Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Case Report

One Case of Pituitary Stalk Interruption Syndrome Associated with Liver Cirrhosis

Author(s): Huan He and Dong Mei Li*

Volume 23, Issue 9, 2023

Published on: 14 April, 2023

Page: [1229 - 1234] Pages: 6

DOI: 10.2174/1871530323666230228110650

Price: $65

conference banner
Abstract

Introduction: Pituitary stalk interruption syndrome (PSIS) is featured by hypopituitarism and a classic triad of absence or slender pituitary stalk, absence or ectopic posterior lobe, and hypoplasia of the anterior lobe. Hypopituitarism, which induces hormone deficiencies, is associated with non-alcoholic fatty liver disease (NAFLD) and liver cirrhosis.

Case Presentation: A 29-year-old male patient was presented with intermittent nosebleeds and underdeveloped secondary sexual characteristics. Laboratory examination revealed low gonadal hormone, thyroxine, and cortisol levels. Magnetic resonance imaging revealed an interrupted pituitary stalk, ectopic posterior pituitary, and hypoplastic anterior pituitary. PSIS was confirmed. Liver cirrhosis was supported by bilirubin metabolism disorder, abnormal coagulation, the varicose vein of the esophagus and fundus of the stomach, hypersplenism, and signs on a computer tomography scan. He received glucocorticoid, levothyroxine, androgen, and human chorionic gonadotropin supplements, and growth hormone was not given because of poverty. Five months later, the patient developed Cushing-like symptoms and further deterioration of liver function.

Conclusion: PSIS can cause liver impairment and even cirrhosis, which may be associated with multiple hormone deficiencies. A case of PSIS with cirrhosis as the initial symptom and progression of cirrhosis in the absence of growth hormone (GH) therapy suggests that GH therapy may be important in PSIS-related cirrhosis.

Graphical Abstract

[1]
Wang, W.; Wang, S.; Jiang, Y.; Yan, F.; Su, T.; Zhou, W.; Jiang, L.; Zhang, Y.; Ning, G. Relationship between pituitary stalk (PS) visibility and the severity of hormone deficiencies: PS interruption syndrome revisited. Clin. Endocrinol., 2015, 83(3), 369-376.
[http://dx.doi.org/10.1111/cen.12788] [PMID: 25845766]
[2]
Han, B.Y.; Zhang, Q.; Li, L.L.; Guo, Q.H.; Wang, C.Z.; Cang, L.; Jin, N.; Chen, F.; Zhao, L.; Cui, J.; Gu, X.L.; Ma, F.L.; Zhang, S.C.; Mu, Y.M.; Dou, J.T. Clinical features of pituitary stalk interruption syndrome in 114 cases. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2016, 38(5), 534-538.
[PMID: 27825409]
[3]
Hong, J.W.; Kim, J.Y.; Kim, Y.E.; Lee, E.J. Metabolic parameters and nonalcoholic fatty liver disease in hypopituitary men. Horm. Metab. Res., 2011, 43(1), 48-54.
[http://dx.doi.org/10.1055/s-0030-1265217] [PMID: 20865648]
[4]
Yuan, X.X.; Zhu, H.J.; Pan, H.; Chen, S.; Liu, Z.Y.; Li, Y.; Wang, L.J.; Lu, L.; Yang, H.B.; Gong, F.Y. Clinical characteristics of non-alcoholic fatty liver disease in Chinese adult hypopituitary patients. World J. Gastroenterol., 2019, 25(14), 1741-1752.
[http://dx.doi.org/10.3748/wjg.v25.i14.1741] [PMID: 31011258]
[5]
Adams, L.A.; Feldstein, A.; Lindor, K.D.; Angulo, P. Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Hepatology, 2004, 39(4), 909-914.
[http://dx.doi.org/10.1002/hep.20140] [PMID: 15057893]
[6]
Nishizawa, H.; Iguchi, G.; Murawaki, A.; Fukuoka, H.; Hayashi, Y.; Kaji, H.; Yamamoto, M.; Suda, K.; Takahashi, M.; Seo, Y.; Yano, Y.; Kitazawa, R.; Kitazawa, S.; Koga, M.; Okimura, Y.; Chihara, K.; Takahashi, Y. Nonalcoholic fatty liver disease in adult hypopituitary pa-tients with GH deficiency and the impact of GH replacement therapy. Eur. J. Endocrinol., 2012, 167(1), 67-74.
[http://dx.doi.org/10.1530/EJE-12-0252] [PMID: 22535644]
[7]
Yang, Y.; Qi, Z.R.; Zhang, T.T.; Kang, Y.J.; Wang, X. Rapidly progressive non-alcoholic fatty liver disease due to hypopituitarism. Report of 5 cases. Neuroendocrinol. Lett., 2018, 39(2), 99-104.
[PMID: 30183204]
[8]
Wu, Z.Y.; Li, Y.L.; Chang, B. Pituitary stalk interruption syndrome and liver changes: From clinical features to mechanisms. World J. Gastroenterol., 2020, 26(44), 6909-6922.
[http://dx.doi.org/10.3748/wjg.v26.i44.6909] [PMID: 33311939]
[9]
Ichikawa, T.; Hamasaki, K.; Ishikawa, H.; Ejima, E.; Eguchi, K.; Nakao, K. Non-alcoholic steatohepatitis and hepatic steatosis in patients with adult onset growth hormone deficiency. Gut, 2003, 52(6), 914.
[http://dx.doi.org/10.1136/gut.52.6.914] [PMID: 12740357]
[10]
Dichtel, L.E.; Cordoba-Chacon, J.; Kineman, R.D. Growth hormone and insulin-like growth factor I regulation of nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab., 2022, 107(7), 1812-1824.
[http://dx.doi.org/10.1210/clinem/dgac088] [PMID: 35172328]
[11]
Díaz-Gil, J.J.; Muñoz, J.; Albillos, A.; Rúa, C.; Machín, C.; García-Cañero, R.; Cereceda, R.M.; Guijarro, M.C.; Trilla, C.; Escartín, P. Improvement in liver fibrosis, functionality and hemodynamics in CCl4-cirrhotic rats after injection of the liver growth factor. J. Hepatol., 1999, 30(6), 1065-1072.
[http://dx.doi.org/10.1016/S0168-8278(99)80261-X] [PMID: 10406185]
[12]
Bredella, M.A.; Schorr, M.; Dichtel, L.E.; Gerweck, A.V.; Young, B.J.; Woodmansee, W.W.; Swearingen, B.; Miller, K.K. Body composition and ectopic lipid changes with biochemical control of acromegaly. J. Clin. Endocrinol. Metab., 2017, 102(11), 4218-4225.
[http://dx.doi.org/10.1210/jc.2017-01210] [PMID: 28945897]
[13]
Winhofer, Y.; Wolf, P.; Krššák, M.; Wolfsberger, S.; Tura, A.; Pacini, G.; Gessl, A.; Raber, W.; Kukurova, I.J.; Kautzky-Willer, A.; Knosp, E.; Trattnig, S.; Krebs, M.; Luger, A. No evidence of ectopic lipid accumulation in the pathophysiology of the acromegalic cardiomyopathy. J. Clin. Endocrinol. Metab., 2014, 99(11), 4299-4306.
[http://dx.doi.org/10.1210/jc.2014-2242] [PMID: 25148232]
[14]
Reyes-Vidal, C.M.; Mojahed, H.; Shen, W.; Jin, Z.; Arias-Mendoza, F.; Fernandez, J.C.; Gallagher, D.; Bruce, J.N.; Post, K.D.; Freda, P.U. Adipose tissue redistribution and ectopic lipid deposition in active acromegaly and effects of surgical treatment. J. Clin. Endocrinol. Metab., 2015, 100(8), 2946-2955.
[http://dx.doi.org/10.1210/jc.2015-1917] [PMID: 26037515]
[15]
Trepp, R.; Flück, M.; Stettler, C.; Boesch, C.; Ith, M.; Kreis, R.; Hoppeler, H.; Howald, H.; Schmid, J.P.; Diem, P.; Christ, E.R. Effect of GH on human skeletal muscle lipid metabolism in GH deficiency. Am. J. Physiol. Endocrinol. Metab., 2008, 294(6), E1127-E1134.
[http://dx.doi.org/10.1152/ajpendo.00010.2008] [PMID: 18413676]
[16]
Clemmons, D.R. Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol. Metab. Clin. North Am., 2012, 41(2), 425-443.
[http://dx.doi.org/10.1016/j.ecl.2012.04.017] [PMID: 22682639]
[17]
Glynn, N.; Kenny, H.; Salim, T.; Halsall, D.J.; Smith, D.; Tun, T.K.; McDermott, J.H.; Tormey, W.; Thompson, C.J.; McAdam, B.; O’ Gorman, D.; Agha, A. Alterations in thyroid hormone levels following growth hormone replacement exert complex biological effects. Endocr. Pract., 2018, 24(4), 342-350.
[http://dx.doi.org/10.4158/EP-2017-0223] [PMID: 29658834]
[18]
Yamauchi, I.; Sakane, Y.; Yamashita, T.; Hirota, K.; Ueda, Y.; Kanai, Y.; Yamashita, Y.; Kondo, E.; Fujii, T.; Taura, D.; Sone, M.; Yasoda, A.; Inagaki, N. Effects of growth hormone on thyroid function are mediated by type 2 iodothyronine deiodinase in humans. Endocrine, 2018, 59(2), 353-363.
[http://dx.doi.org/10.1007/s12020-017-1495-y] [PMID: 29274063]
[19]
Wolthers, T.; Grøftne, T.; Møller, N.; Christiansen, J.S.; Orskov, H.; Weeke, J.; Jørgensen, J.O. Calorigenic effects of growth hormone: The role of thyroid hormones. J. Clin. Endocrinol. Metab., 1996, 81(4), 1416-1419.
[PMID: 8636344]
[20]
Donato, J., Jr; Wasinski, F.; Furigo, I.C.; Metzger, M.; Frazão, R. Central regulation of metabolism by growth hormone. Cells, 2021, 10(1), 129.
[http://dx.doi.org/10.3390/cells10010129] [PMID: 33440789]
[21]
Soler Palacios, B.; Nieto, C.; Fajardo, P.; González de la Aleja, A.; Andrés, N.; Dominguez-Soto, Á.; Lucas, P.; Cuenda, A.; Rodríguez-Frade, J.M.; Martínez-A, C.; Villares, R.; Corbí, Á.L.; Mellado, M. Growth hormone reprograms macrophages toward an anti-inflammatory and reparative profile in an MAFB-dependent manner. J. Immunol., 2020, 205(3), 776-788.
[http://dx.doi.org/10.4049/jimmunol.1901330] [PMID: 32591394]
[22]
Nishizawa, H.; Iguchi, G.; Fukuoka, H.; Takahashi, M.; Suda, K.; Bando, H.; Matsumoto, R.; Yoshida, K.; Odake, Y.; Ogawa, W.; Takahashi, Y. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci. Rep., 2016, 6(1), 34605.
[http://dx.doi.org/10.1038/srep34605] [PMID: 27721459]
[23]
Liu, Z.; Cordoba-Chacon, J.; Kineman, R.D.; Cronstein, B.N.; Muzumdar, R.; Gong, Z.; Werner, H.; Yakar, S. Growth hormone control of hepatic lipid metabolism. Diabetes, 2016, 65(12), 3598-3609.
[http://dx.doi.org/10.2337/db16-0649] [PMID: 27679560]
[24]
Cordoba-Chacon, J.; Majumdar, N.; List, E.O.; Diaz-Ruiz, A.; Frank, S.J.; Manzano, A.; Bartrons, R.; Puchowicz, M.; Kopchick, J.J.; Kine-man, R.D. Growth hormone inhibits hepatic De novo lipogenesis in adult mice. Diabetes, 2015, 64(9), 3093-3103.
[http://dx.doi.org/10.2337/db15-0370] [PMID: 26015548]
[25]
Wolf Greenstein, A.; Majumdar, N.; Yang, P.; Subbaiah, P.V.; Kineman, R.D.; Cordoba-Chacon, J. Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J. Endocrinol., 2017, 232(1), 107-121.
[http://dx.doi.org/10.1530/JOE-16-0447] [PMID: 27799461]
[26]
Kaltenecker, D.; Themanns, M.; Mueller, K.M.; Spirk, K.; Suske, T.; Merkel, O.; Kenner, L.; Luís, A.; Kozlov, A.; Haybaeck, J.; Müller, M.; Han, X.; Moriggl, R. Hepatic growth hormone - JAK2 - STAT5 signalling: Metabolic function, non-alcoholic fatty liver disease and hepato-cellular carcinoma progression. Cytokine, 2019, 124, 154569.
[http://dx.doi.org/10.1016/j.cyto.2018.10.010] [PMID: 30389231]
[27]
Sarkar, M.; Yates, K.; Suzuki, A.; Lavine, J.; Gill, R.; Ziegler, T.; Terrault, N.; Dhindsa, S. Low testosterone is associated with nonalcoholic steatohepatitis and fibrosis severity in men. Clin. Gastroenterol. Hepatol., 2021, 19(2), 400-402.e2.
[http://dx.doi.org/10.1016/j.cgh.2019.11.053] [PMID: 31812658]
[28]
Deng, N.; Mallepally, N.; Peng, F.B.; Kanji, A.; Marcelli, M.; Hernaez, R. Serum testosterone levels and testosterone supplementation in cirrhosis: A systematic review. Liver Int., 2021, 41(10), 2358-2370.
[http://dx.doi.org/10.1111/liv.14938] [PMID: 33966337]
[29]
Maseroli, E.; Comeglio, P.; Corno, C.; Cellai, I.; Filippi, S.; Mello, T.; Galli, A.; Rapizzi, E.; Presenti, L.; Truglia, M.C.; Lotti, F.; Facchiano, E.; Beltrame, B.; Lucchese, M.; Saad, F.; Rastrelli, G.; Maggi, M.; Vignozzi, L. Testosterone treatment is associated with reduced adipose tis-sue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J. Endocrinol. Invest., 2021, 44(4), 819-842.
[http://dx.doi.org/10.1007/s40618-020-01381-8] [PMID: 32772323]
[30]
Sinclair, M.; Grossmann, M.; Hoermann, R.; Angus, P.W.; Gow, P.J. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J. Hepatol., 2016, 65(5), 906-913.
[http://dx.doi.org/10.1016/j.jhep.2016.06.007] [PMID: 27312945]
[31]
Dhindsa, S.; Ghanim, H.; Batra, M.; Kuhadiya, N.D.; Abuaysheh, S.; Sandhu, S.; Green, K.; Makdissi, A.; Hejna, J.; Chaudhuri, A.; Punyanitya, M.; Dandona, P. Insulin resistance and inflammation in hypogonadotropic hypogonadism and their reduction after testosterone re-placement in men with type 2 diabetes. Diabetes Care, 2016, 39(1), 82-91.
[http://dx.doi.org/10.2337/dc15-1518] [PMID: 26622051]
[32]
Kapoor, D.; Goodwin, E.; Channer, K.S.; Jones, T.H. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol., 2006, 154(6), 899-906.
[http://dx.doi.org/10.1530/eje.1.02166] [PMID: 16728551]
[33]
Chung, C.C.; Lin, Y.K.; Kao, Y.H.; Lin, S.H.; Chen, Y.J. Physiological testosterone attenuates profibrotic activities of rat cardiac fibroblasts through modulation of nitric oxide and calcium homeostasis. Endocr. J., 2021, 68(3), 307-315.
[http://dx.doi.org/10.1507/endocrj.EJ20-0344] [PMID: 33115984]
[34]
Kim, D.; Kim, W.; Joo, S.K.; Bae, J.M.; Kim, J.H.; Ahmed, A. Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis. Clin. Gastroenterol. Hepatol., 2018, 16(1), 123-131.e1.
[http://dx.doi.org/10.1016/j.cgh.2017.08.014] [PMID: 28823829]
[35]
Kim, D.; Yoo, E.R.; Li, A.A.; Fernandes, C.T.; Tighe, S.P.; Cholankeril, G.; Hameed, B.; Ahmed, A. Low-normal thyroid function is associated with advanced fibrosis among adults in the United States. Clin. Gastroenterol. Hepatol., 2019, 17(11), 2379-2381.
[http://dx.doi.org/10.1016/j.cgh.2018.11.024] [PMID: 30458247]
[36]
Alonso-Merino, E.; Martín Orozco, R.; Ruíz-Llorente, L.; Martínez-Iglesias, O.A.; Velasco-Martín, J.P.; Montero-Pedrazuela, A.; Fanjul-Rodríguez, L.; Contreras-Jurado, C.; Regadera, J.; Aranda, A. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses. Proc. Natl. Acad. Sci., 2016, 113(24), E3451-E3460.
[http://dx.doi.org/10.1073/pnas.1506113113] [PMID: 27247403]
[37]
Sinha, R.A.; Singh, B.K.; Yen, P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol., 2018, 14(5), 259-269.
[http://dx.doi.org/10.1038/nrendo.2018.10] [PMID: 29472712]
[38]
Harrison, S.A.; Bashir, M.R.; Guy, C.D.; Zhou, R.; Moylan, C.A.; Frias, J.P.; Alkhouri, N.; Bansal, M.B.; Baum, S.; Neuschwander-Tetri, B.A.; Taub, R.; Moussa, S.E. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, dou-ble-blind, placebo-controlled, phase 2 trial. Lancet, 2019, 394(10213), 2012-2024.
[http://dx.doi.org/10.1016/S0140-6736(19)32517-6] [PMID: 31727409]
[39]
Jørgensen, J.O.L.; Thuesen, L.; Ingemann-Hansen, T.; Pedersen, S.A.; Jørgensen, I.; Skakkebaek, N.E.; Christiansen, J.S. Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet, 1989, 333(8649), 1221-1225.
[http://dx.doi.org/10.1016/S0140-6736(89)92328-3] [PMID: 2566779]
[40]
Bucher, H.; Zapf, J.; Torresani, T.; Prader, A.; Froesch, E.R.; Illig, R. Insulin-like growth factors I and II, prolactin, and insulin in 19 growth hormone-deficient children with excessive, normal, or decreased longitudinal growth after operation for craniopharyngioma. N. Engl. J. Med., 1983, 309(19), 1142-1146.
[http://dx.doi.org/10.1056/NEJM198311103091902] [PMID: 6353237]
[41]
Turner, R.T.; Kalra, S.P.; Wong, C.P.; Philbrick, K.A.; Lindenmaier, L.B.; Boghossian, S.; Iwaniec, U.T. Peripheral leptin regulates bone formation. J. Bone Miner. Res., 2013, 28(1), 22-34.
[http://dx.doi.org/10.1002/jbmr.1734] [PMID: 22887758]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy