Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Research Article

Predicting Preeclampsia Using Principal Component Analysis and Decision Tree Classifier

Author(s): Farida Musa and Rajesh Prasad*

Volume 20, Issue 2, 2024

Published on: 27 March, 2023

Article ID: e270223214073 Pages: 14

DOI: 10.2174/1573404820666230227120828

Price: $65

Abstract

Background: Preeclampsia affects pregnant women, resulting in stroke, organ failure, and other health problems like seizures. The effect of preeclampsia is most pronounced in developing countries and it affects about 4% of pregnant women causing several illnesses and even death. The key to solving the problem of preeclampsia is its early detection and use of machine learning algorithms that can take various demographic features, biochemical markers, or biophysical features, select important features and find hidden patterns that point to preeclampsia.

Objective: The objective of this research is to develop a machine-learning framework to detect Preeclampsia in pregnant women.

Methods: This research develops a model to detect preeclampsia using principal component analysis (PCA) as a feature selection, k-means as an outlier detection, a combination of SMOTE oversampling, random under sampling and the decision tree (DT) to classify and predict the risk of preeclampsia among pregnant women. The data was obtained from the University of Abuja Teaching Hospital, Abuja, Nigeria.

Results: Findings revealed that the combination of the PCA, SMOTE and random undersampling and DT outcome resulted in the best accuracy of 96.8% which is better than the accuracy of existing work (92.1%). Furthermore, the reliability of the model was measured and tested using Bayesian Probability.

Conclusion: The developed model can be helpful to Health care providers in checking preeclampsia among women with high blood pressure during their second antenatal visits.

Graphical Abstract

[1]
Armaly, Z.; Jadaon, J.E.; Jabbour, A.; Abassi, Z.A. Preeclampsia: Novel mechanisms and potential therapeutic approaches. Front. Physiol., 2018, 9, 973.
[http://dx.doi.org/10.3389/fphys.2018.00973]
[2]
Jääskeläinen, T.; Heinonen, S.; Hämäläinen, E.; Pulkki, K.; Romppanen, J.; Laivuori, H. Angiogenic profile in the finnish genetics of pre-eclampsia consortium (FINNPEC) cohort. Pregn. Hypertens., 2018, 14, 252-259.
[http://dx.doi.org/10.1016/j.preghy.2018.03.004] [PMID: 29803331]
[3]
Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ, 2016, 353, i1753.
[http://dx.doi.org/10.1136/bmj.i1753] [PMID: 27094586]
[4]
Sandström, A.; Snowden, J.M.; Höijer, J.; Bottai, M.; Wikström, A.K. Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: A population based cohort study. PLoS One, 2019, 14(11), e0225716.
[http://dx.doi.org/10.1371/journal.pone.0225716] [PMID: 31774875]
[5]
Schmidt, L.J.; Rieger, O.; Neznansky, M.; Hackelöer, M.; Dröge, L.A.; Henrich, W.; Higgins, D.; Verlohren, S. A machine-learning–based algorithm improves prediction of preeclampsia-associated adverse outcomes. Am. J. Obstet. Gynecol., 2022, 227(1), 77.e1-77.e30.
[http://dx.doi.org/10.1016/j.ajog.2022.01.026] [PMID: 35114187]
[6]
Marin, I.; Pavaloiu, B.I.; Marian, C.V.; Racovita, V.; Goga, N. Early detection of preeclampsia based on a machine learning approach. 2019 E-Health and Bioengineering Conference. (EHB), 2019, 1-4.
[http://dx.doi.org/10.1109/EHB47216.2019.8970025]
[7]
Preeclampsia - Symptoms and causes - Mayo Clinic.. Available from: https://www.mayoclinic.org/diseases-conditions/preeclampsia/symptoms-causes/syc-20355745
[8]
Roberge, S.; Nicolaides, K.; Demers, S.; Hyett, J.; Chaillet, N.; Bujold, E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: Systematic review and meta-analysis. Am. J. Obstet. Gynecol., 2017, 216(2), 110-120.e6.
[http://dx.doi.org/10.1016/j.ajog.2016.09.076] [PMID: 27640943]
[9]
Zayyad, M.A.; Toycan, M. Factors affecting sustainable adoption of e-health technology in developing countries: An exploratory survey of Nigerian hospitals from the perspective of healthcare professionals. PeerJ., 2018, 6(3), e4436.
[http://dx.doi.org/10.7717/peerj.4436] [PMID: 29507830]
[10]
Hamadeh, R.; Hamadeh, N.; Kobeissy, F.; Karouni, A.; Akoum, H. Obstetricians’ knowledge and practices about prediction, prevention, diagnosis, and management of preeclampsia. Curr. Womens Health Rev., 2022, 19(3), e180522204981.
[http://dx.doi.org/10.2174/1573404818666220518124959]
[11]
Weiner, C.P.; Cuckle, H.; Weiss, M.L.; Buhimschi, I.A.; Dong, Y.; Zhou, H.; Ramsey, R.; Egerman, R.; Buhimschi, C.S. Evaluation of a maternal plasma RNA panel predicting spontaneous preterm birth and its expansion to the prediction of preeclampsia. Diagnostics, 2022, 12(6), 1327.
[http://dx.doi.org/10.3390/diagnostics12061327] [PMID: 35741140]
[12]
Jhee, J.H.; Lee, S.; Park, Y.; Lee, S.E.; Kim, Y.A.; Kang, S.W.; Kwon, J.Y.; Park, J.T. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One, 2019, 14(8), e0221202.
[http://dx.doi.org/10.1371/journal.pone.0221202] [PMID: 31442238]
[13]
Carreño, A.; Inza, I.; Lozano, J.A. Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework. Artif. Intell. Rev., 2020, 53(5), 3575-3594.
[http://dx.doi.org/10.1007/s10462-019-09771-y]
[14]
Tlaye, K.G.; Endalfer, M.L.; Kassaw, M.W.; Gebremedhin, M.M.; Aynalem, Y.A. Preeclampsia management modalities and perinatal death: A retrospective study in Woldia general hospital. BMC Pregnancy Childbirth, 2020, 20(1), 205.
[http://dx.doi.org/10.1186/s12884-020-02909-9] [PMID: 32272909]
[15]
Villalaín, C.; Herraiz, I.; Domínguez-Del Olmo, P.; Angulo, P.; Ayala, J.L.; Galindo, A. Prediction of delivery within 7 days after diagnosis of early onset preeclampsia using machine-learning models. Front. Cardiovasc. Med., 2022, 9, 910701.
[http://dx.doi.org/10.3389/fcvm.2022.910701] [PMID: 35845049]
[16]
Liu, F.; Rouault, C.; Clément, K.; Zhu, W.; Degrelle, S.A.; Charles, M.A.; Heude, B.; Fournier, T. C1431T variant of PPARγ is associated with preeclampsia in pregnant women. Life, 2021, 11(10), 1052.
[http://dx.doi.org/10.3390/life11101052] [PMID: 34685423]
[17]
Hedley, P.L.; Hagen, C.M.; Wilstrup, C.; Christiansen, M. The use of artificial intelligence and machine learning methods in first trimester pre-eclampsia screening: A systematic review protocol medRxiv, 2022, 2022, 22277873.
[http://dx.doi.org/10.1101/2022.07.20.22277873]
[18]
Chaemsaithong, P.; Sahota, D. S.; Poon, L. C. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol., 2022, 226(2S), S1071-S1097.e2.
[http://dx.doi.org/10.1016/j.ajog.2020.07.020]
[19]
McGinnis, R.; Steinthorsdottir, V.; Williams, N.O.; Thorleifsson, G.; Shooter, S.; Hjartardottir, S.; Bumpstead, S.; Stefansdottir, L.; Hildyard, L.; Sigurdsson, J.K.; Kemp, J.P.; Silva, G.B.; Thomsen, L.C.V.; Jääskeläinen, T.; Kajantie, E.; Chappell, S.; Kalsheker, N.; Moffett, A.; Hiby, S.; Lee, W.K.; Padmanabhan, S.; Simpson, N.A.B.; Dolby, V.A.; Staines-Urias, E.; Engel, S.M.; Haugan, A.; Trogstad, L.; Svyatova, G.; Zakhidova, N.; Najmutdinova, D.; Dominiczak, A.F.; Gjessing, H.K.; Casas, J.P.; Dudbridge, F.; Walker, J.J.; Pipkin, F.B.; Thorsteinsdottir, U.; Geirsson, R.T.; Lawlor, D.A.; Iversen, A.C.; Magnus, P.; Laivuori, H.; Stefansson, K.; Morgan, L. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat. Genet., 2017, 49(8), 1255-1260.
[http://dx.doi.org/10.1038/ng.3895] [PMID: 28628106]
[20]
Zheng, J.; Zhang, L.; Zhou, Y.; Xu, L.; Zhang, Z.; Luo, Y. Development and evaluation of a nomogram for adverse outcomes of preeclampsia in Chinese pregnant women. BMC Pregn. Childbirth, 2022, 22(1), 504.
[http://dx.doi.org/10.1186/s12884-022-04820-x] [PMID: 35725446]
[21]
Gestational hypertension and preeclampsia: ACOG practice bulletin, number 222. Obstet. Gynecol., 2020, 135(6), e237-e260.
[http://dx.doi.org/10.1097/AOG.0000000000003891] [PMID: 32443079]
[22]
Lin, Y.C. Preeclampsia predictor with machine learning: A comprehensive and bias-free machine learning pipeline medRxiv, 2022, 2022, 22276107.
[http://dx.doi.org/10.1101/2022.06.08.22276107]
[23]
ACOG Practice Bulletin No.. 202: Gestational Hypertension and Preeclampsia. Obstet. Gynecol., 2019, 133(1), 1.
[http://dx.doi.org/10.1097/AOG.0000000000003018] [PMID: 31241597]
[24]
Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia. Circ. Res., 2019, 124(7), 1094-1112.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313276] [PMID: 30920918]
[25]
Li, S.; Wang, Z.; Vieira, L.A.; Zheutlin, A.B.; Ru, B.; Schadt, E.; Wang, P.; Copperman, A.B.; Stone, J.L.; Gross, S.J.; Kao, Y.H.; Lau, Y.K.; Dolan, S.M.; Schadt, E.E.; Li, L. Improving preeclampsia risk prediction by modeling pregnancy trajectories from routinely collected electronic medical record data. NPJ Digit. Med., 2022, 5(1), 68.
[http://dx.doi.org/10.1038/s41746-022-00612-x] [PMID: 35668134]
[26]
Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet, 2016, 387(10022), 999-1011.
[http://dx.doi.org/10.1016/S0140-6736(15)00070-7] [PMID: 26342729]
[27]
Wang, G.; Zhang, Y.; Li, S.; Zhang, J.; Jiang, D.; Li, X.; Li, Y.; Du, J. A machine learning-based prediction model for cardiovascular risk in women with preeclampsia. Front. Cardiovasc. Med., 2021, 8, 736491.
[http://dx.doi.org/10.3389/fcvm.2021.736491] [PMID: 34778400]
[28]
Liu, M.; Yang, X.; Chen, G.; Ding, Y.; Shi, M.; Sun, L.; Huang, Z.; Liu, J.; Liu, T.; Yan, R.; Li, R. Development of a prediction model on preeclampsia using machine learning-based method: A retrospective cohort study in China. Front. Physiol., 2022, 13, 896969.
[http://dx.doi.org/10.3389/fphys.2022.896969] [PMID: 36035487]
[29]
Sivaram, E.; Vadivu, G.; Sangeetha, K.; Sugumaran, V. Early prognosis of preeclampsia using machine learning. Am. J. Obstet. Gynecol. MFM, 2022, 2(2), 100100.
[http://dx.doi.org/10.1007/978-3-031-11633-9_2]
[30]
Shtar, G.; Rokach, L.; Novack, V.; Novack, L.; Than, G.; Laivouri, H.; Farina, A.; Hadar, A.G.; Erez, O. Machine-learning model for the prediction of preeclampsia – a step toward personalized risk assessment. Am. J. Obstet. Gynecol., 2022, 226(1), S171.
[http://dx.doi.org/10.1016/j.ajog.2021.11.300]
[31]
Sufriyana, H.; Wu, Y.W.; Su, E.C.Y. Prediction of preeclampsia and intrauterine growth restriction: Development of machine learning models on a prospective cohort. JMIR Med. Inform., 2020, 8(5), e15411.
[http://dx.doi.org/10.2196/15411] [PMID: 32348266]
[32]
Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J., 2020, 20(1), 3-29.
[http://dx.doi.org/10.1177/1536867X20909688]
[33]
Jabi, M.; Pedersoli, M.; Mitiche, A.; Ayed, I.B. Deep clustering: On the link between discriminative models and k-means. IEEE Trans. Pattern Anal. Mach. Intell., 2021, 43(6), 1887-1896.
[http://dx.doi.org/10.1109/TPAMI.2019.2962683] [PMID: 31899413]
[34]
Nikdel, H.; Forghani, Y.; Mohammad, H.M.S. Increasing the speed of fuzzy k-nearest neighbours algorithm. Expert Syst., 2018, 35(3), e12254.
[http://dx.doi.org/10.1111/exsy.12254]
[35]
Ulyana, F.M.F.; Stefan, K.; Larysa, M. Application of the decision tree method to optimize the diagnosis of late preeclampsia on the background of metabolic syndrome. Pol Merkuriusz Lekarski, 2021, 49(291), 198-202.https://pubmed.ncbi.nlm.nih.gov/34218238/
[36]
Xin Li, A.M.H. Novel electronic health records applied for prediction of pre-eclampsia: Machine-learning algorithms. Pregnancy Hypertens., 2021, 26, 102-109.
[http://dx.doi.org/10.1016/j.preghy.2021.10.006]
[37]
Abbas, A.M.H.; Ghauth, K.I.; Ting, C.Y. User experience design using machine learning: A systematic review. IEEE Access, 2022, 10, 51501-51514.
[http://dx.doi.org/10.1109/ACCESS.2022.3173289]
[38]
Zhang, X.; Wang, M. Weighted random forest algorithm based on bayesian algorithm. J. Phys. Conf. Ser., 2021, 1924(1), 012006.
[http://dx.doi.org/10.1088/1742-6596/1924/1/012006]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy