Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Nanotechnology Trends in Food Processing and Food Packaging

Author(s): Yohan Jayaweera, Lanka Undugoda*, Chanaka Sandaruwan and Gayan Priyadarshana

Volume 13, Issue 1, 2023

Published on: 30 March, 2023

Article ID: e270223214059 Pages: 15

DOI: 10.2174/2210681213666230227111805

Price: $65

conference banner
Abstract

Food is a basic need of every living being in the world. Food production and demand do not match well in many countries due to social, technical, and technological factors. Therefore, food industries need to be developed beyond their limits. The introduction of nanotechnology to the food industry can expand the capabilities in terms of food processing and preservation aspects directly. Furthermore, nanotechnology facilitates better thermal stability, better solubility, food security, preservation capabilities, and novel and high bioavailability foods. It is a nanometer-scale technology that operates with materials having a size range of 1-100 nanometers. This review focuses on the recent approaches to nanotechnology in the food industries. For instance, enhancement of bioavailability of food using nanoencapsulation, nano emulsification, and nanoprecipitation, nanomaterials in food packaging applications such as active packaging, improved packaging, smart packaging, antimicrobial properties of different nanomaterials, application of nanotechnology on food pathogen detection, safety issues, and future trends are the key components of this review. Recent studies and research have shown the positive results of nanotechnology and proven their importance and possibilities in contributing to the food sector. However, there are some safety concerns about nanotechnology-related applications. Therefore, lots of research are conducted on the potential risk of nanoparticles on essential organs such as the brain, liver, kidney, epididymis, testis, ovary, and uterus-like organs. Moreover, the safety issues of nanotechnology on human health, such as DNA damage, oxidative stress, cell shrinkage, cytoplasmic density increment, and apoptotic body appearance, have been reported due to some nanoparticles, including silver, titanium, and zinc oxide.

Graphical Abstract

[1]
Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K.; Rather, I.A. Application of nanotechnology in food science: Perception and overview. Front. Microbiol., 2017, 8, 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[2]
Rashidi, L.; Khosravi-Darani, K. The applications of nanotechnology in food industry. Crit. Rev. Food Sci. Nutr., 2011, 51(8), 723-730.
[http://dx.doi.org/10.1080/10408391003785417] [PMID: 21838555]
[3]
Primožič M.; Knez, Ž.; Leitgeb, M. (Bio)nanotechnology in food science-food packaging. Nanomaterials, 2021, 11(2), 292.
[http://dx.doi.org/10.3390/nano11020292] [PMID: 33499415]
[4]
Jafari, S.M.; McClements, D.J. Nanotechnology approaches for increasing nutrient bioavailability. Adv. Food Nutr. Res., 2017, 81, 1-30.
[http://dx.doi.org/10.1016/bs.afnr.2016.12.008] [PMID: 28317602]
[5]
Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll., 2019, 88, 146-162.
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.003]
[6]
Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 2018, 89, 1-11.
[http://dx.doi.org/10.1016/j.foodcont.2018.01.018]
[7]
Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol., 2013, 6(3), 628-647.
[http://dx.doi.org/10.1007/s11947-012-0944-0]
[8]
Assadpour, E.; Mahdi Jafari, S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr., 2019, 59(19), 3129-3151.
[http://dx.doi.org/10.1080/10408398.2018.1484687] [PMID: 29883187]
[9]
Khan, M.N.; Haggag, Y.A.; Lane, M.E.; McCarron, P.A.; Tambuwala, M.M. Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1α and nuclear p65 (REL A). Curr. Drug Deliv., 2018, 15(2), 286-295.
[http://dx.doi.org/10.2174/1567201814666171019104002] [PMID: 29065834]
[10]
de Melo, A.P.Z.; da Rosa, C.G.; Noronha, C.M.; Machado, M.H.; Sganzerla, W.G.; Bellinati, N.V.C.; Nunes, M.R.; Verruck, S.; Prudêncio, E.S.; Barreto, P.L.M. Nanoencapsulation of vitamin D3 and fortification in an experimental jelly model of Acca sellowiana: Bioaccessibility in a simulated gastrointestinal system. Lebensm. Wiss. Technol., 2021, 145, 111287.
[http://dx.doi.org/10.1016/j.lwt.2021.111287]
[11]
Resende, D.; Costa Lima, S.A.; Reis, S.; Biointerfaces, S.B. Nanoencapsulation approaches for oral delivery of vitamin A. Colloids Surf. B Biointerfaces, 2020, 193, 111121.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111121] [PMID: 32464354]
[12]
Ghorbanzade, T.; Jafari, S.M.; Akhavan, S.; Hadavi, R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem., 2017, 216, 146-152.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.022] [PMID: 27596403]
[13]
Cui, H.; Bai, M.; Lin, L. Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr. Polym., 2018, 179, 360-369.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.011] [PMID: 29111062]
[14]
Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Simal-Gándara, J.; Torrado-Agrasar, A. Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind. Crops Prod., 2018, 111, 219-225.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.027]
[15]
Modarres-Gheisari, S.M.M.; Gavagsaz-Ghoachani, R.; Malaki, M.; Safarpour, P.; Zandi, M. Ultrasonic nano-emulsification – A review. Ultrason. Sonochem., 2019, 52, 88-105.
[http://dx.doi.org/10.1016/j.ultsonch.2018.11.005] [PMID: 30482437]
[16]
Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. technology, b., Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol., 2012, 5(3), 854-867.
[http://dx.doi.org/10.1007/s11947-011-0683-7]
[17]
Singh, S.; Sahoo, S.; Sahoo, B.C.; Naik, B.; Dash, M.; Nayak, S.; Kar, B. Enhancement of Bioactivities of Rhizome Essential Oil of Alpinia galanga (Greater galangal) Through Nanoemulsification. J. Essent. Oil-Bear. Plants, 2021, 24(3), 648-657.
[http://dx.doi.org/10.1080/0972060X.2021.1951847]
[18]
Walia, N.; Chen, L. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem., 2020, 305, 125475.
[http://dx.doi.org/10.1016/j.foodchem.2019.125475] [PMID: 31518841]
[19]
Martínez Rivas, C.J.; Tarhini, M.; Badri, W.; Miladi, K.; Greige-Gerges, H.; Nazari, Q.A.; Galindo Rodríguez, S.A.; Román, R.Á.; Fessi, H.; Elaissari, A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm., 2017, 532(1), 66-81.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.064] [PMID: 28801107]
[20]
Leung, M.H.M.; Shen, A.Q. Microfluidic assisted nanoprecipitation of PLGA nanoparticles for curcumin delivery to leukemia jurkat cells. Langmuir, 2018, 34(13), 3961-3970.
[http://dx.doi.org/10.1021/acs.langmuir.7b04335] [PMID: 29544247]
[21]
Dasgupta, N.; Ranjan, S.; Mundra, S.; Ramalingam, C.; Kumar, A. Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int. J. Food Prop., 2016, 19(3), 700-708.
[http://dx.doi.org/10.1080/10942912.2015.1042587]
[22]
Pérez-Masiá, R.; López-Nicolás, R.; Periago, M.J.; Ros, G.; Lagaron, J.M.; López-Rubio, A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem., 2015, 168, 124-133.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.051] [PMID: 25172691]
[23]
Bejrapha, P.; Min, S.G.; Surassmo, S.; Choi, M.J. Physicothermal properties of freeze-dried fish oil nanocapsules frozen under different conditions. Dry. Technol., 2010, 28(4), 481-489.
[http://dx.doi.org/10.1080/07373931003613684]
[24]
Esmaeili, H.; Cheraghi, N.; Khanjari, A.; Rezaeigolestani, M.; Basti, A.A.; Kamkar, A.; Aghaee, E.M. Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Sci., 2020, 166, 108135.
[http://dx.doi.org/10.1016/j.meatsci.2020.108135] [PMID: 32259681]
[25]
Hua, L.; Deng, J.; Wang, Z.; Wang, Y.; Chen, B.; Ma, Y.; Li, X.; Xu, B. Improving the functionality of chitosan-based packaging films by crosslinking with nanoencapsulated clove essential oil. Int. J. Biol. Macromol., 2021, 192, 627-634.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.197] [PMID: 34626727]
[26]
Jaiswal, L.; Shankar, S.; Rhim, J.W. Applications of nanotechnology in food microbiology. Methods Microbiol. , 2019, 46, 43-60.
[http://dx.doi.org/10.1016/bs.mim.2019.03.002]
[27]
Chaudhary, P.; Fatima, F.; Kumar, A.; Polymers, O. Materials, Relevance of nanomaterials in food packaging and its advanced future prospects. J. Inorg. Organomet. Polym. Mater., 2020, 30(12), 5180-5192.
[http://dx.doi.org/10.1007/s10904-020-01674-8] [PMID: 32837459]
[28]
Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci., 2011, 363(1), 1-24.
[http://dx.doi.org/10.1016/j.jcis.2011.07.017] [PMID: 21824625]
[29]
Li, W.; Zhang, C.; Chi, H.; Li, L.; Lan, T.; Han, P.; Chen, H.; Qin, Y.J.M. Development of antimicrobial packaging film made from poly (lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules, 2017, 22(7), 1170.
[30]
He, Y.; Li, H.; Fei, X.; Peng, L. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr. Polym., 2021, 252, 117156.
[http://dx.doi.org/10.1016/j.carbpol.2020.117156] [PMID: 33183607]
[31]
Kumar, S.; Shukla, A.; Baul, P.P.; Mitra, A.; Halder, D. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life, 2018, 16, 178-184.
[http://dx.doi.org/10.1016/j.fpsl.2018.03.008]
[32]
e, K.; K, M.C.; P, B.; A, T.S.; i, J.C.R. Biocompatible silver nanoparticles/ poly(vinyl alcohol) electrospun nanofibers for potential antimicrobial food packaging applications. Food Packag. Shelf Life, 2019, 21, 100379.
[http://dx.doi.org/10.1016/j.fpsl.2019.100379]
[33]
Ernest Ravindran, R.S.; Subha, V.; Ilangovan, R. Silver nanoparticles blended PEG/PVA nanocomposites synthesis and characterization for food packaging. Arab. J. Chem., 2020, 13(7), 6056-6060.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.005]
[34]
Silva, L.S.C.; Martim, S.R.; Gomes, D.M.D.; Prado, F.B.; Marinho, N.M.V.; Silva, T.A.; Castillo, T.A.; Rego, J.A.R.; Seabra, A.B.; Durán, N.; Teixeira, M.F.S. Amazonian tuber starch based films incorporated with silver nanoparticles for preservation of fruits. Res. Soc. Develop., 2021, 10(6), e23510615304-e23510615304.
[http://dx.doi.org/10.33448/rsd-v10i6.15304]
[35]
Emamifar, A.; Kadivar, M.; Shahedi, M.; Soleimanian-Zad, S. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov. Food Sci. Emerg. Technol., 2010, 11(4), 742-748.
[http://dx.doi.org/10.1016/j.ifset.2010.06.003]
[36]
Espitia, P.J.P.; Soares, N.F.F.; Coimbra, J.S.R.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol., 2012, 5(5), 1447-1464.
[http://dx.doi.org/10.1007/s11947-012-0797-6]
[37]
Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J., 2013, 49(11), 3471-3482.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.08.005]
[38]
Emamhadi, M.A.; Sarafraz, M.; Akbari, M.; Thai, V.N.; Fakhri, Y.; Linh, N.T.T.; Mousavi Khaneghah, A. Nanomaterials for food packaging applications: A systematic review. Food Chem. Toxicol., 2020, 146, 111825.
[http://dx.doi.org/10.1016/j.fct.2020.111825] [PMID: 33096197]
[39]
Pirsa, S.; Shamusi, T. Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Mater. Sci. Eng. C, 2019, 102, 798-809.
[http://dx.doi.org/10.1016/j.msec.2019.02.021] [PMID: 31147052]
[40]
Kumar, S.; Mudai, A.; Roy, B.; Basumatary, I.B.; Mukherjee, A.; Dutta, J. Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods, 2020, 9(9), 1143.
[http://dx.doi.org/10.3390/foods9091143] [PMID: 32825205]
[41]
Lee, S.W.; Said, N.S.; Sarbon, N.M. The effects of zinc oxide nanoparticles on the physical, mechanical and antimicrobial properties of chicken skin gelatin/tapioca starch composite films in food packaging. J. Food Sci. Technol., 2021, 58(11), 4294-4302.
[http://dx.doi.org/10.1007/s13197-020-04904-6] [PMID: 34538912]
[42]
Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 2011, 363(1), 1-24.
[http://dx.doi.org/10.1016/j.jcis.2011.07.017]
[43]
Siripatrawan, U.; Kaewklin, P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll., 2018, 84, 125-134.
[http://dx.doi.org/10.1016/j.foodhyd.2018.04.049]
[44]
Mohr, L.C.; Capelezzo, A.P.; Baretta, C.R.D.M.; Martins, M.A.P.M.; Fiori, M.A.; Mello, J.M.M. Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer. Polym. Test., 2019, 77, 105867.
[http://dx.doi.org/10.1016/j.polymertesting.2019.04.014]
[45]
Baek, N.; Kim, Y.T.; Marcy, J.E.; Duncan, S.E.; O’Keefe, S. Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Pack. Shelf Life, 2018, 17, 30-38.
[46]
Rashidi, L.; Khosravi, K. The Applications of Nanotechnology in Food Industry. Critical reviews in food science and nutrition, 2011, 51, 723-30.
[http://dx.doi.org/10.1080/10408391003785417]
[47]
Li, Q.; Ren, T.; Perkins, P.; Hu, X.; Wang, X. Applications of halloysite nanotubes in food packaging for improving film performance and food preservation. Food Control, 2021, 124, 107876.
[http://dx.doi.org/10.1016/j.foodcont.2021.107876]
[48]
Gaikwad, K.K.; Singh, S.; Lee, Y.S. High adsorption of ethylene by alkali-treated halloysite nanotubes for food-packaging applications. Environ. Chem. Lett., 2018, 16(3), 1055-1062.
[http://dx.doi.org/10.1007/s10311-018-0718-7]
[49]
Farahnaky, A.; Sharifi, S.; Imani, B.; Dorodmand, M.M.; Majzoobi, M. Physicochemical and mechanical properties of pectin-carbon nanotubes films produced by chemical bonding. Food Packag. Shelf Life, 2018, 16, 8-14.
[http://dx.doi.org/10.1016/j.fpsl.2018.01.004]
[50]
Fang, C.; Yang, R.; Zhang, Z.; Zhou, X.; Lei, W.; Cheng, Y.; Zhang, W.; Wang, D. Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composites. RSC Advances, 2018, 8(16), 8920-8928.
[http://dx.doi.org/10.1039/C7RA13634J] [PMID: 35539851]
[51]
Yuan, C.; Tony, A.; Yin, R.; Wang, K.; Zhang, W. Tactile and thermal sensors built from carbon–polymer nanocomposites-A critical review. Sensors, 2021, 21(4), 1234.
[http://dx.doi.org/10.3390/s21041234] [PMID: 33572485]
[52]
Lee, M. H.; Park, H. Preparation of halloysite nanotubes coated with Eudragit for a controlled release of thyme essential oil. Appl. Polymer Sci., 2015, 132(46)
[http://dx.doi.org/10.1002/app.42771]
[53]
Risyon, N.P.; Othman, S.H.; Basha, R.K.; Talib, R.A.; Life, S. Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag. Shelf Life, 2020, 23, 100450.
[http://dx.doi.org/10.1016/j.fpsl.2019.100450]
[54]
Bumbudsanpharoke, N.; Ko, S. Nanoclays in Food and Beverage Packaging. J. Nanomater., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/8927167]
[55]
Azeredo, H.M.C. Nanocomposites for food packaging applications. Food Res. Int., 2009, 42(9), 1240-1253.
[http://dx.doi.org/10.1016/j.foodres.2009.03.019]
[56]
Brody, A.L.; Bugusu, B.; Han, J.H.; Sand, C.K.; McHugh, T.H. Scientific status summary. Innovative food packaging solutions. J. Food Sci., 2008, 73(8), R107-R116.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00933.x] [PMID: 19019124]
[57]
Takahashi, G.; Barbosa, H.; Bergamasco, R.; Madrona, G.; Tonon, L.; Yamashita, F.; Scapim, M.J.C.E.T. Development and active biodegradable film evaluation incorporated with oregano essential oil and nanoclay. Chem. Eng. Trans., 2017, 57, 403-408.
[58]
Awan, M.O.; Shakoor, A.; Rehan, M.S.; Gill, Y.Q. Development of HDPE composites with improved mechanical properties using calcium carbonate and NanoClay. Physica B, 2021, 606, 412568.
[http://dx.doi.org/10.1016/j.physb.2020.412568]
[59]
Manikantan, M.R.; Pandiselvam, R.; Arumuganathan, T.; Indurani, C.; Varadharaju, N. Low-density polyethylene based nanocomposite packaging films for the preservation of sugarcane juice. J. Food Sci. Technol., 2022, 59(4), 1629-1636.
[http://dx.doi.org/10.1007/s13197-021-05174-6] [PMID: 35250086]
[60]
Bumbudsanpharoke, N.; Lee, W.; Choi, J.C.; Park, S.J.; Kim, M.; Ko, S.; Minerals, C. Influence of montmorillonite nanoclay content on the optical, thermal, mechanical, and barrier properties of low-density polyethylene. Clays Clay Miner., 2017, 65(6), 387-397.
[http://dx.doi.org/10.1346/CCMN.2017.064071]
[61]
Mustafa, F.; Andreescu, S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances, 2020, 10(33), 19309-19336.
[http://dx.doi.org/10.1039/D0RA01084G] [PMID: 35515480]
[62]
Melini, V.; Melini, F.J.F. Strategies to extend bread and GF bread shelf-life: From sourdough to antimicrobial active packaging and nanotechnology. Fermentation, 2018, 4(1), 9.
[63]
Wang, L.; Periyasami, G.; Aldalbahi, A.; Fogliano, V. The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour. Food Chem., 2021, 359, 129859.
[http://dx.doi.org/10.1016/j.foodchem.2021.129859] [PMID: 33957323]
[64]
Nunes, M.R.; de Souza Maguerroski Castilho, M.; de Lima Veeck, A.P.; da Rosa, C.G.; Noronha, C.M.; Maciel, M.V.O.B.; Barreto, P.M. Antioxidant and antimicrobial methylcellulose films containing Lippia alba extract and silver nanoparticles. Carbohydr. Polym., 2018, 192, 37-43.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.014] [PMID: 29691032]
[65]
Wu, Z.; Deng, W.; Luo, J.; Deng, D. Multifunctional nano-cellulose composite films with grape seed extracts and immobilized silver nanoparticles. Carbohydr. Polym., 2019, 205, 447-455.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.060] [PMID: 30446127]
[66]
Kumar, S.; Boro, J.C.; Ray, D.; Mukherjee, A.; Dutta, J. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon, 2019, 5(6), e01867.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01867] [PMID: 31198876]
[67]
Hakeem, M.J.; Feng, J.; Nilghaz, A.; Ma, L.; Seah, H.C.; Konkel, M.E.; Lu, X. microbiology, e., Active packaging of immobilized zinc oxide nanoparticles controls Campylobacter jejuni in raw chicken meat. Appl. Environ. Microbiol., 2020, 86(22), e01195-e20.
[http://dx.doi.org/10.1128/AEM.01195-20] [PMID: 32887715]
[68]
Glaser, T.K.; Plohl, O.; Vesel, A.; Ajdnik, U.; Ulrih, N.P. Hrnčič M.K.; Bren, U.; Fras Zemljič L. Functionalization of polyethylene (PE) and polypropylene (PP) material using chitosan nanoparticles with incorporated resveratrol as potential active packaging. Materials, 2019, 12(13), 2118.
[http://dx.doi.org/10.3390/ma12132118] [PMID: 31266201]
[69]
Paidari, S.; Ahari, H. The effects of nanosilver and nanoclay nanocomposites on shrimp (Penaeus semisulcatus) samples inoculated to food pathogens. J. Food Meas. Charact., 2021, 15(4), 3195-3206.
[http://dx.doi.org/10.1007/s11694-021-00905-x]
[70]
Hosseini, R.; Ahari, H.; Mahasti, P.; Paidari, S. Measuring the migration of silver from silver nanocomposite polyethylene packaging based on (TiO2) into Penaeus semisulcatus using titration comparison with migration methods. Fish. Sci., 2017, 83(4), 649-659.
[http://dx.doi.org/10.1007/s12562-017-1090-4]
[71]
Kumar, A.; Gupta, V.; Singh, S.; Saini, S.; Gaikwad, K.K. Pine needles lignocellulosic ethylene scavenging paper impregnated with nanozeolite for active packaging applications. Ind. Crops Prod., 2021, 170, 113752.
[http://dx.doi.org/10.1016/j.indcrop.2021.113752]
[72]
Miranda, K.W.E.; Bresolin, J.D.; Natarelli, C.V.L.; Benevides, S.D.; Bastos, M.S.R.; Mattoso, L.H.C.; Oliveira, J.E. Potential use of poly(lactic acid) nanofibers mats as Nano‐sachets in postharvest of climacteric fruits and vegetables. J. Appl. Polym. Sci., 2021, 138(30), 50735.
[http://dx.doi.org/10.1002/app.50735]
[73]
Hernández-Muñoz, P.; Cerisuelo, J.P.; Domínguez, I.; López-Carballo, G.; Catalá, R.; Gavara, R. Nanotechnology in food packaging.In: Nanomaterials for food applications; Elsevier, 2019, pp. 205-232.
[http://dx.doi.org/10.1016/B978-0-12-814130-4.00008-7]
[74]
Marin-Bustamante, M.; Chanona-Pérez, J. Gϋemes-Vera, N.; Mendoza-Pérez, J.; Reséndiz-Mora, C.; Cásarez-Santiago, R.; Rojas-Candelas, L.J.P.N. Nanomaterials, polymers, and smart packaging for food materials; Plant Nanobionics, 2019, pp. 199-216.
[http://dx.doi.org/10.1007/978-3-030-16379-2_7]
[75]
Saenjaiban, A.; Singtisan, T.; Suppakul, P.; Jantanasakulwong, K.; Punyodom, W.; Rachtanapun, P. Novel color change film as a time–temperature indicator using polydiacetylene/silver nanoparticles embedded in carboxymethyl cellulose. Polymers, 2020, 12(10), 2306.
[http://dx.doi.org/10.3390/polym12102306] [PMID: 33050106]
[76]
Terra, A.L.M.; Moreira, J.B.; Costa, J.A.V.; Morais, M.G. Development of time-pH indicator nanofibers from natural pigments: An emerging processing technology to monitor the quality of foods. Lebensm. Wiss. Technol., 2021, 142, 111020.
[http://dx.doi.org/10.1016/j.lwt.2021.111020]
[77]
Liu, J.; Huang, J.; Ying, Y.; Hu, L.; Hu, Y. pH-sensitive and antibacterial films developed by incorporating anthocyanins extracted from purple potato or roselle into chitosan/polyvinyl alcohol/nano-ZnO matrix: Comparative study. Int. J. Biol. Macromol., 2021, 178, 104-112.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.115] [PMID: 33609585]
[78]
Weston, M.; Kuchel, R.P.; Ciftci, M.; Boyer, C.; Chandrawati, R. A polydiacetylene-based colorimetric sensor as an active use-by date indicator for milk. J. Colloid Interface Sci., 2020, 572, 31-38.
[http://dx.doi.org/10.1016/j.jcis.2020.03.040] [PMID: 32224349]
[79]
Jayakumar, A. K v, H.; T S, S.; Joseph, M.; Mathew, S.; G, P.; Nair, I.C.; Radhakrishnan E.K. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int. J. Biol. Macromol., 2019, 136, 395-403.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.018] [PMID: 31173829]
[80]
De Silva, R.T.; Mantilaka, M.M.M.G.P.G.; Ratnayake, S.P.; Amaratunga, G.A.J.; de Silva, K.M.N. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr. Polym., 2017, 157, 739-747.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.038] [PMID: 27987986]
[81]
Mathew, S.; Snigdha, S.; Mathew, J.; Radhakrishnan, E.J.F.P.; Life, S. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life, 2019, 19, 155-166.
[http://dx.doi.org/10.1016/j.fpsl.2018.12.009]
[82]
Salama, H.E.; Abdel Aziz, M.S. Optimized carboxymethyl cellulose and guanidinylated chitosan enriched with titanium oxide nanoparticles of improved UV-barrier properties for the active packaging of green bell pepper. Int. J. Biol. Macromol., 2020, 165(Pt A), 1187-1197.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.254] [PMID: 33035528]
[83]
Shankar, S.; Wang, L.F.; Rhim, J.W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater. Sci. Eng. C, 2018, 93, 289-298.
[http://dx.doi.org/10.1016/j.msec.2018.08.002] [PMID: 30274061]
[84]
Hu, X.; Jia, X.; Zhi, C.; Jin, Z.; Miao, M. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles. Carbohydr. Polym., 2019, 210, 204-209.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.043] [PMID: 30732755]
[85]
Rojas-Lema, S.; Quiles-Carrillo, L.; Garcia-Garcia, D.; Melendez-Rodriguez, B.; Balart, R.; Torres-Giner, S. Tailoring the properties of thermo-compressed polylactide films for food packaging applications by individual and combined additions of lactic acid oligomer and halloysite nanotubes. Molecules, 2020, 25(8), 1976.
[http://dx.doi.org/10.3390/molecules25081976] [PMID: 32340300]
[86]
Wen, Y.H.; Tsou, C.H.; de Guzman, M.R.; Huang, D.; Yu, Y.Q.; Gao, C.; Zhang, X.M.; Du, J.; Zheng, Y.T.; Zhu, H.J.P.B. Antibacterial nanocomposite films of poly (vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging. Polym. Bull., 2021, 79(6), 1-20.
[87]
Jayasuriya, A.C.; Aryaei, A.; Jayatissa, A.H. ZnO nanoparticles induced effects on nanomechanical behavior and cell viability of chitosan films. Mater. Sci. Eng. C, 2013, 33(7), 3688-3696.
[http://dx.doi.org/10.1016/j.msec.2013.04.057] [PMID: 23910265]
[88]
Martinez-Soberanes, E.E.; Purdy, S.K.; Reaney, M.J.T.; Zhang, W.J. Mechanical stress on canola seed during dehulling. J. Food Sci., 2022, 87(8), 3472-3481.
[http://dx.doi.org/10.1111/1750-3841.16243] [PMID: 35791069]
[89]
Zaid, M.H.M.; Saidykhan, J.; Abdullah, J. Nanosensors based detection of foodborne pathogens.In: Nanotechnology: Applications in Energy, Drug and Food; Springer, 2019, pp. 377-422.
[http://dx.doi.org/10.1007/978-3-319-99602-8_19]
[90]
Helmke, B.P.; Minerick, A.R. Designing a nano-interface in a microfluidic chip to probe living cells: Challenges and perspectives. Proc. Natl. Acad. Sci., 2006, 103(17), 6419-6424.
[http://dx.doi.org/10.1073/pnas.0507304103] [PMID: 16618928]
[91]
Cheng, Q.; Li, C.; Pavlinek, V.; Saha, P.; Wang, H. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl. Surf. Sci., 2006, 252(12), 4154-4160.
[http://dx.doi.org/10.1016/j.apsusc.2005.06.022]
[92]
Kumar, H. Kuča, K.; Bhatia, S.K.; Saini, K.; Kaushal, A.; Verma, R.; Bhalla, T.C.; Kumar, D. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors, 2020, 20(7), 1966.
[http://dx.doi.org/10.3390/s20071966] [PMID: 32244581]
[93]
Bouwmeester, H.; Dekkers, S.; Noordam, M.Y.; Hagens, W.I.; Bulder, A.S.; de Heer, C.; ten Voorde, S.E.C.G.; Wijnhoven, S.W.P.; Marvin, H.J.P.; Sips, A.J.A.M. Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol., 2009, 53(1), 52-62.
[http://dx.doi.org/10.1016/j.yrtph.2008.10.008] [PMID: 19027049]
[94]
Alamer, S.; Chinnappan, R.; Zourob, M. Development of rapid immuno-based nanosensors for the detection of pathogenic bacteria in poultry processing plants. Procedia Technol., 2017, 27, 23-26.
[http://dx.doi.org/10.1016/j.protcy.2017.04.012]
[95]
Liu, H.; Dong, H.; Chen, Z.; Lin, L.; Chen, H.; Li, S.; Deng, Y. Magnetic nanoparticles enhanced microarray detection of multiple foodborne pathogens. J. Biomed. Nanotechnol., 2017, 13(10), 1333-1343.
[http://dx.doi.org/10.1166/jbn.2017.2418]
[96]
Wang, D.; Lian, F.; Yao, S.; Liu, Y.; Wang, J.; Song, X.; Ge, L.; Wang, Y.; Zhao, Y.; Zhang, J.; Zhao, C.; Xu, K. Simultaneous detection of three foodborne pathogens based on immunomagnetic nanoparticles and fluorescent quantum dots. ACS Omega, 2020, 5(36), 23070-23080.
[http://dx.doi.org/10.1021/acsomega.0c02833] [PMID: 32954157]
[97]
Zheng, F.; Wang, P.; Du, Q.; Chen, Y.; Liu, N. Simultaneous and ultrasensitive detection of foodborne bacteria by gold nanoparticles-amplified microcantilever array biosensor. Front Chem., 2019, 7, 232.
[http://dx.doi.org/10.3389/fchem.2019.00232] [PMID: 31065549]
[98]
Akbar, A.; Sadiq, M.B.; Ali, I.; Muhammad, N.; Rehman, Z.; Khan, M.N.; Muhammad, J.; Khan, S.A.; Rehman, F.U.; Anal, A.K. Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatal. Agric. Biotechnol., 2019, 17, 36-42.
[http://dx.doi.org/10.1016/j.bcab.2018.11.005]
[99]
Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Ultrasonic-assisted CdO–MgO nanocomposite for multifunctional applications. Mater. Technol., 2019, 34(7), 403-414.
[http://dx.doi.org/10.1080/10667857.2019.1574963]
[100]
Lee, E.H.; Khan, I.; Oh, D.H. Evaluation of the efficacy of nisin-loaded chitosan nanoparticles against foodborne pathogens in orange juice. J. Food Sci. Technol., 2018, 55(3), 1127-1133.
[http://dx.doi.org/10.1007/s13197-017-3028-3] [PMID: 29487455]
[101]
Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[102]
Morsy, M.K.; Elsabagh, R.; Trinetta, V. Evaluation of novel synergistic antimicrobial activity of nisin, lysozyme, EDTA nanoparticles, and/or ZnO nanoparticles to control foodborne pathogens on minced beef. Food Control, 2018, 92, 249-254.
[http://dx.doi.org/10.1016/j.foodcont.2018.04.061]
[103]
Samadi, M.; Shekarforoush, S.S.; Gheisari, H.R. Evaluation of antimicrobial activity of magnesium oxide nanocomposite film in combination with ε-poly-L-lysine against Foodborne pathogens in vacuum packaged beef. Research Square, 2021.
[http://dx.doi.org/10.21203/rs.3.rs-294697/v1]
[104]
Wang, R.; Song, B.; Wu, J.; Zhang, Y.; Chen, A.; Shao, L. Potential adverse effects of nanoparticles on the reproductive system. Int. J. Nanomedicine, 2018, 13, 8487-8506.
[http://dx.doi.org/10.2147/IJN.S170723] [PMID: 30587973]
[105]
Naseer, B.; Srivastava, G.; Qadri, O.S.; Faridi, S.A.; Islam, R.U.; Younis, K. Importance and health hazards of nanoparticles used in the food industry. Nanotechnol. Rev., 2018, 7(6), 623-641.
[http://dx.doi.org/10.1515/ntrev-2018-0076]
[106]
Botelho, M.C.; Costa, C.; Silva, S.; Costa, S.; Dhawan, A.; Oliveira, P.A.; Teixeira, J.P. Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro. Biomed. Pharmacother., 2014, 68(1), 59-64.
[http://dx.doi.org/10.1016/j.biopha.2013.08.006] [PMID: 24051123]
[107]
Becker, K.; Schroecksnadel, S.; Geisler, S.; Carriere, M.; Gostner, J.M.; Schennach, H.; Herlin, N.; Fuchs, D. TiO2 nanoparticles and bulk material stimulate human peripheral blood mononuclear cells. Food Chem. Toxicol., 2014, 65(100), 63-69.
[http://dx.doi.org/10.1016/j.fct.2013.12.018] [PMID: 24361406]
[108]
Wang, C.; Wang, H.; Lin, M.; Hu, X.; Protection, E. ZnO nanoparticles induced cytotoxicity on human pulmonary adenocarcinoma cell line LTEP-a-2. Process Saf. Environ. Prot., 2015, 93, 265-273.
[http://dx.doi.org/10.1016/j.psep.2014.05.007]
[109]
Miethling-Graff, R.; Rumpker, R.; Richter, M.; Verano-Braga, T.; Kjeldsen, F.; Brewer, J.; Hoyland, J.; Rubahn, H.G.; Erdmann, H. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol. In Vitro, 2014, 28(7), 1280-1289.
[http://dx.doi.org/10.1016/j.tiv.2014.06.005] [PMID: 24997297]
[110]
Shi, J.; Sun, X.; Lin, Y.; Zou, X.; Li, Z.; Liao, Y.; Du, M.; Zhang, H. Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials, 2014, 35(24), 6657-6666.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.093] [PMID: 24818879]
[111]
Senanayake, V.; Juurlink, B.H.; Zhang, C.; Zhan, E.; Wilson, L.D.; Kwon, J.; Yang, J.; Lim, Z.L.; Brunet, S.M.K.; Schatte, G.; Maley, J.M.; Hoffmeyer, R.E.; Sammynaiken, R. Do surface defects and modification determine the observed toxicity of carbon nanotubes? J. Biomed. Nanotechnol., 2008, 4(4), 515-523.
[http://dx.doi.org/10.1166/jbn.2008.017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy