahar, F. Pozo, L. Acho, J. Rodellar, and A. Barbat, "Parameter identification of large-scale magnetorheological dampers in a benchmark building", Comput. Struc., vol. 88, no. 3-4, pp. 198-206, 2010.
[http://dx.doi.org/10.1016/j.compstruc.2009.10.002]
[93]
C. Sarkar, and H. Hirani, "Experimental studies on magnetorheological brake containing plane, holed and slotted discs", Ind. Lubr. Tribol., vol. 69, no. 2, pp. 116-122, 2017.
[http://dx.doi.org/10.1108/ILT-12-2015-0205]
[94]
K.P. L., "D. Kumar, and H. Hirani, “Synthesis and field dependent shear stress evaluation of stable MR fluid for brake application”", Ind. Lubr. Tribol., vol. 69, pp. 655-665, 2017.
[http://dx.doi.org/10.1108/ILT-03-2016-0061]
[95]
C. Liu, and J. Hu, "A magnetorheological hydrostatic guideway system for machining vibration control", J. Braz. Soc. Mech. Sci. Eng., vol. 41, pp. 1-12, 2018.
[96]
A. Bouzidane, and M. Thomas, "An electrorheological hydrostatic journal bearing for controlling rotor vibration", Comput. Struc., vol. 86, no. 3-5, pp. 463-472, 2008.
[http://dx.doi.org/10.1016/j.compstruc.2007.02.006]
[97]
N. Agrawal, and S.C. Sharma, "Effect of the ER lubricant behaviour on the performance of spherical recessed hydrostatic thrust bearing", In: Tribol. Int., vol. 153, p. 106621, 2021.
[98]
H. Urreta, G. Aguirre, P. Kuzhir, and L.N. Lopez de Lacalle, "Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools", J. Intell. Mater. Syst. Struct., vol. 30, no. 15, pp. 2257-2271, 2019.
[http://dx.doi.org/10.1177/1045389X19862358]
[99]
S. Zhang, Z. Long, and X. Yang, "Lubrication performance of magnetorheological fluid-lubricated rubber stern bearing test ring", J. Braz. Soc. Mech. Sci. Eng., vol. 43, no. 56, 2021.
[http://dx.doi.org/10.1007/s40430-020-02796-3]
[100]
A. Wang, J. Pan, H. Wu, and J. Ye, "Structural design and lubrication properties under different eccentricity of magnetic fluid bearings", Appl. Sci. (Basel), vol. 12, no. 14, p. 7051, 2022.
[http://dx.doi.org/10.3390/app12147051]
[101]
V. Viktorov, G. Belforte, and T. Raparelli, "Modeling and identification of gas journal bearings: Externally pressurized gas bearing results", J. Tribol., vol. 127, no. 3, 2005.
[http://dx.doi.org/10.1115/1.1924425]
[102]
T.H. Lai, T.Y. Chang, Y.L. Yang, and S.C. Lin, "Parameters design of a membrane-type restrictor with single-pad hydrostatic bearing to achieve high static stiffness", Tribol. Int., vol. 107, pp. 206-212, 2017.
[http://dx.doi.org/10.1016/j.triboint.2016.11.037]
[103]
Y. Kang, P.C. Shen, Y.P. Chang, H.H. Lee, and C.P. Chiang, "Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression", Tribol. Int., vol. 40, no. 9, pp. 1369-1380, 2007.
[http://dx.doi.org/10.1016/j.triboint.2007.03.002]
[104]
V. Kodnyanko, S. Shatokhin, A. Kurzakov, and Y. Pikalov, "Theoretical analysis of compliance and dynamics quality of a lightly loaded aerostatic journal bearing with elastic orifices", Precis. Eng., vol. 68, pp. 72-81, 2021.
[http://dx.doi.org/10.1016/j.precisioneng.2020.11.012]
[105]
S. Shatokhin, and V. Kodnyanko, "Load and flow rate characteristics of an axial pressurized gas bearing with an active compensation of gas flow", In: Mechanical Sciences., Springer Nature: Berlin/Heidelberg, Germany, 2017, pp. 110-115.
[106]
N. Singh, S.C. Sharma, S.C. Jain, and S. Sanjeeva Reddy, "Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes", Tribol. Int., vol. 37, no. 1, pp. 11-24, 2004.
[http://dx.doi.org/10.1016/S0301-679X(03)00110-5]
[107]
V. Kodnyanko, "Characteristics of a gas-static thrust bearing with an active displacement controller", Mosc. J. Metal Cut. Mach. Tools, vol. 9, pp. 32-34, 2005.
[108]
A. Kurzakov, and S. Shatokhin, "Analysis of methods of theoretical research and calculation of adaptive aerostatic spindle bearings", Stanki Instrum, vol. 5, pp. 7-11, 2003.
[109]
S. Shatokhin, A. Skvortsov, and L. Shatokhina, "Closed hydrostatic guides with built-in floating regulators of adaptive grease injection", Technol. Mech. Eng., vol. 3, pp. 31-35, 2010.
[110]
V. Kodnyanko, S. Shatokhin, A. Kurzakov, Y. Pikalov, M. Brungardt, L. Strok, and I. Pikalov, "Theoretical investigation on performance characteristics of aerostatic journal bearings with active displacement compensator", In: Appl. Sci., vol. 11. 2021, no. 6, p. 2623.
[111]
C-Y. Chen, J-C. Chuang, and J-Y. Tu, "Hydrodynamic and hydrostatic modelling of hydraulic journal bearings considering small displacement condition", J. Phys. Conf. Ser., vol. 744, no. 1, p. 012099, 2016.
[http://dx.doi.org/10.1088/1742-6596/744/1/012099]
[112]
W.U. Rehman, L. Yuanxin, J. Guiyun, W. Yongqin, S.U. Rehman, S. Bibi, N. Iqbal, M.A. Zaheer, I. Azhar, and Y. Xiaogao, "Control of oil film thickness for hydrostatic journal bearing using PID disturbance rejection controller", 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), 2017.
[http://dx.doi.org/10.1109/ITOEC.2017.8122355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy