Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Detection of Food Contaminants using Nanotechnology - A Mini Review

Author(s): Sakthi Devi Rajendraprasad, Agnishwar Girigoswami, Swati Chakraborty and Koyeli Girigoswami*

Volume 19, Issue 9, 2023

Published on: 04 April, 2023

Page: [896 - 905] Pages: 10

DOI: 10.2174/1573401319666230228142157

Price: $65

Abstract

Ingestion of microbial-contaminated food causes severe health issues due to the outburst of serious foodborne diseases. To prevent these situations, sensitive and precise detection of toxins and identification of pathogenic microbes are very important in today’s world. Different types of toxins include natural, chemical, and metal toxins. Based on their origin, natural toxins are classified into biotoxins which are produced by microorganisms (algal, bacteria, fungal), animal toxins, and phytotoxins. Researchers enabled the use of nanomaterials in biosensors, enhancing sensitivity, stability, and specificity. Nanomaterials like gold, silver, carbon nanotubes, graphene, magnetic nanoparticles, and quantum dots were commonly used to develop biosensors. Thus, this mini-review summarizes the old conventional and new analytical methods for detecting a few natural toxins present in different food samples.

Graphical Abstract

[1]
Haribabu V, Sharmiladevi P, Akhtar N, Farook AS, Girigoswami K, Girigoswami A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr Drug Deliv 2019; 16(3): 233-41.
[http://dx.doi.org/10.2174/1567201816666181119112410] [PMID: 30451110]
[2]
Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA. Application of nanotechnology in food science: perception and overview. Front Microbiol 2017; 8: 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[3]
Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter 2016; 12(11): 2826-41.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[4]
He X, Deng H, Hwang H. The current application of nanotechnology in food and agriculture. J Food Drug Anal 2019; 27(1): 1-21.
[http://dx.doi.org/10.1016/j.jfda.2018.12.002] [PMID: 30648562]
[5]
Metkar SK, Girigoswami K. Diagnostic biosensors in medicine – A review. Biocatal Agric Biotechnol 2019; 17: 271-83.
[http://dx.doi.org/10.1016/j.bcab.2018.11.029]
[6]
Akhtar N, Metkar SK, Girigoswami A, Girigoswami K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater Sci Eng C 2017; 78: 960-8.
[http://dx.doi.org/10.1016/j.msec.2017.04.118] [PMID: 28576073]
[7]
Girigoswami A, Yassine W, Sharmiladevi P, Haribabu V, Girigoswami K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci Rep 2018; 8(1): 16459.
[http://dx.doi.org/10.1038/s41598-018-34843-4] [PMID: 30405190]
[8]
Sharmiladevi P, Akhtar N, Haribabu V, Girigoswami K, Chattopadhyay S, Girigoswami A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl Bio Mater 2019; 2(4): 1634-42.
[http://dx.doi.org/10.1021/acsabm.9b00039] [PMID: 35026897]
[9]
Sharmiladevi P, Girigoswami K, Haribabu V, Girigoswami A. Nano-enabled theranostics for cancer. Materials Advances 2021; 2(9): 2876-91.
[http://dx.doi.org/10.1039/D1MA00069A]
[10]
Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A. Water-Nanomaterial interaction to escalate twin-mode magnetic resonance imaging. ACS Biomater Sci Eng 2020; 6(8): 4377-89.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00409] [PMID: 33455176]
[11]
Girigoswami A, Pallavi P, Sharmiladevi P, Haribabu V, Girigoswami K. A nano approach to formulate photosensitizers for photodynamic therapy. Curr Nanosci 2022; 18(6): 675-89.
[http://dx.doi.org/10.2174/1573413718666211222162041]
[12]
Agraharam G, Girigoswami A, Girigoswami K. Nanoencapsulated myricetin to improve antioxidant activity and bioavailability: A study on zebrafish embryos. Chemistry 2021; 4(1): 1-17.
[http://dx.doi.org/10.3390/chemistry4010001]
[13]
De S, Gopikrishna A, Keerthana V, Girigoswami A, Girigoswami K. An overview of nano formulated nutraceuticals and its therapeutic approaches. Curr Nutr Food Sci 2021; 17(4): 392-407.
[http://dx.doi.org/10.2174/1573401316999200901120458]
[14]
Girigoswami K, Devender S, Srinivasan N, Girigoswami A. Fate of stem cells grown atop the ECM isolated from cancer cells enumerating its possible applications in tissue engineering. Curr Sci 2021; 120(10): 1616-22.
[http://dx.doi.org/10.18520/cs/v120/i10/1616-1622]
[15]
Girigoswami K, Saini D, Girigoswami A. Extracellular matrix remodeling and development of cancer. Stem Cell Rev Rep 2021; 17(3): 739-47.
[http://dx.doi.org/10.1007/s12015-020-10070-1] [PMID: 33128168]
[16]
Kahrarian Z, Horriat M, Shahbazi Y. A review application method of detecting toxins in food by nanoaptamr. Asian Res J Current Sci 2019; 11-9.
[17]
World Health Organization. Estimating the burden of foodborne diseases 2020. Available from: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (Accessed on: 21 January 2020).
[18]
Kumar H, Kuča K, Bhatia SK, et al. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors 2020; 20(7): 1966.
[http://dx.doi.org/10.3390/s20071966] [PMID: 32244581]
[19]
Choi CA, Mazrad ZAI, Lee G, In I, Lee KD, Park SY. Boronate-based fluorescent carbon dot for rapid and selectively bacterial sensing by luminescence off/on system. J Pharm Biomed Anal 2018; 159: 1-10.
[http://dx.doi.org/10.1016/j.jpba.2018.06.043] [PMID: 29960038]
[20]
Kotsiri Z, Vidic J, Vantarakis A. Applications of biosensors for bacteria and virus detection in food and water–A systematic review. J Environ Sci 2022; 111: 367-79.
[http://dx.doi.org/10.1016/j.jes.2021.04.009] [PMID: 34949365]
[21]
Mahale RS, Shashanka R, Vasanth S, Vinaykumar R. Voltammetric determination of various food azo dyes using different modified carbon paste electrodes. Biointerface Res Appl Chem 2021; 12(4): 4557-66.
[http://dx.doi.org/10.33263/BRIAC124.45574566]
[22]
Ede Çintesun E, Tanyıldız SN, Yıldırım H, Mızrak OF, Yaman M. Investigation of the alpha-dicarbonyl compounds in some snack foods by HPLC using precolumn derivatization with 4-Nitro-1, 2-Phenylenediamine. Biointerface Res Appl Chem 2021; 12(2): 2242-50.
[http://dx.doi.org/10.33263/BRIAC122.22422250]
[23]
Girigoswami A, Mitra Ghosh M, Pragya P, Seenuvasan R, Girigoswami K. Nanotechnology in detection of food toxins – focus on the dairy products. Biointerface Res Appl Chem 2021; 11(6): 14155-72.
[http://dx.doi.org/10.33263/BRIAC116.1415514172]
[24]
Fletcher MT, Netzel G. Food safety and natural toxins. Toxins 2020; 12(4): 236.
[http://dx.doi.org/10.3390/toxins12040236] [PMID: 32276351]
[25]
Hedayati N, Naeini MB, Nezami A, et al. Protective effect of lycopene against chemical and natural toxins: A review. Biofactors 2019; 45(1): 5-23.
[http://dx.doi.org/10.1002/biof.1458] [PMID: 30339717]
[26]
Alshannaq AF, Yu JH. A liquid chromatographic method for rapid and sensitive analysis of aflatoxins in laboratory fungal cultures. Toxins 2020; 12(2): 93.
[http://dx.doi.org/10.3390/toxins12020093] [PMID: 32019110]
[27]
Kalb SR, Krilich JC, Dykes JK, Lúquez C, Maslanka SE, Barr JR. Detection of botulinum toxins A, B, E, and F in foods by endopep-MS. J Agric Food Chem 2015; 63(4): 1133-41.
[http://dx.doi.org/10.1021/jf505482b] [PMID: 25578960]
[28]
Arnon SS, Schechter R, Inglesby TV, et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA 2001; 285(8): 1059-70.
[http://dx.doi.org/10.1001/jama.285.8.1059] [PMID: 11209178]
[29]
Kuswandi B, Futra D, Heng LY. Nanosensors for the detection of food contaminants. In: Opera EM, Grumezescu AM, Eds. Nanotechnology Applications in Food. Academic Press 2017; pp. 307-33.
[http://dx.doi.org/10.1016/B978-0-12-811942-6.00015-7]
[30]
Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins 2018; 10(6): 214.
[http://dx.doi.org/10.3390/toxins10060214] [PMID: 29794965]
[31]
Singh C, Srivastava S, Ali MA, et al. Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sens Actuators B Chem 2013; 185: 258-64.
[http://dx.doi.org/10.1016/j.snb.2013.04.040]
[32]
Nirbhaya V, Chauhan D, Jain R, Chandra R, Kumar S. Nanostructured graphitic carbon nitride based ultrasensing electrochemical biosensor for food toxin detection. Bioelectrochemistry 2021; 139: 107738.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107738] [PMID: 33497923]
[33]
Da Silva Rodrigueiro MM, de Amorim CA, Mustafé KS. Advances in aflatoxins monitoring of stored food. Biointerface Res Appl Chem 2021; 12(4): 4990-5003.
[http://dx.doi.org/10.33263/BRIAC124.49905003]
[34]
Ramakrishna MG, Girigoswami A, Chakraborty S, Girigoswami K. Bisphenol A-an overview on its effect on health and environment. Biointerface Res Appl Chem 2021; 12(1): 105-19.
[http://dx.doi.org/10.33263/BRIAC121.105119]
[35]
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances 2020; 10(33): 19309-36.
[http://dx.doi.org/10.1039/D0RA01084G] [PMID: 35515480]
[36]
Hwang SH, Jeong S, Choi HJ, et al. Target-induced aggregation of gold nanoparticles for colorimetric detection of Bisphenol A. J Nanomater 2019; 2019: 1-7.
[http://dx.doi.org/10.1155/2019/3676384]
[37]
Mello P, Moraes Riboli D, Pinheiro L, de Almeida Martins L, Vasconcelos Paiva Brito M. Ribeiro de Souza da Cunha M. Detection of enterotoxigenic potential and determination of clonal profile in Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine subclinical mastitis in different Brazilian states. Toxins 2016; 8(4): 104.
[http://dx.doi.org/10.3390/toxins8040104] [PMID: 27092525]
[38]
Etter D, Schelin J, Schuppler M, Johler S. Staphylococcal enterotoxin C—an update on SEC variants, their structure and properties, and their role in foodborne intoxications. Toxins 2020; 12(9): 584.
[http://dx.doi.org/10.3390/toxins12090584] [PMID: 32927913]
[39]
Mousavi Nodoushan S, Nasirizadeh N, Amani J, Halabian R, Imani Fooladi AA. An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens Bioelectron 2019; 127: 221-8.
[http://dx.doi.org/10.1016/j.bios.2018.12.021] [PMID: 30622036]
[40]
Chen T, Sheng A, Hu Y, Mao D, Ning L, Zhang J. Modularization of three-dimensional gold nanoparticles/ferrocene/liposome cluster for electrochemical biosensor. Biosens Bioelectron 2019; 124-125: 115-21.
[http://dx.doi.org/10.1016/j.bios.2018.09.101] [PMID: 30343154]
[41]
Kőszegi T, Poór M. Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins 2016; 8(4): 111.
[http://dx.doi.org/10.3390/toxins8040111] [PMID: 27092524]
[42]
Wang X, Shan Y, Gong M, et al. A novel electrochemical sensor for ochratoxin A based on the hairpin aptamer and double report DNA via multiple signal amplification strategy. Sens Actuators B Chem 2019; 281: 595-601.
[http://dx.doi.org/10.1016/j.snb.2018.10.148]
[43]
Zhang Y, Wang L, Shen X, et al. Broad-specificity immunoassay for simultaneous detection of ochratoxins A, B, and C in millet and maize. J Agric Food Chem 2017; 65(23): 4830-8.
[http://dx.doi.org/10.1021/acs.jafc.7b00770] [PMID: 28535353]
[44]
Zhang M, Yan L, Huang Q, et al. Highly sensitive simultaneous detection of major ochratoxins by an immunochromatographic assay. Food Control 2018; 84: 215-20.
[http://dx.doi.org/10.1016/j.foodcont.2017.07.035]
[45]
Mohamed F, Ibrahim GA, Sharaf OM. Attempts to improve antimicrobial efficiency by mixed-lactobacillus extracts as crude or nano-formulated against pathogenic and food spoilage bacteria, molds and yeasts. Biointerface Res Appl Chem 2021; 12(4): 5416-30.
[http://dx.doi.org/10.33263/BRIAC124.54165430]
[46]
Suaifan GARY, Alhogail S, Zourob M. Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens Bioelectron 2017; 92: 702-8.
[http://dx.doi.org/10.1016/j.bios.2016.10.023] [PMID: 27839734]
[47]
Zeinhom MMA, Wang Y, Sheng L, et al. Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella enteritidis in milk, cheese and water. Sens Actuators B Chem 2018; 261: 75-82.
[http://dx.doi.org/10.1016/j.snb.2017.11.093]
[48]
Shahbazi R, Salouti M, Amini B, et al. Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Mol Cell Probes 2018; 41: 8-13.
[http://dx.doi.org/10.1016/j.mcp.2018.07.004] [PMID: 30053513]
[49]
Mathur A, Gupta R, Kondal S, et al. A new tactics for the detection of S. aureus via paper based geno-interface incorporated with graphene nano dots and zeolites. Int J Biol Macromol 2018; 112: 364-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.143] [PMID: 29378271]
[50]
Houhoula DP, Charvalos E, Konteles S, Koussissis S, Lougovois V, Papaparaskevas J. A simple gold nanoprobe assay for the identification of Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritidis in food specimens. J Food Res 2017; 6(4): 134-9.
[http://dx.doi.org/10.5539/jfr.v6n4p134]
[51]
Yao CH, Jiang SJ, Sahayam AC, Huang YL. Speciation of mercury in fish oils using liquid chromatography inductively coupled plasma mass spectrometry. Microchem J 2017; 133: 556-60.
[http://dx.doi.org/10.1016/j.microc.2017.04.034]
[52]
Christus AAB, Ravikumar A, Panneerselvam P, Radhakrishnan K. A novel Hg(II) sensor based on Fe3O4@ZnO nanocomposite as peroxidase mimics. Appl Surf Sci 2018; 449: 669-76.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.089]
[53]
Li P, Zhang Q, Zhang W, et al. Development of a class-specific monoclonal antibody-based ELISA for aflatoxins in peanut. Food Chem 2009; 115(1): 313-7.
[http://dx.doi.org/10.1016/j.foodchem.2008.11.052]
[54]
Althagafi II, Ahmed SA, El-Said WA. Fabrication of gold/graphene nanostructures modified ITO electrode as highly sensitive electrochemical detection of Aflatoxin B1. PLoS One 2019; 14(1): e0210652.
[http://dx.doi.org/10.1371/journal.pone.0210652] [PMID: 30650140]
[55]
Santos EA, Vargas EA. Immunoaffinity column clean-up and thin layer chromatography for determination of ochratoxin A in green coffee. Food Addit Contam 2002; 19(5): 447-58.
[http://dx.doi.org/10.1080/02652030110213717] [PMID: 12028643]
[56]
Mukherjee M, Nandhini C, Bhatt P. Colorimetric and chemiluminescence based enzyme linked apta-sorbent assay (ELASA) for ochratoxin A detection. Spectrochim Acta A Mol Biomol Spectrosc 2021; 244: 118875.
[http://dx.doi.org/10.1016/j.saa.2020.118875] [PMID: 32911460]
[57]
Chen Y, Chen J, Xi Z, et al. Simultaneous analysis of Cr(III), Cr(VI), and chromium picolinate in foods using capillary electrophoresis-inductively coupled plasma mass spectrometry. Electrophoresis 2015; 36(9-10): 1208-15.
[http://dx.doi.org/10.1002/elps.201500015] [PMID: 25752822]
[58]
Parani S, Oluwafemi OS. Selective and sensitive fluorescent nanoprobe based on AgInS 2 -ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. Nanotechnology 2020; 31(39): 395501.
[http://dx.doi.org/10.1088/1361-6528/ab9c58] [PMID: 32531766]
[59]
Brun EM, Garcés-García M, Bañuls MJ, Gabaldón JA, Puchades R, Maquieira Á. Evaluation of a novel malathion immunoassay for groundwater and surface water analysis. Environ Sci Technol 2005; 39(8): 2786-94.
[http://dx.doi.org/10.1021/es048945u] [PMID: 15884377]
[60]
Yaman YT, Bolat G, Abaci S, Saygin TB. Peptide nanotube functionalized molecularly imprinted polydopamine based single-use sensor for impedimetric detection of malathion. Anal Bioanal Chem 2022; 414(2): 1115-28.
[http://dx.doi.org/10.1007/s00216-021-03737-2] [PMID: 34738221]
[61]
Realini CE, Marcos B. Active and intelligent packaging systems for a modern society. Meat Sci 2014; 98(3): 404-19.
[http://dx.doi.org/10.1016/j.meatsci.2014.06.031] [PMID: 25034453]
[62]
Brockgreitens J, Abbas A. Responsive food packaging: Recent progress and technological prospects. Compr Rev Food Sci Food Saf 2016; 15(1): 3-15.
[http://dx.doi.org/10.1111/1541-4337.12174] [PMID: 33371571]
[63]
Thirumalai A, Harini K, Pallavi P, Gowtham P, Girigoswami K, Girigoswami A. Nanotechnology driven improvement of smart food packaging. Mater Res Innov 2022; 1-10.
[http://dx.doi.org/10.1080/14328917.2022.2114667]
[64]
Xia Y, Rubino M, Auras R. Release of nanoclay and surfactant from polymer-clay nanocomposites into a food simulant. Environ Sci Technol 2014; 48(23): 13617-24.
[http://dx.doi.org/10.1021/es502622c] [PMID: 25369541]
[65]
Martirosyan A, Schneider YJ. Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 2014; 11(6): 5720-50.
[http://dx.doi.org/10.3390/ijerph110605720] [PMID: 24879486]
[66]
Teow Y, Asharani PV, Hande MP, Valiyaveettil S. Health impact and safety of engineered nanomaterials. Chem Commun 2011; 47(25): 7025-38.
[http://dx.doi.org/10.1039/c0cc05271j] [PMID: 21479319]
[67]
Girigoswami K. Toxicity of metal oxide nanoparticles. In: Saquib Q, Faisal M, Al-Khedhairy A, Alatar A, Eds. Cellular and molecular toxicology of nanoparticles. Cham: Springer 2018; pp. 99-122.
[http://dx.doi.org/10.1007/978-3-319-72041-8_7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy