Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The ABCB1 C3435T Polymorphism is Associated with Triglyceride Reduction in Atorvastatin-treated Uygur Patients with Coronary Heart Disease and Dyslipidemia: An Observational Study

Author(s): Tingting Wang, Jianhua Wu, Tingting Liu, Li Xu, Jie Feng, Huilan Zhang, Hao Shen, Li Sun, Hongjian Li* and Luhai Yu*

Volume 23, Issue 9, 2023

Published on: 27 March, 2023

Page: [1215 - 1228] Pages: 14

DOI: 10.2174/1871530323666230209113011

Price: $65

Abstract

Background: The morbidity of coronary heart disease (CHD) and dyslipidemia in the Uygur population of Xinjiang is higher than the national average. Interindividual variability of the response to atorvastatin is a major clinical problem; generally, statins shed less impressive benefits for females than males. Nevertheless, it is unclear whether ABCB1 genes and sex modify the efficacy of atorvastatin in Uygur patients.

Objective: To determine the impact of ABCB1 gene polymorphisms on the therapeutic response to atorvastatin in a Uygur population with dyslipidemia.

Methods: Patients with dyslipidemia were treated with 20 mg/d or 40 mg/d atorvastatin for two to six months. TC, LDL-C, HDL-C, TG, APOB, APOE, LP(a), and APOA1 levels were measured before and after atorvastatin administration. We performed genotyping of ABCB1 C3435T and G2677T variants using hybridization sequencing. The association of variants between the percentage of change in TG levels was examined using multiple linear regression analysis.

Results: We enrolled 193 Uygur patients. Atorvastatin reduced TG, LDL-C, TC, APOB, and APOE levels (P < 0.05), whereas LP(a) and APOA1 levels increased (P < 0.05). In multiple linear regression analysis, baseline TG level (beta 0.204; 95% confidence interval (CI): 1.980–10.493; P = 0.004) and TT genotype of ABCB1 C3435T (beta 0.162; 95% CI: 2.517–23.406; P = 0.023) predicted TG reduction with atorvastatin therapy in overall patients. Baseline TG level (beta 0.346; 95% CI: 4.374 -13.34; P < 0.001) with the TT genotype of ABCB1 C3435T (beta 0.401; 95% CI: 4.053–28.356; P = 0.021) was associated with a significant reduction in TG levels in men. Only baseline TG level predicted TG reduction within six months of atorvastatin therapy for females (beta 0.61; 95% CI: 3.204–20.557; P = 0.041).

Conclusion: In patients with the ABCB1 C3435T TT genotype, atorvastatin more effectively lowered TG than other polymorphisms. This investigation may provide insights into effective individualized therapies for CHD and dyslipidemia in the Uygur population.

Graphical Abstract

[1]
Kopin, L.; Lowenstein, C.J. Dyslipidemia. Ann. Intern. Med., 2017, 167(11), ITC81-ITC96.
[http://dx.doi.org/10.7326/AITC201712050] [PMID: 29204622]
[2]
Barzi, F.; Patel, A.; Woodward, M.; Lawes, C.M.; Ohkubo, T.; Gu, D.; Lam, T.H.; Ueshima, H. A comparison of lipid variables as predictors of cardiovascular disease in the Asia Pacific region. Ann. Epidemiol., 2005, 15(5), 405-413.
[http://dx.doi.org/10.1016/j.annepidem.2005.01.005] [PMID: 15840555]
[3]
Joint Committee on the revision of guidelines for the prevention and treatment of adult dyslipidemia in China. Guidelines for the prevention and treatment of dyslipidemia in Chinese adults (2016 Revision). Chinese. J. Cardiovasc. Dis., 2016, 44(10), 833-853.
[4]
Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; Reiner, Ž.; Riccardi, G.; Taskinen, M.R.; Tokgozoglu, L.; Verschuren, W.M.M.; Vlachopoulos, C.; Wood, D.A.; Zamorano, J.L.; Cooney, M.T. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J., 2016, 37(39), 2999-3058.
[http://dx.doi.org/10.1093/eurheartj/ehw272] [PMID: 27567407]
[5]
Prado, Y.; Zambrano, T.; Salazar, L.A. Transporter genes ABCG2 rs2231142 and ABCB1 rs1128503 polymorphisms and atorvastatin response in Chilean subjects. J. Clin. Pharm. Ther., 2018, 43(1), 87-91.
[http://dx.doi.org/10.1111/jcpt.12607] [PMID: 28833323]
[6]
Melhem, A.L.; Chourasia, M.K.; Bigossi, M.; Maroteau, C.; Taylor, A.; Pola, R.; Dawed, A.Y.; Tornio, A.; Palmer, C.N.A.; Siddiqui, M.K. Common statin intolerance variants in ABCB1 and LILRB5 show synergistic effects on statin response: an observational study using electronic health records. Front. Genet., 2021, 12, 713181.
[http://dx.doi.org/10.3389/fgene.2021.713181] [PMID: 34659336]
[7]
Hoenig, M.R.; Walker, P.J.; Gurnsey, C.; Beadle, K.; Johnson, L. The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. J. Clin. Lipidol., 2011, 5(2), 91-96.
[http://dx.doi.org/10.1016/j.jacl.2011.01.001] [PMID: 21392722]
[8]
Shabana, M.F.; Mishriki, A.A.; Issac, M.S.M.; Bakhoum, S.W.G. Do MDR1 and SLCO1B1 polymorphisms influence the therapeutic response to atorvastatin? A study on a cohort of Egyptian patients with hypercholesterolemia. Mol. Diagn. Ther., 2013, 17(5), 299-309.
[http://dx.doi.org/10.1007/s40291-013-0038-3] [PMID: 23677857]
[9]
Chen, Q.J.; Lai, H.M.; Chen, B.D.; Li, X.M.; Zhai, H.; He, C.H.; Pan, S.; Luo, J.Y.; Gao, J.; Liu, F.; Ma, Y.T.; Yang, Y.N. Appropriate LDL-C-to-HDL-C Ratio cutoffs for categorization of cardiovascular disease risk factors among uygur adults in Xinjiang, China. Int. J. Environ. Res. Public Health, 2016, 13(2), 235.
[http://dx.doi.org/10.3390/ijerph13020235] [PMID: 26907312]
[10]
Guo, S.X.; Ma, R.L.; Guo, H.; Ding, Y.S.; Liu, J.M.; Zhang, M.; Zhang, J.Y.; Xu, S.Z.; Li, S.G.; Rui, D.S.; Niu, Q.; Li, Y.P. Epidemiological analysis of dyslipidemia in adults of three ethnicities in Xinjiang, China. Genet. Mol. Res., 2014, 13(2), 2385-2393.
[http://dx.doi.org/10.4238/2014.April.3.11] [PMID: 24781993]
[11]
Li, S.; Zhang, L.; Wang, X.; Chen, Z.; Dong, Y. Status of dyslipidemia among adults aged 35 years and above in China. Chinese Circulat. J., 2019, 34(7), 681-687.
[12]
Walsh, J.M.E.; Pignone, M. Drug treatment of hyperlipidemia in women. JAMA, 2004, 291(18), 2243-2252.
[http://dx.doi.org/10.1001/jama.291.18.2243] [PMID: 15138247]
[13]
Petretta, M.; Costanzo, P.; Perrone-Filardi, P.; Chiariello, M. Impact of gender in primary prevention of coronary heart disease with statin therapy: A meta-analysis. Int. J. Cardiol., 2010, 138(1), 25-31.
[http://dx.doi.org/10.1016/j.ijcard.2008.08.001] [PMID: 18793814]
[14]
Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; Colhoun, H.; Braunwald, E.; La Rosa, J.; Pedersen, T.R.; Tonkin, A.; Davis, B.; Sleight, P.; Franzosi, M.G.; Baigent, C.; Keech, A. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. Lancet, 2015, 385(9976), 1397-1405.
[http://dx.doi.org/10.1016/S0140-6736(14)61368-4] [PMID: 25579834]
[15]
Sever, P.; Gouni-Berthold, I.; Keech, A.; Giugliano, R.; Pedersen, T.R. Im, K.; Wang, H.; Knusel, B.; Sabatine, M.S.; O’Donoghue, M.L. LDL-cholesterol lowering with evolocumab, and outcomes according to age and sex in patients in the FOURIER Trial. Eur. J. Prev. Cardiol., 2021, 28(8), 805-812.
[http://dx.doi.org/10.1177/2047487320902750] [PMID: 34298555]
[16]
Qu, K.K.; Zhang, C.N.; Dong, L.X.; Wang, S.S.; Zhang, Z.D.; Zhang, L. Association of ABCB1 polymorphisms with lipid homeostasis and liver injury response to atorvastatin in the Chinese population. Can. J. Physiol. Pharmacol., 2020, 98(1), 15-22.
[http://dx.doi.org/10.1139/cjpp-2019-0339] [PMID: 31574240]
[17]
Tsamandouras, N.; Guo, Y.; Wendling, T.; Hall, S.; Galetin, A.; Aarons, L. Modelling of atorvastatin pharmacokinetics and the identification of the effect of a BCRP polymorphism in the Japanese population. Pharmacogenet. Genomics, 2017, 27(1), 27-38.
[http://dx.doi.org/10.1097/FPC.0000000000000252] [PMID: 27787353]
[18]
Gbandi, E.; Goulas, A.; Sevastianos, V.; Hadziyannis, S.; Panderi, A.; Koskinas, J.; Papatheodoridis, G.; Vasiliadis, T.; Agapakis, D.; Pro-topapas, A.; Ioannidou, P.; Zacharakis, G.; Sinakos, E.; Koutsounas, S.; Germanidis, G. Common ABCB1 polymorphisms in Greek patients with chronic hepatitis C infection: A comparison with hyperlipidemic patients and the general population. Pharmacol. Rep., 2016, 68(2), 476-482.
[http://dx.doi.org/10.1016/j.pharep.2015.10.009] [PMID: 26922556]
[19]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.N.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. Common genetic variation in the ABCB1 gene is associated with the cholesterol-lowering effect of simvastatin in males. Pharmacogenomics, 2009, 10(11), 1743-1751.
[http://dx.doi.org/10.2217/pgs.09.105] [PMID: 19891551]
[20]
Wang, T.; Sun, L.; Xu, L.; Zhao, T.; Feng, J.; Yu, L.; Wu, J.; Li, H. Prevalence of dyslipidemia and gene polymorphisms of ABCB1 and SLCO1B1 in Han, Uygur, Kazak, Hui, Tatar, Kirgiz, and Sibe populations with coronary heart disease in Xinjiang, China. Lipids Health Dis., 2021, 20(1), 116.
[http://dx.doi.org/10.1186/s12944-021-01544-3] [PMID: 34563206]
[21]
Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C., Jr; Watson, K.; Wilson, P.W.F.; Eddleman, K.M.; Jarrett, N.M.; LaBresh, K.; Nevo, L.; Wnek, J.; Anderson, J.L.; Halperin, J.L.; Albert, N.M.; Bozkurt, B.; Brindis, R.G.; Curtis, L.H.; DeMets, D.; Hochman, J.S.; Kovacs, R.J.; Ohman, E.M.; Pressler, S.J.; Sellke, F.W.; Shen, W.K.; Smith, S.C., Jr; Tomaselli, G.F. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014, 129(Suppl. 2), S1-S45.
[http://dx.doi.org/10.1161/01.cir.0000437738.63853.7a] [PMID: 24222016]
[22]
Moyer, V.A. Behavioral counseling interventions to promote a healthful diet and physical activity for cardiovascular disease prevention in adults: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med., 2012, 157(5), 367-371.
[http://dx.doi.org/10.7326/0003-4819-157-5-201209040-00486] [PMID: 22733153]
[23]
Caiati, C. Contrast-enhanced ultrasound reveals that lipoprotein apheresis improves myocardial but not skeletal muscle perfusion. JACC Cardiovasc. Imaging, 2019, 12(8), 1441-1443.
[http://dx.doi.org/10.1016/j.jcmg.2018.06.029] [PMID: 30553683]
[24]
Sniderman, A.D. Applying apoB to the diagnosis and therapy of the atherogenic dyslipoproteinemias: A clinical diagnostic algorithm. Curr. Opin. Lipidol., 2004, 15(4), 433-438.
[http://dx.doi.org/10.1097/01.mol.0000137220.39031.3b] [PMID: 15243216]
[25]
Johannesen, C.D.L.; Mortensen, M.B.; Langsted, A.; Nordestgaard, B.G. Apolipoprotein B and non-HDL cholesterol better reflect residual risk than LDL cholesterol in statin-treated patients. J. Am. Coll. Cardiol., 2021, 77(11), 1439-1450.
[http://dx.doi.org/10.1016/j.jacc.2021.01.027] [PMID: 33736827]
[26]
Tsimikas, S.; Gordts, P.L.S.M.; Nora, C.; Yeang, C.; Witztum, J.L. Statin therapy increases lipoprotein(a) levels. Eur. Heart J., 2019, 0, 1-10.
[PMID: 31111151]
[27]
Schmidt, K.; Noureen, A.; Kronenberg, F.; Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res., 2016, 57(8), 1339-1359.
[http://dx.doi.org/10.1194/jlr.R067314] [PMID: 27074913]
[28]
Mauger, J.F.; Couture, P.; Paradis, M.E.; Lamarche, B. Comparison of the impact of atorvastatin and simvastatin on apoA-I kinetics in men. Atherosclerosis, 2005, 178(1), 157-163.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.06.022] [PMID: 15585213]
[29]
Lee, J.H.; Kim, S.H.; Choi, D.J.; Tahk, S.J.; Yoon, J.H.; Choi, S.W.; Hong, T.J.; Kim, H.S. Efficacy and tolerability of two different formulations of atorvastatin in Korean patients with hypercholesterolemia: a multicenter, prospective, randomized clinical trial. Drug Des. Devel. Ther., 2017, 11, 2277-2285.
[http://dx.doi.org/10.2147/DDDT.S112241] [PMID: 28814835]
[30]
Poh, K.K.; Ambegaonkar, B.; Baxter, C.A.; Brudi, P.; Buddhari, W.; Chiang, F.T.; Horack, M.; Jang, Y.; Johnson, B.; Lautsch, D.; Sawhney, J.P.S.; Vyas, A.; Yan, B.P.; Gitt, A.K. Low-density lipoprotein cholesterol target attainment in patients with stable or acute coronary heart disease in the Asia-Pacific region: results from the Dyslipidemia International Study II. Eur. J. Prev. Cardiol., 2018, 25(18), 1950-1963.
[http://dx.doi.org/10.1177/2047487318798927] [PMID: 30198749]
[31]
Eastwood, S.V.; Mathur, R.; Sattar, N.; Smeeth, L.; Bhaskaran, K.; Chaturvedi, N. Ethnic differences in guideline-indicated statin initiation for people with type 2 diabetes in UK primary care, 2006-2019: A cohort study. PLoS Med., 2021, 18(6), e1003672.
[http://dx.doi.org/10.1371/journal.pmed.1003672] [PMID: 34185782]
[32]
Deeken, J.F.; Figg, W.D.; Bates, S.E.; Sparreboom, A. Toward individualized treatment: prediction of anticancer drug disposition and toxici-ty with pharmacogenetics. Anticancer Drugs, 2007, 18(2), 111-126.
[http://dx.doi.org/10.1097/CAD.0b013e3280109411] [PMID: 17159598]
[33]
Lee, Y.J.; Lee, M.G.; Lim, L.A.; Jang, S.B.; Chung, J.Y. Effects of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of atorvastatin and 2-hydroxyatorvastatin in healthy Korean subjects. Int. J. Clin. Pharmacol. Ther., 2010, 48(1), 36-45.
[http://dx.doi.org/10.5414/CPP48036] [PMID: 20040338]
[34]
Laufs, U.; Parhofer, K.G.; Ginsberg, H.N.; Hegele, R.A. Clinical review on triglycerides. Eur. Heart J., 2020, 41(1), 99-109c.
[http://dx.doi.org/10.1093/eurheartj/ehz785] [PMID: 31764986]
[35]
Kotseva, K.; Wood, D.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Amouyel, P.; Bruthans, J.; Castro Conde, A.; Cífková, R.; Deckers, J.W.; De Sutter, J.; Dilic, M.; Dolzhenko, M.; Erglis, A.; Fras, Z.; Gaita, D.; Gotcheva, N.; Goudevenos, J.; Heuschmann, P.; Laucevicius, A.; Lehto, S.; Lovic, D.; Miličić, D.; Moore, D.; Nicolaides, E.; Oganov, R.; Pajak, A.; Pogosova, N.; Reiner, Z.; Stagmo, M.; Störk, S.; Tokgözoğlu, L.; Vulic, D. EUROASPIRE IV: A European society of cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur. J. Prev. Cardiol., 2016, 23(6), 636-648.
[http://dx.doi.org/10.1177/2047487315569401] [PMID: 25687109]
[36]
Keskitalo, J.E.; Kurkinen, K.J.; Neuvonen, P.J.; Niemi, M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther., 2008, 84(4), 457-461.
[http://dx.doi.org/10.1038/clpt.2008.25] [PMID: 19238649]
[37]
To, K.K.W.; Hu, M.; Tomlinson, B. Expression and activity of ABCG2, but not ABCB1 or OATP1B1, are associated with cholesterol levels: evidence from in vitro and in vivo experiments. Pharmacogenomics, 2014, 15(8), 1091-1104.
[http://dx.doi.org/10.2217/pgs.14.58] [PMID: 25084202]
[38]
Hua, S.; Ma, C.; Zhang, J.; Li, J.; Wu, W.; Xu, N.; Luo, G.; Zhao, J. Influence of APOA5 locus on the treatment efficacy of three statins: evidence from a randomized pilot study in chinese subjects. Front. Pharmacol., 2018, 9, 352.
[http://dx.doi.org/10.3389/fphar.2018.00352] [PMID: 29695967]
[39]
Luzum, JA; Theusch, E; Taylor, KD Individual and combined associations of genetic variants in CYP3A4, CYP3A5, and SLCO1B1 With simvastatin and simvastatin acid plasma concentrations. J Cardiovasc pharm, 2015, 66(1), 80, 85.
[http://dx.doi.org/10.1097/FJC.0000000000000246]
[40]
Caiati, C.; Argentiero, A.; Favale, S.; Lepera, M.E. Cardiorenal syndrome triggered by slowly progressive drugs toxicity-induced renal fail-ure along with minimal mitral disease: A case report. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(9), 970-977.
[http://dx.doi.org/10.2174/1381612828666220412093734] [PMID: 35418292]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy