Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Recent Advances in Polymer-supported Proline-derived Catalysts for Asymmetric Reactions

Author(s): Rubina Shajahan, Rithwik Sarang, Roopak Ramakrishnan and Anas Saithalavi*

Volume 10, Issue 2, 2023

Published on: 17 April, 2023

Page: [81 - 112] Pages: 32

DOI: 10.2174/2213337210666230224115814

Price: $65

conference banner
Abstract

The last two decades have witnessed tremendous growth in organocatalysis, especially using proline and related catalysts in a wide range of organic processes. Along with this, the heterogenization of organocatalysts over suitable support systems also emerged as an effective approach for addressing some of the major drawbacks associated with classical organocatalysts. Polymer-immobilized catalysts, in particular, are extremely stable under reaction conditions with excellent recyclability and reusability. Moreover, this approach offers green chemistry standards and is, thereby, supportive of large-scale industrial manufacturing processes. This article summarises the developments using polymer immobilized prolinederived systems as efficient organocatalysts for various asymmetric transformations in Aldol, Michael, Mannich, cyclization reactions, etc.

Graphical Abstract

[1]
List, B. Introduction: Organocatalysis. Chem. Rev., 2007, 107(12), 5413-5415.
[http://dx.doi.org/10.1021/cr078412e]
[2]
Bertelsen, S.; Jørgensen, K.A. Organocatalysis—after the gold rush. Chem. Soc. Rev., 2009, 38(8), 2178-2189.
[http://dx.doi.org/10.1039/b903816g] [PMID: 19623342]
[3]
Buckley, B.R. Organocatalysis. Annu. Rep. Prog. Chem. Sect. B Org. Chem, 2009, 105, 113-128.
[4]
Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of optically active polycyclic organic compounds. German Patent. DE 2102623, 1971.
[5]
Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. New strategies for organic catalysis: The first highly enantioselective organocatalytic diels−alder reaction. J. Am. Chem. Soc., 2000, 122(17), 4243-4244.
[http://dx.doi.org/10.1021/ja000092s]
[6]
List, B.; Lerner, R.A.; Barbas, C.F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122(10), 2395-2396.
[http://dx.doi.org/10.1021/ja994280y]
[7]
Khalafi-Nezhad, A.; Shahidzadeh, E.S.; Sarikhani, S.; Panahi, F. A new silica-supported organocatalyst based on L-proline: An efficient heterogeneous catalyst for one-pot synthesis of spiroindolones in water. J. Mol. Catal. Chem., 2013, 379, 1-8.
[http://dx.doi.org/10.1016/j.molcata.2013.07.009]
[8]
Parvin, T.; Yadav, R.; Choudhury, L.H. Recent applications of thiourea-based organocatalysts in asymmetric multicomponent reactions (AMCRs). Org. Biomol. Chem., 2020, 18(29), 5513-5532.
[http://dx.doi.org/10.1039/D0OB00595A] [PMID: 32644077]
[9]
Yang, W.; Du, D.M. Highly enantioselective Michael addition of nitroalkanes to chalcones using chiral squaramides as hydrogen bonding organocatalysts. Org. Lett., 2010, 12(23), 5450-5453.
[http://dx.doi.org/10.1021/ol102294g] [PMID: 21053936]
[10]
Nakamura, S. Catalytic enantioselective decarboxylative reactions using organocatalysts. Org. Biomol. Chem., 2014, 12(3), 394-405.
[http://dx.doi.org/10.1039/C3OB42161A] [PMID: 24270735]
[11]
Nelson, D.L.; Cox, M.M. Lehninger principles of biochemistry; W H Freeman and Company: New York, 2005.
[12]
Martínez-Castañeda, Á. Kędziora,, K.; Lavandera, I.; Rodríguez-Solla, H.; Concellón, C.; del Amo, V. Highly enantioselective synthesis of α-azido-β-hydroxy methyl ketones catalyzed by a cooperative proline–guanidinium salt system. Chem. Commun., 2014, 50(20), 2598-2600.
[http://dx.doi.org/10.1039/c3cc49371g] [PMID: 24468918]
[13]
Rueping, M.; Rasappan, R.; Raja, S. Asymmetric proline-catalyzed addition of aldehydes to 3 H -Indol-3-ones: Enantioselective synthesis of 2,3-Dihydro-1 H -indol-3-ones with quaternary stereogenic centers. Helv. Chim. Acta, 2012, 95(11), 2296-2303.
[http://dx.doi.org/10.1002/hlca.201200498]
[14]
Ramaraju, P.; Mir, N.A.; Singh, D.; Kumar, I. Enantioselective synthesis of 1,2,5,6-tetrahydropyridines (THPs) via proline-catalyzed direct Mannich-cyclization/domino oxidation–reduction sequence: Application for medicinally important N-heterocycles. RSC Advances, 2016, 6(65), 60422-60432.
[http://dx.doi.org/10.1039/C6RA12965J]
[15]
Sunoj, R.B. Proline-derived organocatalysis and synergism between theory and experiments. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(6), 920-931.
[http://dx.doi.org/10.1002/wcms.37]
[16]
Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem., 1974, 39(12), 1615-1621.
[http://dx.doi.org/10.1021/jo00925a003]
[17]
Liu, J.; Wang, L. Recent advances in asymmetric reactions catalyzed by proline and its derivatives. Synthesis, 2017, 49, 960-972.
[http://dx.doi.org/10.1055/s-0036-1588901]
[18]
Paradowska, J.; Pasternak, M.; Gut, B. Gryzło, B.; Mlynarski, J. Direct asymmetric aldol reactions inspired by two types of natural aldolases: Water-compatible organocatalysts and Zn(II) complexes. J. Org. Chem., 2012, 77(1), 173-187.
[http://dx.doi.org/10.1021/jo201584w] [PMID: 22136201]
[19]
Subba Reddy, B.V.; Bhavani, K.; Raju, A.; Yadav, J.S. A novel trifunctional organocatalyst for the asymmetric aldol reaction: A facile enantioselective synthesis of β-hydroxyketones. Tetrahedron Asymmetry, 2011, 22(8), 881-886.
[http://dx.doi.org/10.1016/j.tetasy.2011.05.001]
[20]
Rulli, G.; Duangdee, N.; Baer, K.; Hummel, W.; Berkessel, A.; Gröger, H. Direction of kinetically versus thermodynamically controlled organocatalysis and its application in chemoenzymatic synthesis. Angew. Chem. Int. Ed., 2011, 50(34), 7944-7947.
[http://dx.doi.org/10.1002/anie.201008042] [PMID: 21744441]
[21]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[22]
Cobb, A.J.A.; Shaw, D.M.; Longbottom, D.A.; Gold, J.B.; Ley, S.V. Organocatalysis with proline derivatives: Improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Org. Biomol. Chem., 2005, 3(1), 84-96.
[http://dx.doi.org/10.1039/b414742a] [PMID: 15602602]
[23]
Obregón-Zúñiga, A.; Milán, M.; Juaristi, E. Improving the catalytic performance of ( S )-proline as organocatalyst in asymmetric aldol reactions in the presence of solvate ionic liquids: Involvement of a supramolecular aggregate. Org. Lett., 2017, 19(5), 1108-1111.
[http://dx.doi.org/10.1021/acs.orglett.7b00129] [PMID: 28199118]
[24]
Abdussalam-Mohammed, W.; Alia, A.Q.; Errayes, A.O. Green chemistry: Principles, applications, and disadvantages. Chemical Methodologies, 2020, 4(4), 408-423.
[http://dx.doi.org/10.33945/SAMI/CHEMM.2020.4.4]
[25]
Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev., 2008, 37(8), 1666-1688.
[http://dx.doi.org/10.1039/b800704g] [PMID: 18648689]
[26]
Manecke, G.; Storck, W. Polymeric catalysts. Angew. Chem. Int. Ed. Engl., 1978, 17(9), 657-670.
[http://dx.doi.org/10.1002/anie.197806571]
[27]
Dickerson, T.J.; Reed, N.N.; Janda, K.D. Soluble polymers as scaffolds for recoverable catalysts and reagents. Chem. Rev., 2002, 102(10), 3325-3344.
[http://dx.doi.org/10.1021/cr010335e] [PMID: 12371887]
[28]
Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-supported organic catalysts. Chem. Rev., 2003, 103(9), 3401-3430.
[http://dx.doi.org/10.1021/cr010440o] [PMID: 12964876]
[29]
Alza, E.; Cambeiro, X.C.; Jimeno, C.; Pericàs, M.A. Highly enantioselective Michael additions in water catalyzed by a PS-supported pyrrolidine. Org. Lett., 2007, 9(19), 3717-3720.
[http://dx.doi.org/10.1021/ol071366k] [PMID: 17711288]
[30]
Font, D.; Bastero, A.; Sayalero, S.; Jimeno, C.; Pericàs, M.A. Highly enantioselective α-aminoxylation of aldehydes and ketones with a polymer-supported organocatalyst. Org. Lett., 2007, 9(10), 1943-1946.
[http://dx.doi.org/10.1021/ol070526p] [PMID: 17439136]
[31]
Giacalone, F.; Gruttadauria, M.; Marculescu, A.M.; Noto, R. Polystyrene-supported proline and prolinamide. Versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and α-selenenylation of aldehydes. Tetrahedron Lett., 2007, 48(2), 255-259.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.040]
[32]
Saithalavi, A.; Shajahan, R.; Sarang, R. Polymer supported proline-based organocatalysts in asymmetric aldol reactions: A review. Curr. Organocatal., 2022, 9(2), 124-146.
[http://dx.doi.org/10.2174/2213337209666220112094231]
[33]
Kristensen, T.E.; Hansen, T. Polymer‐ supported chiral organocatalysts: Synthetic strategies for the road towards affordable polymeric immobilization. Eur. J. Org. Chem., 2010, 2010(17), 3179-3204.
[http://dx.doi.org/10.1002/ejoc.201000319]
[34]
Yang, Y.C.; Bergbreiter, D.E. Soluble polymer-supported organocatalysts. Pure Appl. Chem., 2012, 85(3), 493-509.
[http://dx.doi.org/10.1351/PAC-CON-12-05-03]
[35]
Gruttadauria, M.; Giacalone, F.; Marculescu, A.M.; Noto, R. Novel prolinamide-supported polystyrene as highly stereoselective and recyclable organocatalyst for the aldol reaction. Adv. Synth. Catal., 2008, 350(9), 1397-1405.
[http://dx.doi.org/10.1002/adsc.200800090]
[36]
Varela, M.C.; Dixon, S.M.; Lam, K.S.; Schore, N.E. Asymmetric epoxidation, michael addition, and triple cascade reaction using polymer-supported prolinol-based auxiliaries. Tetrahedron, 2008, 64(43), 10087-10090.
[http://dx.doi.org/10.1016/j.tet.2008.08.013]
[37]
Gruttadauria, M.; Salvo, A.M.P.; Giacalone, F.; Agrigento, P.; Noto, R. Enhanced activity and stereoselectivity of polystyrene-supported proline-based organic catalysts for direct asymmetric aldol reaction in water. Eur. J. Org. Chem., 2009, 2009(31), 5437-5444.
[http://dx.doi.org/10.1002/ejoc.200900829]
[38]
Cordes, M.; Kalesse, M. Very recent advances in vinylogous mukaiyama aldol reactions and their applications to synthesis. Molecules, 2019, 24(17), 3040.
[http://dx.doi.org/10.3390/molecules24173040] [PMID: 31443344]
[39]
Pansare, S.V.; Paul, E.K. Synthesis of (+)-L-733,060, (+)-CP-99,994 and (2S,3R)-3-hydroxypipecolic acid: Application of an organocatalytic direct vinylogous aldol reaction. Org. Biomol. Chem., 2012, 10(10), 2119-2125.
[http://dx.doi.org/10.1039/c2ob06644k] [PMID: 22294285]
[40]
Wu, R.; Gao, S.; Du, T.; Cai, K.; Cheng, X.; Fan, J.; Feng, J.; Shaginian, A.; Li, J.; Wan, J.; Liu, G. Exploring aldol reactions on dna and applications to produce diverse structures: An example of expanding chemical space of dna‐ encoded compounds by diversity‐ oriented synthesis. Chem. Asian J., 2020, 15(23), 4033-4037.
[http://dx.doi.org/10.1002/asia.202001105] [PMID: 33119184]
[41]
Runikhina, S.; Eremin, D.; Chusov, D. Reductive aldol‐ type reactions in the synthesis of pharmaceuticals. Chemistry, 2021, 27(62), 15327-15360.
[http://dx.doi.org/10.1002/chem.202101768] [PMID: 34403177]
[42]
a) Richter, V. From St. Petersburg on 17. Ber. Dtsch. Chem. Ges., 1869, 2, 552-554.;
b) Borodin, A. About a new descendant of valeral (On a new derivative of valerian aldehyde). Ber. Dtsch. Chem. Ges., 1873, 6, 982-985.
[http://dx.doi.org/10.1002/cber.18730060232]
[43]
Wurtz, C.A. On an aldehyde alcohol. Bull. Soc. Chir. Paris, 1872, 17, 436-442.
[44]
Li, C.; Wang, J.; Ding, H. Recyclable helical poly(phenyl isocyanide)-supported l-proline catalyst for direct asymmetric aldol reaction in brine. Catal. Lett., 2021, 151(4), 1180-1190.
[http://dx.doi.org/10.1007/s10562-020-03369-8]
[45]
Zhou, L.; Chu, B.F.; Xu, X.Y.; Xu, L.; Liu, N.; Wu, Z.Q. Significant improvement on enantioselectivity and diastereoselectivity of organocatalyzed asymmetric aldol reaction using helical polyisocyanides bearing proline pendants. ACS Macro Lett., 2017, 6(8), 824-829.
[http://dx.doi.org/10.1021/acsmacrolett.7b00439]
[46]
Wang, H.; Li, N.; Yan, Z.; Zhang, J.; Wan, X. Synthesis and properties of novel helical 3-vinylpyridine polymers containing proline moieties for asymmetric aldol reaction. RSC Advances, 2015, 5(65), 52410-52419.
[http://dx.doi.org/10.1039/C5RA07207G]
[47]
Kakar, S.; Batra, D.; Singh, R.; Nautiyal, U. Magnetic microspheres as magical novel drug delivery system: A review. J. Acute Dis., 2013, 2(1), 1-12.
[http://dx.doi.org/10.1016/S2221-6189(13)60087-6]
[48]
Song, J.; Zhang, H.; Deng, J. Optically active, magnetic microspheres: Constructed by helical substituted polyacetylene with pendent prolineamide groups and applied as catalyst for Aldol reaction. React. Funct. Polym., 2015, 93, 10-17.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2015.05.007]
[49]
Schrock, R.R.; Osborn, J.A. pi.-Bonded complexes of the tetraphenylborate ion with rhodium(I) and iridium(I). Inorg. Chem., 1970, 9(10), 2339-2343.
[http://dx.doi.org/10.1021/ic50092a027]
[50]
Tabei, J.; Nomura, R.; Masuda, T. Conformational study of poly(N -propargylamides) having bulky pendant groups. Macromolecules, 2002, 35(14), 5405-5409.
[http://dx.doi.org/10.1021/ma020320y]
[51]
Zhang, C.; Qiu, Y.; Bo, S.; Wang, F.; Wang, Y.; Liu, L.; Zhou, Y.; Niu, H.; Dong, H.; Satoh, T. Recyclable helical poly(phenylacetylene)‐ supported catalyst for asymmetric aldol reaction in aqueous media. J. Polym. Sci. A Polym. Chem., 2019, 57(9), 1024-1031.
[http://dx.doi.org/10.1002/pola.29358]
[52]
Liu, L.; Wang, Y.; Wang, F.; Zhang, C.; Zhou, Y.; Zhou, Z.; Liu, X.; Zhu, R.; Dong, H.; Satoh, T. Synthesis and asymmetric catalytic performance of one-handed helical poly(phenylacetylene)s bearing proline dipeptide pendants. React. Funct. Polym., 2020, 146, 104392.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104392]
[53]
Zhang, D.; Ren, C.; Yang, W.; Deng, J. Helical polymer as mimetic enzyme catalyzing asymmetric aldol reaction. Macromol. Rapid Commun., 2012, 33(8), 652-657.
[http://dx.doi.org/10.1002/marc.201100826] [PMID: 22318956]
[54]
Yu, X.; Herberg, A.; Kuckling, D. Azlactone-functionalized smart block copolymers for organocatalyst immobilization. Eur. Polym. J., 2019, 120, 109207.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.034]
[55]
Ho, H.T.; Levere, M.E.; Pascual, S.; Montembault, V.; Casse, N.; Caruso, A.; Fontaine, L. Thermoresponsive block copolymers containing reactive azlactone groups and their bioconjugation with lysozyme. Polym. Chem., 2013, 4(3), 675-685.
[http://dx.doi.org/10.1039/C2PY20714A]
[56]
Guo, G.; Wu, Y.; Zhao, X.; Wang, J.; Zhang, L.; Cui, Y. Polymerization of l-proline functionalized styrene and its catalytic performance as a supported organocatalyst for direct enantioselective aldol reaction. Tetrahedron Asymmetry, 2016, 27(16), 740-746.
[http://dx.doi.org/10.1016/j.tetasy.2016.06.014]
[57]
Lu, A.; Smart, T.P.; Epps, T.H., III; Longbottom, D.A.; O’Reilly, R.K. L -Proline functionalized polymers prepared by raft polymerization and their assemblies as supported organocatalysts. Macromolecules, 2011, 44(18), 7233-7241.
[http://dx.doi.org/10.1021/ma201256m] [PMID: 22053116]
[58]
Yu, X.; Herberg, A.; Kuckling, D. Micellar organocatalysis using smart polymer supports: Influence of thermoresponsive self assembly on catalytic activity. Polymers, 2020, 12(10), 2265.
[http://dx.doi.org/10.3390/polym12102265] [PMID: 33019724]
[59]
Hu, F.; Du, G.; Ye, L.; Zhu, Y.; Wang, Y.; Jiang, L. Novel amphiphilic poly(2-oxazoline)s bearing L-prolinamide moieties as the pendants: Synthesis, micellization and catalytic activity in aqueous aldol reaction. Polymer, 2016, 102, 33-42.
[http://dx.doi.org/10.1016/j.polymer.2016.08.089]
[60]
Du, G.; Ling, J.; Hu, F.; Liu, K.; Ye, L.; Jiang, L. Bioinspired polymer-bound organocatalysts for direct asymmetric aldol reaction: Experimental and computational studies. Catalysts, 2019, 9(5), 398.
[http://dx.doi.org/10.3390/catal9050398]
[61]
Kobayashi, S. Ethylenimine polymers. Prog. Polym. Sci., 1990, 15(5), 751-823.
[http://dx.doi.org/10.1016/0079-6700(90)90011-O]
[62]
Wenker, H. Syntheses from ethanolamine. V. Synthesis of Δ 2 -Oxazoline and of 2,2′-Δ 2 -Dioxazoline. J. Am. Chem. Soc., 1938, 60(9), 2152-2153.
[http://dx.doi.org/10.1021/ja01276a036]
[63]
Wang, Y.; Shen, H.; Zhou, L.; Hu, F.; Xie, S.; Jiang, L. Novel poly(2-oxazoline)s with pendant L -prolinamide moieties as efficient organocatalysts for direct asymmetric aldol reaction. Catal. Sci. Technol., 2016, 6(17), 6739-6749.
[http://dx.doi.org/10.1039/C6CY00448B]
[64]
Bañón-Caballero, A.; Guillena, G.; Nájera, C. Solvent-free direct enantioselective aldol reaction using polystyrene-supported N-sulfonyl-(Ra)-binam-D-prolinamide as a catalyst. Green Chem., 2010, 12(9), 1599-1606.
[http://dx.doi.org/10.1039/c002967j]
[65]
Zhang, X.; Zhao, W.; Yang, L.; Cui, Y. Polyvinylidene chloride supported L -prolineamide as recoverable catalyst for asymmetric aldol reaction between ketone and aromatic aldehyde. J. Appl. Polym. Sci., 2013, 127(5), 3537-3542.
[http://dx.doi.org/10.1002/app.37645]
[66]
Zou, J.; Zhao, W.; Li, R.; Zhang, H.; Cui, Y. Synthesis of PVC-TEPA-supported proline derivative and its catalytic behavior in the direct asymmetric aldol reaction. J. Appl. Polym. Sci., 2010, 118 n/a
[http://dx.doi.org/10.1002/app.29892]
[67]
Bañón-Caballero, A.; Guillena, G.; Nájera, C. Cross-linked-polymer-supported N -2′-[(Arylsulfonyl)amino][1,1′-binaphthalen]-2-ylprolinamide as organocatalyst for the direct aldol intermolecular reaction under solvent-free conditions. Helv. Chim. Acta, 2012, 95(10), 1831-1841.
[http://dx.doi.org/10.1002/hlca.201200422]
[68]
Xiao, J.; Li, G.; Zhang, W. Aldol reactions catalyzed by proline functionalized polyacrylonitrile fiber. Chem. Res. Chin. Univ., 2013, 29(2), 256-262.
[http://dx.doi.org/10.1007/s40242-013-2236-2]
[69]
Machuca, E.; Granados, G.; Hinojosa, B.; Juaristi, E. Synthesis and evaluation of (S)-proline-containing dipeptidic organocatalysts bound to MBHA resin in asymmetric aldol reactions. Tetrahedron Lett., 2015, 56(44), 6047-6051.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.062]
[70]
Kotrusz, P.; Toma, S.; Schmalz, H.G.; Adler, A. Michael additions of aldehydes and ketones toβ-nitrostyrenes in an ionic liquid. Eur. J. Org. Chem., 2004, 2004(7), 1577-1583.
[http://dx.doi.org/10.1002/ejoc.200300648]
[71]
Patora-Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach, D.; Hayashi, Y. Organocatalyzed michael addition of aldehydes to nitro alkenes - generally accepted mechanism revisited and revised. Helv. Chim. Acta, 2011, 94(5), 719-745.
[http://dx.doi.org/10.1002/hlca.201100122]
[72]
Shim, J.H.; Ahn, B.K.; Lee, J.Y.; Kim, H.S.; Ha, D.C. Organocatalysis for the asymmetric michael addition of cycloketones and α β-unsaturated nitroalkenes. Catalysts, 2021, 11(8), 1004.
[http://dx.doi.org/10.3390/catal11081004]
[73]
Shen, L.; Xu, L.; Hou, X.H.; Liu, N.; Wu, Z.Q. Polymerization amplified stereoselectivity (PASS) of asymmetric michael addition reaction and aldol reaction catalyzed by helical poly(phenyl isocyanide) bearing secondary amine pendants. Macromolecules, 2018, 51(23), 9547-9554.
[http://dx.doi.org/10.1021/acs.macromol.8b02088]
[74]
Li, T.; Wang, W.; Wang, S.; Liu, L.; Chang, W.; Li, J. Thermo‐ responsive block copolymer MICELLE‐ SUPPORTED (S)‐ α α‐ DIPHENYLPROLINOL trimethylsilyl ether for asymmetric Michael addition of nitroalkenes and aldehydes in water. J. Appl. Polym. Sci., 2021, 138(7), 49831.
[http://dx.doi.org/10.1002/app.49831]
[75]
Alza, E.; Sayalero, S.; Kasaplar, P. Almaşi, D.; Pericàs, M.A. Polystyrene-supported diarylprolinol ethers as highly efficient organocatalysts for Michael-type reactions. Chemistry, 2011, 17(41), 11585-11595.
[http://dx.doi.org/10.1002/chem.201101730] [PMID: 21882275]
[76]
Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Campisciano, V.; Noto, R. Polystyrene-supported organocatalysts for α-selenenylation and Michael reactions. Catal. Commun., 2011, 16(1), 75-80.
[http://dx.doi.org/10.1016/j.catcom.2011.08.040]
[77]
Mannich, C.; Krösche, W. On a condensation product of formaldehyde, ammonia and antipyrine. Arch. Pharm., 1912, 250(1), 647-667.
[http://dx.doi.org/10.1002/ardp.19122500151]
[78]
Arend, M.; Westermann, B.; Risch, N. Modern variants of the mannich reaction. Angew. Chem. Int. Ed., 1998, 37(8), 1044-1070.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1044:AID-ANIE1044>3.0.CO;2-E] [PMID: 29711029]
[79]
Mitsumori, S.; Zhang, H.; Ha-Yeon Cheong, P.; Houk, K.N.; Tanaka, F.; Barbas, C.F. III Direct asymmetric anti-Mannich-type reactions catalyzed by a designed amino acid. J. Am. Chem. Soc., 2006, 128(4), 1040-1041.
[http://dx.doi.org/10.1021/ja056984f] [PMID: 16433496]
[80]
Córdova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C.F. III A highly enantioselective route to either enantiomer of both α- and β-amino acid derivatives. J. Am. Chem. Soc., 2002, 124(9), 1866-1867.
[http://dx.doi.org/10.1021/ja017833p] [PMID: 11866595]
[81]
Schulz, K.; Ratjen, L.; Martens, J. Homo- and heterogeneous organocatalysis: Enantioselective mannich addition of ketones to endocyclic carbon–nitrogen double bonds. Tetrahedron, 2011, 67(2), 546-553.
[http://dx.doi.org/10.1016/j.tet.2010.10.079]
[82]
Pedrosa, R.; Andrés, J.M.; Manzano, R.; Pérez-López, C. Novel supported and unsupported prolinamides as organocatalysts for enantioselective cyclization of triketones. Tetrahedron Lett., 2013, 54(24), 3101-3104.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.123]
[83]
Li, X.; Wang, S.; Wang, K.; Jia, X.; Hu, Z. Polymer ionic liquid network: A highly effective reusable catalyst for one-pot synthesis of heterocyclic compounds. RSC Advances, 2018, 8(74), 42292-42299.
[http://dx.doi.org/10.1039/C8RA08712A] [PMID: 35558415]
[84]
Llanes, P.; Rodríguez-Escrich, C.; Sayalero, S.; Pericàs, M.A. Organocatalytic enantioselective continuous-flow cyclopropanation. Org. Lett., 2016, 18(24), 6292-6295.
[http://dx.doi.org/10.1021/acs.orglett.6b03156] [PMID: 27978649]
[85]
Zhu, H.; Xu, G.; Du, H.; Zhang, C.; Ma, N.; Zhang, W. Prolinamide functionalized polyacrylonitrile fiber with tunable linker length and surface microenvironment as efficient catalyst for Knoevenagel condensation and related multicomponent tandem reactions. J. Catal., 2019, 374, 217-229.
[http://dx.doi.org/10.1016/j.jcat.2019.04.040]
[86]
Fan, X.; Sayalero, S.; Pericàs, M.A. Asymmetric α-amination of aldehydes catalyzed by ps-diphenylprolinol silyl ethers: Remediation of catalyst deactivation for continuous flow operation. Adv. Synth. Catal., 2012, 354(16), 2971-2976.
[http://dx.doi.org/10.1002/adsc.201200887]
[87]
Krane Thvedt, T.H.; Kristensen, T.E.; Sundby, E.; Hansen, T.; Hoff, B.H. Enantioselectivity, swelling and stability of 4-hydroxyprolinol containing acrylic polymer beads in the asymmetric reduction of ketones. Tetrahedron Asymmetry, 2011, 22(24), 2172-2178.
[http://dx.doi.org/10.1016/j.tetasy.2011.12.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy