Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Characterization of a Haloalkaline Nocardiopsis sp. Strain S10 Isolated from Wastewater and Optimization of Culture Medium for Improving Production of Antifungal Compounds

Author(s): Samiha Souagui*, Hafid Boudries, Warda Djoudi, Ibtissem Djinni, Firdousse Laincer, Badria Keramane and Mouloud Kecha

Volume 21, Issue 3, 2023

Published on: 27 April, 2023

Article ID: e240223214038 Pages: 19

DOI: 10.2174/2211352521666230224150318

Price: $65

conference banner
Abstract

Background: The emerging antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are a pressing global concern. Furthermore, the limited number of available antifungal agents requires the discovery of new antimicrobials.

Introduction: This paper focused on the isolation and characterization of an actinobacterium designated S10, the study of its antimicrobial activity, on the one hand, and the optimization of antifungal production using statistical methods, on the other hand.

Methods and Results: A haloalkaliphilic actinobacterium designated S10 was isolated from a wastewater treatment plant in the Souk-El-Tenine region (Bejaia, Algeria). This strain showed a broad spectrum of activity against bacteria (B. subtilis, L. innocua, M. luteus, S. aureus, MRSA, E. coli, P. aeruginosa, S. Typhi, and V. cholerae), molds (A. niger, G. geotricum, and F. oxysporum) and a pathogenic yeast (C. albicans). The extracellular enzymes producer Nocardiopsis sp. S10 was identified based on morphological, chemical, and 16S rRNA gene sequencing analysis. The best antimicrobial production was achieved on Mincer-Sea-Water (MSW) solid medium, and the antibiotics produced were extracted with ethyl acetate. For antifungal production, central composite design (CCD) and response surface methodology (RSM) were used to optimize the culture medium formulation.

Conclusion: Optimal antifungal activity was achieved using a mixture of 2 g. L-1 starch, 2 g. L-1 of yeast extract and 2.75 g. L-1 of peptone at pH = 9.2. The application of the statistical approach stimulated a good yield of anti-C. albicans activity, corresponding to an increase of 72.22% compared to the non-optimized conditions.

Graphical Abstract

[1]
Kateryna Kon, M.D.; Rai, M. Antibiotic Resistance Mechanisms and New Antimicrobial Approaches; Academic Press is an imprint (Eds); Elsevier: London EC2Y 5AS, UK, 2016.
[2]
Zhou, C.S.; Wu, J.W.; Dong, L.L.; Liu, B.F.; Xing, D.F.; Yang, S.S.; Wu, X.K.; Wang, Q.; Fan, J.N.; Feng, L.P.; Cao, G.L. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater., 2020, 388, 122070.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122070] [PMID: 31954307]
[3]
Gordon, D.; Brown David, W.; Denning Neil, AR.; Gow Stuart, M.; Levitz Mihai, G.; Theodore, N.; White, C. Hidden killers: Human fungal infections. Sci. Transi. Med., 2012, 2012, 165rv13.
[4]
Manivasagan, P.; Kang, KH.; Sivakumar, K.; Li-Chan, EC.; Oh, HM.; Kim, SK. Marine actinobacteria: An important source of bioactive natural products. Environ. Toxicol. Pharmacol., 2014, 38, 172-188.
[5]
Siddharth, S.; Aswathanarayan, J.B.; Kuruburu, M.G.; Madhunapantula, S.R.V.; Vittal, R.R. Diketopiperazine derivative from marine actinomycetes Nocardiopsis sp. SCA30 with antimicrobial activity against MRSA. Arch. Microbiol., 2021, 203(10), 6173-6181.
[http://dx.doi.org/10.1007/s00203-021-02582-2] [PMID: 34632524]
[6]
Subramani, R.; Sipkema, D. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Mar. Drugs, 2019, 17(5), 249.
[http://dx.doi.org/10.3390/md17050249] [PMID: 31035452]
[7]
Sun, H.; Lapidus, A.; Nolan, M.; Lucas, S.; Del Rio, T.G.; Tice, H.; Cheng, J.F.; Tapia, R.; Han, C.; Goodwin, L.; Pitluck, S.; Pagani, I.; Ivanova, N.; Mavromatis, K.; Mikhailova, N.; Pati, A.; Chen, A.; Palaniappan, K.; Land, M.; Hauser, L.; Chang, Y.J.; Jeffries, C.D.; Djao, O.D.; Rohde, M.; Sikorski, J.; Göker, M.; Woyke, T.; Bristow, J.; Eisen, J.A.; Markowitz, V.; Hugenholtz, P.; Kyrpides, N.C.; Klenk, H.P. Complete genome sequence of Nocardiopsis dassonvillei type strain (IMRU 509). Stand. Genomic Sci., 2010, 3(3), 325-336.
[PMID: 21304737]
[8]
Meyer, J. Nocardiopsis, a new genus of the order Actinomycetales. Int. J. Syst. Bacteriol., 1976, 26, 487-493.
[http://dx.doi.org/10.1099/00207713-26-4-487]
[9]
Sanchez, S.; Demain, A.L. Metabolic regulation of fermentation processes. Enzyme Microb. Technol., 2002, 31, 895-906.
[http://dx.doi.org/10.1016/S0141-0229(02)00172-2]
[10]
Malekjani, N.; Jafari, S.M. Food process modeling and optimization by Response Surface Methodology (RSM); Sevda, S.; Singh, A., Eds.; CRC Press: Boca Raton, 2020.
[11]
Ben Mefteh, F.; Frikha, F.; Daoud, A.; Chenari Bouket, A.; Luptakova, L.; Alenezi, F.N.; Al-Anzi, B.S.; Oszako, T.; Gharsallah, N.; Belbahri, L. Response surface methodology optimization of an acidic protease produced by Penicillium bilaiae Isolate TDPEF30, a newly recovered endophytic fungus from healthy roots of date palm trees (Phoenix dactylifera L.). Microorganisms, 2019, 7(3), 74.
[http://dx.doi.org/10.3390/microorganisms7030074] [PMID: 30857235]
[12]
Azzouz, Z.; Bettache, A. Biotechnological production and statistical optimization of fungal xylanase by bioconversion of the lignocellulosic biomass residues in solid-state fermentation. In: Biomass Conversion and Biorefinery; , 2020; 12, pp. 5923-5935.
[13]
Manohari, R.; Yogalakshmi, KN. Optimization of copper (II) removal by response surface methodology using root nodule endophytic bacteria isolated from Vigna unguiculata. Water. Air. Soil Pollut., 2016, 227, 1-13.
[14]
Cai, Y.; Wang, R.; Rao, P.; Wu, B.; Yan, L.; Hu, L.; Park, S.; Ryu, M.; Zhou, X. Bioremediation of petroleum hydrocarbons using Acinetobacter sp. SCYY-5 isolated from contaminated oil sludge: Strategy and effectiveness study. Int. J. Environ. Res. Public. Health., 2021, 18(2), 819.
[15]
Djinni, I.; Djoudi, W. Streptomyces sp. WR1L1S8 a potent endophytic marine strain for heavy metal resistance and copper removal enhanced by RSM modeling. Acta Ecol. Sin., 2021, 42(2), 80-89.
[http://dx.doi.org/10.1016/j.chnaes.2021.04.004]
[16]
Zhang, L.J.; Zheng, X.; Jin, Z.H.; Hu, S.; He, M.R. Optimization of fermentation conditions for pristinamycin production by immobilized Streptomyces pristinaespiralis using response surface methodology. Process Biotechnol. Electr. J. Biotechnol., 2012, 15(4)
[17]
Djinni, I.; Defant, A.; Djoudi, W.; Chaabane Chaouch, F.; Souagui, S.; Kecha, M.; Mancini, I. Modeling improved production of the chemotherapeutic polypeptide actinomycin D by a novel Streptomyces sp. strain from a Saharan soil. Heliyon, 2019, 5(5), e01695.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01695] [PMID: 31193702]
[18]
Souagui, S.; Djoudi, W.; Boudries, H.; Béchet, M.; Leclère, V.; Kecha, M. Modeling and statistical optimization of culture conditions for improvement of antifungal compounds production by Streptomyces albidoflavus S19 strain of Wastewater Origin. Antiinfect. Agents, 2019, 17(1), 39-49.
[http://dx.doi.org/10.2174/2211352516666180813102424] [PMID: 31328084]
[19]
Yaraguppi, D.A.; Bagewadi, Z.K.; Muddapur, U.M.; Mulla, S.I. Response surface methodology-based optimization of biosurfactants production from isolated Bacillus aryabhattai strain ZDY2. J. Pet. Explor, 2020, 10, 2483-2498.
[http://dx.doi.org/10.1007/s13202-020-00866-9]
[20]
Kuester, E.; Williams, S.T. Selection of media for isolation of Streptomycetes. Nature, 1964, 202, 928-929.
[PMID: 14190108]
[21]
Shirling, E.B.; Göttlieb, D. Methods for Characterization of Streptomyces Species. Int. J. Syst. Bacteriol., 1966, 16(3), 313-340.
[22]
Locci, R. Streptomyces and related genera. In: Bergey’s Manual of Systematic Bacteriology; Williams, S.T.; Sharpe, M.E.; Holt, J.G., Eds.; Williams & Wilkins: Baltimore, 1989; 4, pp. 8-2451.
[23]
Williams, S.T.; Goodfellow, M.; Alderson, G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Bergey’s Manual of systematic bacteriology, 1st ed; Williams & Wilkins: Baltimore, MD., 1989; 4, pp. 2452-2492.
[24]
Staneck, J.L.; Roberts, G.D. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol., 1974, 28(2), 226-231.
[PMID: 4605116]
[25]
Lechevalier, M.P.; Lechevalier, H. Chemical Composition of whole-cell hydrolysates as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol., 1970, 20, 435-443.
[http://dx.doi.org/10.1099/00207713-20-4-435]
[26]
Pridham, T.G.; Gottlieb, D. The utilization of carbon compounds by some actinomycetales as an aid for species determination. J. Bacteriol., 1948, 56(1), 107-114.
[PMID: 16561537]
[27]
Gourdon, R.E.; Barnett, D.A.; Handerhan, J.E.; Pang, C.H. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int. J. Syst. Bacteriol., 1974, 24, 54-63.
[28]
Williams, S.T.; Cross, T. Actinomycetes. In: Methods in microbiology; Academic Press:: London, 1971; pp. 295-334.
[29]
Prasad, P.; Singh, T.; Bedi, S. Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (Accession No. AB184139) isolated from Indian soil. J. King Saud Univ. Sci., 2013, 25, 245-250.
[30]
Sierra, G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek, 1957, 23(1), 15-22.
[PMID: 13425509]
[31]
Nitsch, B.; Kutzner, H.J. Egg-yolk agar as a diagnostic medium for Steptomycetes. Experientia, 1969, 25(2), 220-221.
[http://dx.doi.org/10.1007/BF01899136] [PMID: 5815006]
[32]
Ningthoujam, D.S.; Kshetri, P.; Sanasam, S.; Nimaichand, S. Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermotolerant indigenous actinomycetes. World. Appl. Sci. J., 2009, 7, 907-916.
[33]
De Vos, P.; Garrit, G.M.; Jones, D.; Krieg, N.R.; Ludwig, W.; Raine, A.K.H. The Firmicutes. In: Bergey’s Manual of Systematic Bacteriology; Springer: New York, 2009; p. 3.
[34]
Marchal, N.; Bourdon, J.L. Culture medium and biochemical identification of bacteria; Paris (France), 1973, p. 179.
[35]
Christensen, W.B. Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella types. J. Bacteriol., 1946, 52(4), 461-466.
[http://dx.doi.org/10.1128/jb.52.4.461-466.1946] [PMID: 16561200]
[36]
Lugauskas, A.; Pečiulytė, D.; Ramanauskas, R.; Bučinskienė, D.; Narkevičius, A.; Ulevičius, V. Micromycetes in metal corrosion processes under atmospheric conditions. Ecol. Lithuanian, 2005, 1, 11-26.
[37]
Yoon, W.H.; Sandoval, H.; Nagarkar-Jaiswal, S.; Jaiswal, M.; Yamamoto, S.; Haelterman, N.A.; Putluri, N.; Putluri, V.; Sreekumar, A.; Tos, T.; Aksoy, A.; Donti, T.; Graham, B.H.; Ohno, M.; Nishi, E.; Hunter, J.; Muzny, D.M.; Carmichael, J.; Shen, J.; Arboleda, V.A.; Nelson, S.F.; Wangler, M.F.; Karaca, E.; Lupski, J.R.; Bellen, H.J. Loss of nardilysin, a mitochondrial co-chaperone for α-ketoglutarate dehydrogenase, promotes mTORC1 activation and neurodegeneration. Neuron, 2017, 93(1), 115-131.
[http://dx.doi.org/10.1016/j.neuron.2016.11.038] [PMID: 28017472]
[38]
Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 1997, 25(24), 4876-4882.
[PMID: 9396791]
[39]
Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406-425.
[PMID: 3447015]
[40]
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985, 39(4), 783-791.
[PMID: 28561359]
[41]
Mechlinski, W. The polyene antifungal antibiotics. In: Handbook of microbiology; Laskin, A.I.; Lechevalier, H.A., Eds.; CRC Press, 1978; Vol. III, pp. 93-107.
[42]
Wang, Y.; Fang, X.; An, F.; Wang, G.; Zhang, X. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb. Cell Fact., 2011, 10, 98-112.
[PMID: 22082189]
[43]
Dean, A.; Voss, D.; Graguljic, D. Design and Analysis of Experiments, 2nd ed; Springer, 2017.
[44]
Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters; Wiley Interscience: New York, 1978.
[45]
Goupy, J. Design of experiments for response surfaces; Dunod: Paris, 1999.
[46]
Hatano, K.; Frederick, D.; Moore, J. Microbial ecology of constructed wetlands used for treating pulp-mill wastewater. Water Sci. Technol., 1999, 29, 233-239.
[47]
Chater, K.F. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol., 1993, 47, 685-713.
[PMID: 7504906]
[48]
Thirup, L.; Johnsen, K.; Winding, A. Succession of indigenous Pseudomonas spp. and actinomycetes on barley roots affected by the antagonistic strain Pseudomonas fluorescens DR54 and the fungicide imazalil. Appl. Environ. Microbiol., 2001, 67(3), 1147-1153.
[PMID: 11229904]
[49]
Laiz, L.; Groth, I.; Gonzalez, I.; Saiz-Jimenez, C. Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain). J. Microbiol. Methods, 1999, 36(1-2), 129-138.
[http://dx.doi.org/10.1016/S0167-7012(99)00018-4] [PMID: 10353807]
[50]
Ma, Q.; Qu, Y.Y.; Zhang, X.W.; Shen, W.L.; Liu, Z.Y.; Wang, J.W.; Zhang, Z.J.; Zhou, J.T. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants. Microbiol. Res., 2015, 175, 1-5.
[http://dx.doi.org/10.1016/j.micres.2014.12.013] [PMID: 25661057]
[51]
Fiałkowska, E.; Pajdak-Stós, A. The role of Lecane rotifers in activated sludge bulking control. Water Res., 2008, 42(10-11), 2483-2490.
[http://dx.doi.org/10.1016/j.watres.2008.02.001] [PMID: 18321557]
[52]
Bensultana, A.; Ouhdouch, Y.; Hassani, L.; Mezrioui, NE.; Rafouk, L. Isolation and characterization of wastewater sand filter actinomycetes. World J. Microbiol. Biotechnol., 2010, 26, 481-487.
[53]
Hozzein, W.N.; Ahmed, M.B.; Abdel Tawab, M.S. Efficiency of some actinomycete isolates in biological treatment and removal of heavy metals from wastewater. Afr. J. Biotechnol., 2012, 11(5), 1163-1168.
[54]
Elżbieta, B.M.; Renata, S.; Jolanta, R.; Beata, Ł. Effect of the presence of Actinomycetes in the activated sludge on the quality of the treated wastewater. In E3S Web of Conferences, 2017, 17, 00007.
[55]
Silini, S.; Ali-Khodja, H.; Boudemagh, A.; Terrouche, A.; Bouziane, M. Isolation and preliminary identification of actinomycetes isolated from a wastewater treatment plant and capable of growing on methyl ethyl ketone as a sole source of carbon and energy. Desalination Water Treat., 2016, 57(26), 12108-12117.
[http://dx.doi.org/10.1080/19443994.2015.1046943]
[56]
Jiang, C.; Xu, L. Diversity of aquatic actinomycetes in lakes of the Middle Plateau, Yunnan, China. Appl. Environ. Microbiol., 1996, 62(1), 249-253.
[PMID: 16535213]
[57]
Lemriss, S.; Laurent, F.; Couble, A.; Casoli, E.; Lancelin, J.M.; Saintpierre-Bonaccio, D.; Rifai, S.; Fassouane, A.; Boiron, P. Screening of nonpolyenic antifungal metabolites produced by clinical isolates of actinomycetes. Can. J. Microbiol., 2003, 49(11), 669-674.
[PMID: 14735216]
[58]
Saenna, P.; Gilbreath, T.; Onpan, N.; Panbangred, W. Actinomycetes community from starch factory wastewater. Res. J. Microbiol., 2011, 6(6), 534-542.
[http://dx.doi.org/10.3923/jm.2011.534.542]
[59]
Fang, C.; Zhang, J.; Pang, H.; Li, Y.; Xin, Y.; Zhang, Y. Nocardiopsis flavescens sp. nov., an actinomycete isolated from marine sediment. Int. J. Syst. Evol. Microbiol., 2011, 61(Pt 11), 2640-2645.
[PMID: 21148675]
[60]
Hamedi, J.; Mohammadipanah, F.; Ventosa, A. Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles, 2013, 17(1), 1-13.
[PMID: 23129307]
[61]
Li, H.W.; Zhi, X.Y.; Yao, J.C.; Zhou, Y.; Tang, S.K.; Klenk, H.P.; Zhao, J.; Li, W.J. Comparative genomic analysis of the genus Nocardiopsis provides new insights into its genetic mechanisms of environmental adaptability. PLoS One, 2013, 8(4), e61528.
[http://dx.doi.org/10.1371/journal.pone.0061528] [PMID: 23626695]
[62]
Bennur, T.; Ravi Kumar, A.; Zinjarde, S.S.; Javdekar, V. Nocardiopsis species: A potential source of bioactive compounds. J. Appl. Microbiol., 2016, 120(1), 1-16.
[PMID: 26369300]
[63]
Kumar, V.; Bharti, A.; Negi, Y.K.; Gusain, O.; Pandey, P.; Bisht, G.S. Screening of actinomycetes from earthworm castings for their antimicrobial activity and industrial enzymes. Braz. J. Microbiol., 2012, 43(1), 205-214.
[http://dx.doi.org/10.1590/s1517-83822012000100022] [PMID: 24031819]
[64]
Bennur, T.; Kumar, A.R.; Zinjarde, S.; Javdekar, V. Nocardiopsis species as potential sources of diverse and novel extracellular enzymes. Appl. Microbiol. Biotechnol., 2014, 98(22), 9173-9185.
[http://dx.doi.org/10.1007/s00253-014-6111-y] [PMID: 25269602]
[65]
Chakraborty, S.; Jana, S.; Gandhi, A.; Sen, KK.; Zhiang, W.; Kokare, C. 2014 Gellan gum microspheres containing a novel alpha-amylase from marine Nocardiopsis sp. strain B2 for immobilization. Int. J Biol. Macromol., 2014, 70, 292-299.
[66]
Saratale, G.D.; Oh, S.E. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU. Biodegradation, 2011, 22(5), 905-919.
[PMID: 21234649]
[67]
Koizumi, N.; Masuda, S.; Maeda, K.; Isoda, Y.; Yatsunami, R.; Fukui, T.; Nakamura, S. Additional carbohydrate-binding modules enhance the insoluble substrate-hydrolytic activity of beta-1,3-glucanase from alkaliphilic Nocardiopsis sp. F96. Biosci. Biotechnol. Biochem., 2009, 73(5), 1078-1082.
[PMID: 19420727]
[68]
Gadd, G.M. Metals and microorganisms: A problem of definition. FEMS Microbiol. Lett., 1992, 100(1-3), 197-203.
[PMID: 1478456]
[69]
Polti, M.A.; Aparicio, J.D.; Benimeli, C.S.; Amoroso, M.J. Role of Actinobacteria in Bioremediation. In: Microbial Biodegradation and Bioremediation; Das, S., Ed.; Elsevier Inc: London, 2014; pp. 269-286.
[70]
Amoroso, M.J.; Castro, G.R.; Carlino, F.J.; Romero, N.C.; Hill, R.T.T.; Oliver, G. Screening of heavy metal-tolerant actinomycetes isolated from the Salí River. J. Gen. Appl. Microbiol., 1998, 44(2), 129-132.
[http://dx.doi.org/10.2323/jgam.44.129] [PMID: 12501279]
[71]
El Baz, S.; Baz, M.; Barakate, M.; Hassani, L.; El Gharmali, A.; Imziln, B. Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. ScientificWorldJournal, 2015, 2015, 761834.
[http://dx.doi.org/10.1155/2015/761834] [PMID: 25763383]
[72]
Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol., 2014, 64(Pt 2), 346-351.
[http://dx.doi.org/10.1099/ijs.0.059774-0] [PMID: 24505072]
[73]
Rajivgandhi, G.; Vijayan, R.; Kannan, M.; Santhanakrishnan, M.; Manoharan, N. Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640) from brown algae against MDR strains of uropathogens. Bioact. Mater., 2016, 1(2), 140-150.
[http://dx.doi.org/10.1016/j.bioactmat.2016.11.002] [PMID: 29744403]
[74]
Rajivgandhi, G.; Ramachandran, G.; Maruthupandy, M.; Senthil, R.; Vaseeharan, B.; Manoharan, N. Molecular characterization and antibacterial investigation of marine endophytic actinomycetes Nocardiopsis sp. GRG 2 (KT 235641) compound against isolated ESBL producing bacteria. Microb. Pathog., 2019, 126, 138-148.
[http://dx.doi.org/10.1016/j.micpath.2018.10.014] [PMID: 30316902]
[75]
Jia, B.; Jin, Z.H.; Mei, L.H. Medium optimization based on statistical methodologies for pristinamycins production by Streptomyces pristinaespiralis. Appl. Biochem. Biotechnol., 2008, 144(2), 133-143.
[PMID: 18456945]
[76]
Syed, D.G.; Agasar, D.; Pandey, A. Production and partial purification of alpha-amylase from a novel isolate Streptomyces gulbargensis. J. Ind. Microbiol. Biotechnol., 2009, 36(2), 189-194.
[PMID: 18846397]
[77]
Mangamuri, U. Optimization of process parameters for improved production of bioactive metabolites by Streptomyces tritolerans DAS 165T. Br. Microbiol. Res. J., 2014, 4, 428-442.
[http://dx.doi.org/10.9734/BMRJ/2014/7086]
[78]
Oskay, M. Effects of some environmental conditions on biomass and antimicrobial metabolite production by Streptomyces sp., KGG32. Int. J. Agric. Biol., 2011, 13(3), 317-324.
[79]
Mangamuri, U.; Poda, S.; Naragani, K.; Muvva, V. Influence of cultural conditions for improved production of bioactive metabolites by streptomyces cheonanensis VUK-A isolated from coringa mangrove ecosystem. Curr. Trends. Biotechnol. Pharm., 2012, 6(1), 99-111.
[80]
Suutari, M.; Lignell, U.; Hyvärinen, A.; Nevalainen, A. Media for cultivation of indoor streptomycetes. J. Microbiol. Methods, 2002, 51(3), 411-416.
[PMID: 12223303]
[81]
Himabindu, M.; Jetty, A. Optimization of nutritional requirements for gentamicin production by Micromonospora echinospora. Indian J. Exp. Biol., 2006, 44(10), 842-848.
[PMID: 17131916]
[82]
Gao, H.; Liu, M.; Liu, J.; Dai, H.; Zhou, X.; Liu, X.; Zhuo, Y.; Zhang, W.; Zhang, L. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour. Technol., 2009, 100(17), 4012-4016.
[http://dx.doi.org/10.1016/j.biortech.2009.03.013] [PMID: 19356927]
[83]
Engelhardt, K.; Degnes, K.F.; Kemmler, M.; Bredholt, H.; Fjaervik, E.; Klinkenberg, G.; Sletta, H.; Ellingsen, T.E.; Zotchev, S.B. Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl. Environ. Microbiol., 2010, 76(15), 4969-4976.
[http://dx.doi.org/10.1128/AEM.00741-10] [PMID: 20562278]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy