Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Integrin α3 Mediates Stemness and Invasion of Glioblastoma by Regulating POU3F2

Author(s): Junchao Yao* and Leilei Wang

Volume 24, Issue 3, 2023

Published on: 15 March, 2023

Page: [247 - 256] Pages: 10

DOI: 10.2174/1389203724666230224115459

Price: $65

Abstract

Background: Glioblastoma (GBM) is an aggressive brain tumor. Integrins have been implicated in the malignancy of GBM. A recent study demonstrated that integrin α3 (ITGA3) promoted the invasion of breast cancer cells by regulating transcriptional factor POU3F2. However, whether this also happened in GBM remained unknown.

Methods: Therefore, we explored the relationship between ITGA3 and POU3F2 in GBM. We measured the expression of ITGA3 and POU3F2 in GBM tissues. We generated ITGA3 knockdown and POU3F2 knockdown GBM U87MG cells and the proliferation, migration and invasion, the expression of stemness markers and epithelial to mesenchymal transition (EMT) markers were measured. We transplanted ITGA3 knockdown and POU3F2 knockdown GBM U87MG cells into mice. The mice were treated with anti-ITGA3 antibody. The tumor sizes, the expression of stemness markers and epithelial-to-mesenchymal transition (EMT) markers were measured.

Results: Both ITGA3 and POU3F2 were upregulated in GBM tissues. Knocking down ITGA3 resulted in reduced expression of POU3F2. Knocking down ITGA3 and POU3F2 suppressed U87MG cells proliferation, migration and invasion, inhibited the expression of stemness markers and prevented epithelial- to-mesenchymal transition. The transplantation of ITGA3 knockdown and POU3F2 knockdown U87MG cells decreased tumor size.

Conclusion: Anti-ITGA3 antibody treatment reduced the tumor size. ITGA3 regulates stemness and invasion of glioblastoma through POU3F2.

Graphical Abstract

[1]
Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D. Baranowska-Bosiacka, I. Epidemiology of glioblastoma multiforme-Literature review. Cancers, 2022, 14(10), 2412.
[http://dx.doi.org/10.3390/cancers14102412] [PMID: 35626018]
[2]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev., 2017, 18(1), 3-9.
[PMID: 28239999]
[3]
Tamimi, A.F.; Juweid, M. Epidemiology and outcome of glioblastoma.De Vleeschouwer, S. Glioblastoma; Brisbane (AU): Codon Publications, 2017.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch8]
[4]
Fernandes, C.; Costa, A.; Osorio, L.; Lago, R.C.; Linhares, P.; Carvalho, B. Current standards of care in glioblastoma therapy.De Vleeschouwer, S. Glioblastoma; Brisbane (AU): Codon Publications, 2017.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch11]
[5]
Burster, T.; Traut, R.; Yermekkyzy, Z.; Mayer, K.; Westhoff, M.A.; Bischof, J.; Knippschild, U. Critical view of novel treatment strategies for glioblastoma: Failure and success of resistance mechanisms by glioblastoma cells. Front. Cell Dev. Biol., 2021, 9, 695325.
[http://dx.doi.org/10.3389/fcell.2021.695325] [PMID: 34485282]
[6]
Liu, L.; Yin, S.; Brobbey, C.; Gan, W. Ubiquitination in cancer stem cell: Roles and targeted cancer therapy. STEMedicine, 2020, 1(3)e37
[http://dx.doi.org/10.37175/stemedicine.v1i3.37]
[7]
Malric, L.; Monferran, S.; Gilhodes, J.; Boyrie, S.; Dahan, P.; Skuli, N.; Sesen, J.; Filleron, T.; Kowalski-Chauvel, A.; Cohen-Jonathan, M.E.; Toulas, C.; Lemarié, A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget, 2017, 8(49), 86947-86968.
[http://dx.doi.org/10.18632/oncotarget.20372] [PMID: 29156849]
[8]
Ellert-Miklaszewska, A.; Poleszak, K.; Pasierbinska, M.; Kaminska, B. Integrin signaling in glioma pathogenesis: From biology to therapy. Int. J. Mol. Sci., 2020, 21(3), 888.
[http://dx.doi.org/10.3390/ijms21030888] [PMID: 32019108]
[9]
Humphries, J.D.; Byron, A.; Humphries, M.J. Integrin ligands at a glance. J. Cell Sci., 2006, 119(19), 3901-3903.
[http://dx.doi.org/10.1242/jcs.03098] [PMID: 16988024]
[10]
Su, C.; Li, J.; Zhang, L.; Wang, H.; Wang, F.; Tao, Y.; Wang, Y.; Guo, Q.; Li, J.; Liu, Y.; Yan, Y.; Zhang, J. The biological functions and clinical applications of integrins in cancers. Front. Pharmacol., 2020, 11, 579068.
[http://dx.doi.org/10.3389/fphar.2020.579068] [PMID: 33041823]
[11]
Nakada, M.; Nambu, E.; Furuyama, N.; Yoshida, Y.; Takino, T.; Hayashi, Y.; Sato, H.; Sai, Y.; Tsuji, T.; Miyamoto, K.; Hirao, A.; Hamada, J. Integrin α3 is overexpressed in glioma stem-like cells and promotes invasion. Br. J. Cancer, 2013, 108(12), 2516-2524.
[http://dx.doi.org/10.1038/bjc.2013.218] [PMID: 23652300]
[12]
Cook, A.L.; Sturm, R.A. POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis. Pigment Cell Melanoma Res., 2008, 21(6), 611-626.
[http://dx.doi.org/10.1111/j.1755-148X.2008.00510.x] [PMID: 18983536]
[13]
Schreiber, E.; Harshman, K.; Kemler, I.; Malipiero, U.; Schaffner, W.; Fontana, A. Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. Nucleic Acids Res., 1990, 18(18), 5495-5503.
[http://dx.doi.org/10.1093/nar/18.18.5495] [PMID: 2216722]
[14]
Ishii, J.; Sato, H.; Sakaeda, M.; Shishido-Hara, Y.; Hiramatsu, C.; Kamma, H.; Shimoyamada, H.; Fujiwara, M.; Endo, T.; Aoki, I.; Yazawa, T. POU domain transcription factor BRN2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer. Pathol. Int., 2013, 63(3), 158-168.
[http://dx.doi.org/10.1111/pin.12042] [PMID: 23530560]
[15]
Herbert, K.; Binet, R.; Lambert, J.P.; Louphrasitthiphol, P.; Kalkavan, H.; Sesma-Sanz, L.; Robles-Espinoza, C.D.; Sarkar, S.; Suer, E.; Andrews, S.; Chauhan, J.; Roberts, N.D.; Middleton, M.R.; Gingras, A.C.; Masson, J.Y.; Larue, L.; Falletta, P.; Goding, C.R. BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma. Genes Dev., 2019, 33(5-6), 310-332.
[http://dx.doi.org/10.1101/gad.314633.118] [PMID: 30804224]
[16]
Goodall, J.; Martinozzi, S.; Dexter, T.J.; Champeval, D.; Carreira, S.; Larue, L.; Goding, C.R. Brn-2 expression controls melanoma proliferation and is directly regulated by beta-catenin. Mol. Cell. Biol., 2004, 24(7), 2915-2922.
[http://dx.doi.org/10.1128/MCB.24.7.2915-2922.2004] [PMID: 15024079]
[17]
Fane, M.E.; Chhabra, Y.; Smith, A.G.; Sturm, R.A. BRN 2, a POU erful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res., 2019, 32(1), 9-24.
[http://dx.doi.org/10.1111/pcmr.12710] [PMID: 29781575]
[18]
Miskin, R.P.; Warren, J.S.A.; Ndoye, A.; Wu, L.; Lamar, J.M.; DiPersio, C.M. Integrin α3β1 promotes invasive and metastatic properties of breast cancer cells through induction of the brn-2 transcription factor. Cancers, 2021, 13(3), 480.
[http://dx.doi.org/10.3390/cancers13030480] [PMID: 33513758]
[19]
Kim, W.; Kang, B.R.; Kim, H.Y.; Cho, S.M.; Lee, Y-D.; Kim, S.; Kim, J.Y.; Kim, D.J.; Kim, Y.S. Real-time imaging of glioblastoma using bioluminescence in a U-87 MG xenograft model mouse. J. Korean Soc. Appl. Biol. Chem., 2015, 58(2), 243-248.
[http://dx.doi.org/10.1007/s13765-015-0037-7]
[20]
Zhang, X.; Zhao, W.; Li, Y. Stemness-related markers in cancer. Cancer Transl. Med., 2017, 3(3), 87-95.
[http://dx.doi.org/10.4103/ctm.ctm_69_16] [PMID: 29276782]
[21]
Hamidi, H.; Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer, 2018, 18(9), 533-548.
[http://dx.doi.org/10.1038/s41568-018-0038-z] [PMID: 30002479]
[22]
Kreidberg, J.A. Functions of α3β1 integrin. Curr. Opin. Cell Biol., 2000, 12(5), 548-553.
[http://dx.doi.org/10.1016/S0955-0674(00)00130-7] [PMID: 10978888]
[23]
Subbaram, S.; DiPersio, C.M. Integrin α3β1 as a breast cancer target. Expert Opin. Ther. Targets, 2011, 15(10), 1197-1210.
[http://dx.doi.org/10.1517/14728222.2011.609557] [PMID: 21838596]
[24]
Mitchell, K.; Svenson, K.B.; Longmate, W.M.; Gkirtzimanaki, K.; Sadej, R.; Wang, X.; Zhao, J.; Eliopoulos, A.G.; Berditchevski, F.; DiPersio, C.M. Suppression of integrin alpha3beta1 in breast cancer cells reduces cyclooxygenase-2 gene expression and inhibits tumorigenesis, invasion, and cross-talk to endothelial cells. Cancer Res., 2010, 70(15), 6359-6367.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4283] [PMID: 20631072]
[25]
Cui, T.; Bell, E.H.; McElroy, J.; Liu, K.; Sebastian, E.; Johnson, B.; Gulati, P.M.; Becker, A.P.; Gray, A.; Geurts, M.; Subedi, D.; Yang, L.; Fleming, J.L.; Meng, W.; Barnholtz-Sloan, J.S.; Venere, M.; Wang, Q.E.; Robe, P.A.; Haque, S.J.; Chakravarti, A. A novel miR-146a-POU3F2/SMARCA5 pathway regulates stemness and therapeutic response in glioblastoma. Mol. Cancer Res., 2021, 19(1), 48-60.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0353] [PMID: 32973101]
[26]
Bishop, J.L.; Thaper, D.; Vahid, S.; Davies, A.; Ketola, K.; Kuruma, H.; Jama, R.; Nip, K.M.; Angeles, A.; Johnson, F.; Wyatt, A.W.; Fazli, L.; Gleave, M.E.; Lin, D.; Rubin, M.A.; Collins, C.C.; Wang, Y.; Beltran, H.; Zoubeidi, A. The master neural transcription factor BRN2 is an androgen receptor–suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov., 2017, 7(1), 54-71.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1263] [PMID: 27784708]
[27]
Boyle, G.M.; Woods, S.L.; Bonazzi, V.F.; Stark, M.S.; Hacker, E.; Aoude, L.G.; Dutton-Regester, K.; Cook, A.L.; Sturm, R.A.; Hayward, N.K. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res., 2011, 24(3), 525-537.
[http://dx.doi.org/10.1111/j.1755-148X.2011.00849.x] [PMID: 21435193]
[28]
Smith, M.P.; Rana, S.; Ferguson, J.; Rowling, E.J.; Flaherty, K.T.; Wargo, J.A.; Marais, R.; Wellbrock, C.A. PAX3/BRN2 rheostat controls the dynamics of BRAF mediated MITF regulation in MITF high/AXL low melanoma. Pigment Cell Melanoma Res., 2019, 32(2), 280-291.
[http://dx.doi.org/10.1111/pcmr.12741] [PMID: 30277012]
[29]
Wellbrock, C.; Rana, S.; Paterson, H.; Pickersgill, H.; Brummelkamp, T.; Marais, R. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One, 2008, 3(7)e2734
[http://dx.doi.org/10.1371/journal.pone.0002734] [PMID: 18628967]
[30]
Yee, K.L.; Weaver, V.M.; Hammer, D.A. Integrin-mediated signalling through the MAP-kinase pathway. IET Syst. Biol., 2008, 2(1), 8-15.
[http://dx.doi.org/10.1049/iet-syb:20060058] [PMID: 18248081]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy