Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Colorimetric Determination of Glucose based on BiVO4 Coupled with Gold Nanoparticles as a Photoactivated Mimic Enzyme of Oxidase

Author(s): Lili Miao, Jing Sun, Hemeiling Cai, Zhichang Ma and Junwei Di*

Volume 19, Issue 4, 2023

Published on: 20 March, 2023

Page: [330 - 338] Pages: 9

DOI: 10.2174/1573411019666230224142001

Price: $65

conference banner
Abstract

Background: The spectrophotometric detection of glucose usually requires the use of glucose oxidase (GOD) and horseradish peroxidase (HRP). These natural enzymes have specificity and can react with substrates efficiently and quickly, but their performance is easily influenced by external factors, such as humidity, temperature, and solution pH. In this study, no enzyme method was developed for the detection of glucose.

Objective: In this work, gold nanoparticles (AuNPs) and BiVO4 were calcined onto the glass surface, offering excellent glucose oxidase-like activity under light irradiation. Coupled with silver nanoparticles (AgNPs), it can be applied to the colorimetric detection of glucose without the use of any natural enzyme.

Methods: The heterostructure of AuNPs and BiVO4 onto glass substrate (G/AuNPs/BiVO4) was synthesized by deposition and calcination at 500°C. It exhibited oxidase-like activity towards glucose oxidation in the presence of oxygen (O2) under light irradiation and then generated gluconic acid and hydrogen peroxide (H2O2). The production of H2O2 could etch AgNPs, resulting in a clear color change of the solution.

Results: A decrease in the absorbance showed a good linear relationship with glucose concentration in the range of 20-400 μM, with a detection limit of 5 μM.

Conclusion: An enzyme-free method is proposed for the colorimetric detection of glucose. The photoactivated enzyme mimic of G/AuNPs/BiVO4 exhibited good recyclability with water rinsing. This is promising for wide applications in various fields.

[1]
Wang, J. Electrochemical glucose biosensors. Chem. Rev., 2008, 108(2), 814-825. [http://dx.doi.org/10.1021/cr068123a]. [PMID: 18154363].
[2]
Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: A commercial perspective. Biosens. Bioelectron., 2005, 20(12), 2435-2453. [http://dx.doi.org/10.1016/j.bios.2004.11.012]. [PMID: 15854818].
[3]
Liu, Q.; Yang, Y.; Li, H.; Zhu, R.; Shao, Q.; Yang, S.; Xu, J. NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron., 2015, 64, 147-153. [http://dx.doi.org/10.1016/j.bios.2014.08.062]. [PMID: 25212068].
[4]
Azimi, S.; Farahani, A.; Docoslis, A.; Vahdatifar, S. Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal. Bioanal. Chem., 2021, 413(5), 1441-1452. [http://dx.doi.org/10.1007/s00216-020-03108-3]. [PMID: 33388843].
[5]
Dong, L.; Li, R.; Wang, L.; Lan, X.; Sun, H.; Zhao, Y.; Wang, L. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. Int. J. Biol. Macromol., 2021, 172, 289-298. [http://dx.doi.org/10.1016/j.ijbiomac.2021.01.049]. [PMID: 33450341].
[6]
Yee, Y.C.; Hashim, R.; Mohd Yahya, A.R.; Bustami, Y. Colorimetric Analysis of Glucose Oxidase-Magnetic Cellulose Nanocrystals (CNCs) for glucose detection. Sensors, 2019, 19(11), 2511. [http://dx.doi.org/10.3390/s19112511]. [PMID: 31159318].
[7]
Morikawa, M.; Kimizuka, N.; Yoshihara, M.; Endo, T. New colorimetric detection of glucose by means of electron-accepting indicators: ligand substitution of [Fe(acac)3-n(phen)n]n+ complexes triggered by electron transfer from glucose oxidase. Chemistry, 2002, 8(24), 5580-5584. [http://dx.doi.org/10.1002/1521-3765(20021216)8:24<5580:AID-CHEM5580>3.0.CO;2-V]. [PMID: 12693039].
[8]
Lu, Q.; Huang, T.; Zhou, J.; Zeng, Y.; Wu, C.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 244, 118893. [http://dx.doi.org/10.1016/j.saa.2020.118893]. [PMID: 32916589].
[9]
Wu, X.; Wu, P.; Gu, M.; Xue, J. Ratiometric fluorescent probe based on AuNCs induced AIE for quantification and visual sensing of glucose. Anal. Chim. Acta, 2020, 1104, 140-146. [http://dx.doi.org/10.1016/j.aca.2020.01.004]. [PMID: 32106945].
[10]
Wang, Y.; Jin, R.; Sojic, N.; Jiang, D.; Chen, H.Y. Intracellular wireless analysis of single cells by bipolar electrochemiluminescence confined in a nanopipette. Angew. Chem. Int. Ed., 2020, 59(26), 10416-10420. [http://dx.doi.org/10.1002/anie.202002323]. [PMID: 32216004].
[11]
Gao, Y.; Zhang, C.; Yang, Y.; Yang, N.; Lu, S.; You, T.; Yin, P. A high sensitive glucose sensor based on Ag nanodendrites/Cu mesh substrate via surface-enhanced Raman spectroscopy and electrochemical analysis. J. Alloys Compd., 2021, 863, 158758. [http://dx.doi.org/10.1016/j.jallcom.2021.158758].
[12]
Amin, K.M.; Muench, F.; Kunz, U.; Ensinger, W. 3D NiCo-Layered double Hydroxide@Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing. J. Colloid Interface Sci., 2021, 591, 384-395. [http://dx.doi.org/10.1016/j.jcis.2021.02.023]. [PMID: 33631526].
[13]
Meng, T.; Shang, N.; Zhao, J.; Su, M.; Wang, C.; Zhang, Y. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. J. Colloid Interface Sci., 2021, 589, 135-146. [http://dx.doi.org/10.1016/j.jcis.2020.12.119]. [PMID: 33450457].
[14]
Chen, D.; Wang, X.; Zhang, K.; Cao, Y.; Tu, J.; Xiao, D.; Wu, Q. Glucose photoelectrochemical enzyme sensor based on competitive reaction of ascorbic acid. Biosens. Bioelectron., 2020, 166, 112466. [http://dx.doi.org/10.1016/j.bios.2020.112466]. [PMID: 32777725].
[15]
Yang, Y.; Yang, J.; He, Y.; Li, Y. A dual-signal mode ratiometric photoelectrochemical sensor based on voltage-resolved strategy for glucose detection. Sens. Actuators B Chem., 2021, 330, 129302. [http://dx.doi.org/10.1016/j.snb.2020.129302].
[16]
Laidoudi, S.; Khelladi, M.R.; Lamiri, L.; Belgherbi, O.; Boudour, S.; Dehchar, C.; Boufnik, R. Non-enzymatic glucose detection based on cuprous oxide thin film synthesized via electrochemical deposition. Appl. Phys., A Mater. Sci. Process., 2021, 127(3), 160. [http://dx.doi.org/10.1007/s00339-021-04299-x].
[17]
Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem., 2008, 80(6), 2250-2254. [http://dx.doi.org/10.1021/ac702203f]. [PMID: 18290671].
[18]
Kumar, R.; Chauhan, S. Nano/micro-scaled materials based optical biosensing of glucose. Ceram. Int., 2022, 48(3), 2913-2947. [http://dx.doi.org/10.1016/j.ceramint.2021.10.170].
[19]
Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev., 2019, 48(4), 1004-1076. [http://dx.doi.org/10.1039/C8CS00457A]. [PMID: 30534770].
[20]
Attar, F.; Shahpar, M.G.; Rasti, B.; Sharifi, M.; Saboury, A.A.; Rezayat, S.M.; Falahati, M. Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq., 2019, 278, 130-144. [http://dx.doi.org/10.1016/j.molliq.2018.12.011].
[21]
Xing, Z.; Tian, J.; Asiri, A.M.; Qusti, A.H.; Al-Youbi, A.O.; Sun, X. Two-dimensional hybrid mesoporous Fe2O3-graphene nanostructures: A highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosens. Bioelectron., 2014, 52, 452-457. [http://dx.doi.org/10.1016/j.bios.2013.09.029]. [PMID: 24094524].
[22]
Jampaiah, D.; Srinivasa Reddy, T.; Kandjani, A.E.; Selvakannan, P.R.; Sabri, Y.M.; Coyle, V.E.; Shukla, R.; Bhargava, S.K. Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(22), 3874-3885. [http://dx.doi.org/10.1039/C6TB00422A]. [PMID: 32263086].
[23]
Qu, K.; Shi, P.; Ren, J.; Qu, X. Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chemistry, 2014, 20(24), 7501-7506. [http://dx.doi.org/10.1002/chem.201400309]. [PMID: 24825488].
[24]
Pandith, A.; Seo, Y.J. Label-free sensing platform for miRNA-146a based on chromo-fluorogenic pyrophosphate recognition. J. Inorg. Biochem., 2020, 203, 110867. [http://dx.doi.org/10.1016/j.jinorgbio.2019.110867]. [PMID: 31715376].
[25]
Pandith, A.; Bhattarai, K.R.; Guralamatta Siddappa, R.K.; Chae, H-J.; Seo, Y.J. Novel fluorescent C2-symmetric sequential on-off-on switch for Cu2+ and pyrophosphate and its application in monitoring of endogenous alkaline phosphatase activity. Sens. Actuators B Chem., 2019, 282, 730-742. [http://dx.doi.org/10.1016/j.snb.2018.11.111].
[26]
Pandith, A.; Choi, J-H.; Jung, O-S.; Kim, H-S. A simple and robust PET-based anthracene-appended O-N-O chelate for sequential recognition of Fe3+/CN– ions in aqueous media and its multimodal applications. Inorg. Chim. Acta, 2018, 482, 669-680. [http://dx.doi.org/10.1016/j.ica.2018.07.007].
[27]
Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of “naked” gold particles. Angew. Chem. Int. Ed., 2004, 43(43), 5812-5815. [http://dx.doi.org/10.1002/anie.200460446]. [PMID: 15523721].
[28]
Beltrame, P.; Comotti, M.; Della Pina, C.; Rossi, M. Aerobic oxidation of glucose. Appl. Catal. A Gen., 2006, 297(1), 1-7. [http://dx.doi.org/10.1016/j.apcata.2005.08.029].
[29]
A, M.; J, M.; Ashokkumar, M.; Arunachalam, P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A Gen., 2018, 555, 47-74. [http://dx.doi.org/10.1016/j.apcata.2018.02.010].
[30]
Kalanoor, B.S.; Seo, H.; Kalanur, S.S. Multiple ion doping in BiVO4 as an effective strategy of enhancing photoelectrochemical water splitting: A review. Mater. Sci. Energy Technol., 2021, 4, 317-328. [http://dx.doi.org/10.1016/j.mset.2021.08.010].
[31]
Yu, Z.; Lv, S.; Ren, R.; Cai, G.; Tang, D. Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO4 microrods. Mikrochim. Acta, 2017, 184(3), 799-806. [http://dx.doi.org/10.1007/s00604-016-2071-5].
[32]
Xu, M.; Zhu, Y.; Yang, J.; Li, W.; Sun, C.; Cui, Y.; Liu, L.; Zhao, H.; Liang, B. Enhanced interfacial electronic transfer of BiVO4 coupled with 2D g-C3 N4 for visible-light photocatalytic performance. J. Am. Ceram. Soc., 2021, 104(7), 3004-3018. [http://dx.doi.org/10.1111/jace.17740].
[33]
Patil, S.S.; Lee, J.; Park, E.; Nagappagari, L.R.; Lee, K.; Interstitial, M.; Interstitial, M. M + = Li + or Sn 4+) Doping at Interfacial BiVO4/WO3 to Promote Photoelectrochemical Hydrogen Production. ACS Appl. Energy Mater., 2021, 4(12), 13636-13645. [http://dx.doi.org/10.1021/acsaem.1c02294].
[34]
Chen, L.; Miao, L.; Chen, Y.; Gao, Y.; Di, J. An enzyme-free photoelectrochemical glucose sensor based on coupling BiVO4 with gold nanoparticles. Mater. Sci. Semicond. Process., 2021, 125, 105632. [http://dx.doi.org/10.1016/j.mssp.2020.105632].
[35]
Gao, Y.; Wu, Y.; Di, J. Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 207-212. [http://dx.doi.org/10.1016/j.saa.2016.09.023]. [PMID: 27664545].
[36]
Sujak, M.; Djuhana, D. The localized surface plasmon resonance on noble metal-semiconductor: Au nanosphere-ZnO nanorod. IOP Conf. Series Mater. Sci. Eng., 2020, 902(1), 012058. [http://dx.doi.org/10.1088/1757-899X/902/1/012058].
[37]
Feng, T.; Ding, L.; Chen, L.; Di, J. Deposition of gold nanoparticles upon bare and indium tin oxide film coated glass based on annealing process. J. Exp. Nanosci., 2019, 14(1), 13-22. [http://dx.doi.org/10.1080/17458080.2018.1520399].
[38]
Wang, A.; Shen, X.; Ren, J.; Wang, Q.; Zhao, W.; Zhu, W.; Shang, D. Regulating the type of cobalt porphyrins for synergistic promotion of photoelectrochemical water splitting of BiVO4. Dyes Pigments, 2021, 192, 109468. [http://dx.doi.org/10.1016/j.dyepig.2021.109468].
[39]
Geng, H.; Huang, S.; Kong, D.; Chubenko, E.; Bondarenko, V.; Ying, P.; Sui, Y.; Zhao, Y.; Gu, X. A novel synergy of Co/La co-doped porous BiVO4 photoanodes with enhanced photoelectrochemical solar water splitting performance. J. Alloys Compd., 2022, 925, 166667. [http://dx.doi.org/10.1016/j.jallcom.2022.166667].
[40]
Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. Int. Ed., 2014, 53(49), 13454-13459. [http://dx.doi.org/10.1002/anie.201407938]. [PMID: 25293501].
[41]
Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano, 2010, 4(12), 7451-7458. [http://dx.doi.org/10.1021/nn102592h]. [PMID: 21128689].
[42]
Qiu, Z.; Tang, D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(13), 2541-2561. [http://dx.doi.org/10.1039/C9TB02844G]. [PMID: 32162629].
[43]
Wu, N. Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale, 2018, 10(6), 2679-2696. [http://dx.doi.org/10.1039/C7NR08487K]. [PMID: 29376162].
[44]
Bandi, R.; Alle, M.; Park, C.W.; Han, S.Y.; Kwon, G.J.; Kim, N.H.; Kim, J.C.; Lee, S.H. Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sens. Actuators B Chem., 2021, 330, 129330. [http://dx.doi.org/10.1016/j.snb.2020.129330].
[45]
Ge, L.; Hou, R.; Cao, Y.; Tu, J.; Wu, Q. Photoelectrochemical enzymatic sensor for glucose based on Au@C/TiO2 nanorod arrays. RSC Advances, 2020, 10(72), 44225-44231. [http://dx.doi.org/10.1039/D0RA08920F]. [PMID: 35517172].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy