Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Significance of Complement Regulatory Protein Tetraspanins in the Male Reproductive System and Fertilization

Author(s): Pooja Jangid, Umesh Rai, Amrita bakshi and Rajeev Singh*

Volume 24, Issue 3, 2023

Published on: 21 February, 2023

Page: [240 - 246] Pages: 7

DOI: 10.2174/1389203724666230131110203

Price: $65

Abstract

Fertilization is a very sophisticated and unique process involving several key steps resulting in a zygote's formation. Recent research has indicated that some immune system-related cell surface molecules (CD molecules from the tetraspanin superfamily) may have a role in fertilization. Extracellular vesicles are undeniably involved in a variety of cellular functions, including reproduction. Tetraspanin proteins identified in extracellular vesicles are now used mostly as markers; mounting evidence indicates that they also participate in cell targeting, cargo selection, and extracellular vesicle formation. Their significance and potential in mammalian reproduction are currently being studied extensively. Despite the fact that the current data did not establish any theory, the crucial function of tetraspanins in the fertilization process was not ruled out, and the specific role of tetraspanins is still unknown. In this review, we bring insight into the existing knowledge regarding the expression of tetraspanins in spermatozoa and seminal fluid and their role in gamete binding and fusion.

Graphical Abstract

[1]
Rubinstein, E.; Ziyyat, A.; Wolf, J.P.; Le Naour, F.; Boucheix, C. The molecular players of sperm-egg fusion in mammals. Sem. Cell Devel. Biol., 2006, 17(2), 254-263.
[http://dx.doi.org/10.1016/j.semcdb.2006.02.012]
[2]
Barraud-Lange, V.; Boucheix, C. The role of tetraspanin complexes in egg-sperm fusion. In: Tetraspanins; Springer: Dordrecht, 2013; pp. 203-231.
[3]
Hemler, M.E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol., 2005, 6(10), 801-811.
[http://dx.doi.org/10.1038/nrm1736] [PMID: 16314869]
[4]
Rubinstein, E. The complexity of tetraspanins. Biochem. Soc. Trans., 2011, 39(2), 501-505.
[http://dx.doi.org/10.1042/BST0390501] [PMID: 21428928]
[5]
Berditchevski, F.; Odintsova, E.; Sawada, S.; Gilbert, E. Expression of the palmitoylation-deficient CD151 weakens the association of α 3 β 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J. Biol. Chem., 2002, 277(40), 36991-37000.
[http://dx.doi.org/10.1074/jbc.M205265200] [PMID: 12110679]
[6]
Charrin, S.; Manié, S.; Oualid, M.; Billard, M.; Boucheix, C.; Rubinstein, E. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett., 2002, 516(1-3), 139-144.
[http://dx.doi.org/10.1016/S0014-5793(02)02522-X] [PMID: 11959120]
[7]
Yang, X.; Claas, C.; Kraeft, S.K.; Chen, L.B.; Wang, Z.; Kreidberg, J.A.; Hemler, M.E. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell, 2002, 13(3), 767-781.
[http://dx.doi.org/10.1091/mbc.01-05-0275] [PMID: 11907260]
[8]
Huang, S.; Yuan, S.; Dong, M.; Su, J.; Yu, C.; Shen, Y.; Xie, X.; Yu, Y.; Yu, X.; Chen, S.; Zhang, S.; Pontarotti, P.; Xu, A. The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics, 2005, 86(6), 674-684.
[http://dx.doi.org/10.1016/j.ygeno.2005.08.004] [PMID: 16242907]
[9]
Boucheix, C.; Rubinstein, E. Tetraspanins. Cell. Mol. Life Sci., 2001, 58(9), 1189-1205.
[http://dx.doi.org/10.1007/PL00000933] [PMID: 11577978]
[10]
Tang, M.; Yin, G.; Wang, F.; Liu, H.; Zhou, S.; Ni, J.; Chen, C.; Zhou, Y.; Zhao, Y. Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol. Rep., 2015, 34(1), 350-358.
[http://dx.doi.org/10.3892/or.2015.3960] [PMID: 25955689]
[11]
Stipp, C.S.; Kolesnikova, T.V.; Hemler, M.E. Functional domains in tetraspanin proteins. Trends Biochem. Sci., 2003, 28(2), 106-112.
[http://dx.doi.org/10.1016/S0968-0004(02)00014-2] [PMID: 12575999]
[12]
Berditchevski, F.; Odintsova, E. Tetraspanins as regulators of protein trafficking. Traffic, 2007, 8(2), 89-96.
[http://dx.doi.org/10.1111/j.1600-0854.2006.00515.x] [PMID: 17181773]
[13]
Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol., 2013, 200(4), 373-383.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[14]
Barranco, I.; Padilla, L.; Parrilla, I.; Álvarez-Barrientos, A.; Pérez-Patiño, C.; Peña, F.J.; Martínez, E.A.; Rodriguez-Martínez, H.; Roca, J. Extracellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression profiles. Sci. Rep., 2019, 9(1), 11584.
[http://dx.doi.org/10.1038/s41598-019-48095-3] [PMID: 31399634]
[15]
Hemler, M.E. Specific tetraspanin functions. J. Cell Biol., 2001, 155(7), 1103-1108.
[http://dx.doi.org/10.1083/jcb.200108061] [PMID: 11756464]
[16]
Berditchevski, F. Complexes of tetraspanins with integrins: more than meets the eye. J. Cell Sci., 2001, 114(23), 4143-4151.
[http://dx.doi.org/10.1242/jcs.114.23.4143] [PMID: 11739647]
[17]
Tres, L.L.; Kierszenbaum, A.L. The ADAM-integrin-tetraspanin complex in fetal and postnatal testicular cords. Birth Defects Res. C Embryo Today, 2005, 75(2), 130-141.
[http://dx.doi.org/10.1002/bdrc.20041] [PMID: 16035044]
[18]
Jankovičová, J.; Neuerová, Z.; Sečová, P.; Bartóková, M.; Bubeníčková, F.; Komrsková, K.; Postlerová, P.; Antalíková, J. Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos. Med. Microbiol. Immunol. (Berl.), 2020, 209(4), 407-425.
[http://dx.doi.org/10.1007/s00430-020-00676-0] [PMID: 32424440]
[19]
Sutovsky, P. Sperm-egg adhesion and fusion in mammals. Expert Rev. Mol. Med., 2009, 11(Apr)e11
[http://dx.doi.org/10.1017/S1462399409001045] [PMID: 19335925]
[20]
Ziyyat, A.; Rubinstein, E.; Monier-Gavelle, F.; Barraud, V.; Kulski, O.; Prenant, M.; Boucheix, C.; Bomsel, M.; Wolf, J.P. CD9 controls the formation of clusters that contain tetraspanins and the integrin α6β1, which are involved in human and mouse gamete fusion. J. Cell Sci., 2006, 119(3), 416-424.
[http://dx.doi.org/10.1242/jcs.02730] [PMID: 16418227]
[21]
Kanatsu-Shinohara, M.; Toyokuni, S.; Shinohara, T. CD9 is a surface marker on mouse and rat male germline stem cells. Biol. Reprod., 2004, 70(1), 70-75.
[http://dx.doi.org/10.1095/biolreprod.103.020867] [PMID: 12954725]
[22]
Kierszenbaum, A.L.; Rosselot, C.; Rivkin, E.; Tres, L.L. Role of integrins, tetraspanins, and ADAM proteins during the development of apoptotic bodies by spermatogenic cells. Mol. Reprod. Dev., 2006, 73(7), 906-917.
[http://dx.doi.org/10.1002/mrd.20470] [PMID: 16557522]
[23]
Ito, C.; Yamatoya, K.; Yoshida, K.; Maekawa, M.; Miyado, K.; Toshimori, K. Tetraspanin family protein CD9 in the mouse sperm: unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res., 2010, 340(3), 583-594.
[http://dx.doi.org/10.1007/s00441-010-0967-7] [PMID: 20428892]
[24]
Rosselot, C.; Kierszenbaum, A.L.; Tres, A.L. Integrin-tetraspanin complexes of Sak57, a keratin 5 ortholog, participate in the programmed cell death of spermatogenic cells. In: Molecular Biology Of The Cell; Amer. Soc. Cell Biol; 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755: USA, 2004; 15, p. 90A.
[25]
Barraud-Lange, V.; Chalas Boissonnas, C.; Serres, C.; Auer, J.; Schmitt, A.; Lefèvre, B.; Wolf, J.P.; Ziyyat, A. Membrane transfer from oocyte to sperm occurs in two CD9-independent ways that do not supply the fertilising ability of CD9-deleted oocytes. Reproduction, 2012, 144(1), 53-66.
[http://dx.doi.org/10.1530/REP-12-0040] [PMID: 22554680]
[26]
Frolikova, M.; Manaskova-Postlerova, P.; Cerny, J.; Jankovicova, J.; Simonik, O.; Pohlova, A.; Secova, P.; Antalikova, J.; Dvorakova-Hortova, K. CD9 and CD81 interactions and their structural modelling in sperm prior to fertilization. Int. J. Mol. Sci., 2018, 19(4), 1236.
[http://dx.doi.org/10.3390/ijms19041236] [PMID: 29671763]
[27]
Umeda, R.; Satouh, Y.; Takemoto, M.; Nakada-Nakura, Y.; Liu, K.; Yokoyama, T.; Shirouzu, M.; Iwata, S.; Nomura, N.; Sato, K.; Ikawa, M.; Nishizawa, T.; Nureki, O. Structural insights into tetraspanin CD9 function. Nat. Commun., 2020, 11(1), 1606.
[http://dx.doi.org/10.1038/s41467-020-15459-7] [PMID: 32231207]
[28]
Charrin, S.; Le Naour, F.; Oualid, M.; Billard, M.; Faure, G.; Hanash, S.M.; Boucheix, C.; Rubinstein, E. The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J. Biol. Chem., 2001, 276(17), 14329-14337.
[http://dx.doi.org/10.1074/jbc.M011297200] [PMID: 11278880]
[29]
Sala-Valdés, M.; Ursa, Á.; Charrin, S.; Rubinstein, E.; Hemler, M.E.; Sánchez-Madrid, F.; Yáñez-Mó, M. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J. Biol. Chem., 2006, 281(28), 19665-19675.
[http://dx.doi.org/10.1074/jbc.M602116200] [PMID: 16690612]
[30]
Wang, L.; Chen, W.; Zhao, C.; Huo, R.; Guo, X.J.; Lin, M.; Huang, X.Y.; Mao, Y.D.; Zhou, Z.M.; Sha, J.H. The role of ezrin-associated protein network in human sperm capacitation. Asian J. Androl., 2010, 12(5), 667-676.
[http://dx.doi.org/10.1038/aja.2010.79] [PMID: 20711218]
[31]
Kaewmala, K.; Uddin, M.J.; Cinar, M.U.; Große-Brinkhaus, C.; Jonas, E.; Tesfaye, D.; Phatsara, C.; Tholen, E.; Looft, C.; Schellander, K. Association study and expression analysis of CD9 as candidate gene for boar sperm quality and fertility traits. Anim. Reprod. Sci., 2011, 125(1-4), 170-179.
[http://dx.doi.org/10.1016/j.anireprosci.2011.02.017] [PMID: 21398056]
[32]
Antalíková, J.; Jankovičová, J.; Simon, M.; Cupperová, P.; Michalková, K.; Horovská, Ľ Localization of CD 9 molecule on bull spermatozoa: its involvement in the sperm-egg interaction. Reprod. Domest. Anim., 2015, 50(3), 423-430.
[http://dx.doi.org/10.1111/rda.12508] [PMID: 25779206]
[33]
Li, Y.H.; Hou, Y.; Ma, W.; Yuan, J.X.; Zhang, D.; Sun, Q.Y.; Wang, W.H. Localization of CD9 in pig oocytes and its effects on sperm-egg interaction. Reproduction, 2004, 127(2), 151-157.
[http://dx.doi.org/10.1530/rep.1.00006] [PMID: 15056780]
[34]
Caballero, J.N.; Frenette, G.; Belleannée, C.; Sullivan, R. CD9-positive microvesicles mediate the transfer of molecules to Bovine Spermatozoa during epididymal maturation. PLoS One, 2013, 8(6)e65364
[http://dx.doi.org/10.1371/journal.pone.0065364] [PMID: 23785420]
[35]
Salvolini, E.; Buldreghini, E.; Lucarini, G.; Vignini, A.; Lenzi, A.; Di Primio, R.; Balercia, G. Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Fertil. Steril., 2013, 99(3), 697-704.
[http://dx.doi.org/10.1016/j.fertnstert.2012.10.042] [PMID: 23174138]
[36]
Pradhan, B.S.; Bhattacharya, I.; Sarkar, R.; Majumdar, S.S. Pubertal down-regulation of Tetraspanin 8 in testicular Sertoli cells is crucial for male fertility. Mol. Hum. Reprod., 2020, 26(10), 760-772.
[http://dx.doi.org/10.1093/molehr/gaaa055] [PMID: 32687199]
[37]
Jankovicova, J.; Frolikova, M.; Sebkova, N.; Simon, M.; Cupperova, P.; Lipcseyova, D.; Michalkova, K.; Horovska, L.; Sedlacek, R.; Stopka, P.; Antalikova, J.; Dvorakova-Hortova, K. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction, 2016, 152(6), 785-793.
[http://dx.doi.org/10.1530/REP-16-0304] [PMID: 27679865]
[38]
Ohnami, N.; Nakamura, A.; Miyado, M.; Sato, M.; Kawano, N.; Yoshida, K.; Harada, Y.; Takezawa, Y.; Kanai, S.; Ono, C.; Takahashi, Y.; Kimura, K.; Shida, T.; Miyado, K.; Umezawa, A. CD81 and CD9 work independently as extracellular components upon fusion of sperm and oocyte. Biol. Open, 2012, 1(7), 640-647.
[http://dx.doi.org/10.1242/bio.20121420] [PMID: 23213457]
[39]
Tanigawa, M.; Miyamoto, K.; Kobayashi, S.; Sato, M.; Akutsu, H.; Okabe, M.; Mekada, E.; Sakakibara, K.; Miyado, M.; Umezawa, A.; Miyado, K. Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol. Reprod. Dev., 2008, 75(1), 150-155.
[http://dx.doi.org/10.1002/mrd.20709] [PMID: 17290409]
[40]
Rubinstein, E.; Ziyyat, A.; Prenant, M.; Wrobel, E.; Wolf, J.P.; Levy, S.; Le Naour, F.; Boucheix, C. Reduced fertility of female mice lacking CD81. Dev. Biol., 2006, 290(2), 351-358.
[http://dx.doi.org/10.1016/j.ydbio.2005.11.031] [PMID: 16380109]
[41]
Zimmerman, B.; Kelly, B.; McMillan, B.J.; Seegar, T.C.M.; Dror, R.O.; Kruse, A.C.; Blacklow, S.C. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell, 2016, 167(4), 1041-1051.e11.
[http://dx.doi.org/10.1016/j.cell.2016.09.056] [PMID: 27881302]
[42]
Lipcseyová, D.; Antalíková, J.; Jankovičová, J.; Cupperová, P.; Horovská, Ľ.; Michalková, K.; Simon, M. Immunohistochemical detection of tetraspanins CD81 and CD9 distribution in bull testis and epididymis. CBU International Conference Proceedings, 2016, pp. 777-781.
[http://dx.doi.org/10.12955/cbup.v4.854]
[43]
Cupperová, P.; Simon, M.; Antalíková, J.; Michalková, K.; Horovská, Ľ.; Hluchý, S. Distribution of tetraspanin family protein CD9 in bull reproductive system. Czech J. Anim. Sci., 2014, 59(3), 134-139.
[http://dx.doi.org/10.17221/7293-CJAS]
[44]
Jankovicova, J.; Frolikova, M.; Palenikova, V.; Valaskova, E.; Cerny, J.; Secova, P.; Bartokova, M.; Horovska, L.; Manaskova-Postlerova, P.; Antalikova, J.; Komrskova, K. Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Sci. Rep., 2020, 10(1), 4374.
[http://dx.doi.org/10.1038/s41598-020-61334-2] [PMID: 32152440]
[45]
Primakoff, P.; Myles, D.G. Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science, 2002, 296(5576), 2183-2185.
[http://dx.doi.org/10.1126/science.1072029] [PMID: 12077404]
[46]
Wassarman, P.M.; Jovine, L.; Litscher, E.S. A profile of fertilization in mammals. Nat. Cell Biol., 2001, 3(2), E59-E64.
[http://dx.doi.org/10.1038/35055178] [PMID: 11175768]
[47]
Al-Dossary, A.A.; Bathala, P.; Caplan, J.L.; Martin-DeLeon, P.A. Oviductosome-sperm membrane interaction in cargo delivery: detection of fusion and underlying molecular players using three-dimensional super-resolution structured illumination microscopy (SR-SIM). J. Biol. Chem., 2015, 290(29), 17710-17723.
[http://dx.doi.org/10.1074/jbc.M114.633156] [PMID: 26023236]
[48]
Le Naour, F.; Rubinstein, E.; Jasmin, C.; Prenant, M.; Boucheix, C. Severely reduced female fertility in CD9-deficient mice. Science, 2000, 287(5451), 319-321.
[http://dx.doi.org/10.1126/science.287.5451.319] [PMID: 10634790]
[49]
Miyado, K.; Yamada, G.; Yamada, S.; Hasuwa, H.; Nakamura, Y.; Ryu, F.; Suzuki, K.; Kosai, K.; Inoue, K.; Ogura, A.; Okabe, M.; Mekada, E. Requirement of CD9 on the egg plasma membrane for fertilization. Science, 2000, 287(5451), 321-324.
[http://dx.doi.org/10.1126/science.287.5451.321] [PMID: 10634791]
[50]
Kaji, K.; Oda, S.; Shikano, T.; Ohnuki, T.; Uematsu, Y.; Sakagami, J.; Tada, N.; Miyazaki, S.; Kudo, A. The gamete fusion process is defective in eggs of CD9-deficient mice. Nat. Genet., 2000, 24(3), 279-282.
[http://dx.doi.org/10.1038/73502] [PMID: 10700183]
[51]
Miller, B.J.; Georges-Labouesse, E.; Primakoff, P.; Myles, D.G. Normal fertilization occurs with eggs lacking the integrin α6β1 and is CD9-dependent. J. Cell Biol., 2000, 149(6), 1289-1296.
[http://dx.doi.org/10.1083/jcb.149.6.1289] [PMID: 10851025]
[52]
Jégou, A.; Ziyyat, A.; Barraud-Lange, V.; Perez, E.; Wolf, J.P.; Pincet, F.; Gourier, C. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10946-10951.
[http://dx.doi.org/10.1073/pnas.1017400108] [PMID: 21690351]
[53]
Miyado, K.; Yoshida, K.; Yamagata, K.; Sakakibara, K.; Okabe, M.; Wang, X.; Miyamoto, K.; Akutsu, H.; Kondo, T.; Takahashi, Y.; Ban, T.; Ito, C.; Toshimori, K.; Nakamura, A.; Ito, M.; Miyado, M.; Mekada, E.; Umezawa, A. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 12921-12926.
[http://dx.doi.org/10.1073/pnas.0710608105] [PMID: 18728192]
[54]
Lefèvre, B.; Wolf, J.P.; Ziyyat, A. Sperm-egg interaction: is there a link between tetraspanin(s) and GPI-anchored protein(s)? BioEssays, 2010, 32(2), 143-152.
[http://dx.doi.org/10.1002/bies.200900159] [PMID: 20091756]
[55]
Runge, K.E.; Evans, J.E.; He, Z.Y.; Gupta, S.; McDonald, K.L.; Stahlberg, H.; Primakoff, P.; Myles, D.G. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol., 2007, 304(1), 317-325.
[http://dx.doi.org/10.1016/j.ydbio.2006.12.041] [PMID: 17239847]
[56]
Zhu, GZ.; Miller, BJ.; Boucheix, C.; Rubinstein, E.; Liu, CC.; Hynes, RO.; Myles, DG.; Primakoff, P. Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development, 2002, 129(8)
[57]
Kaji, K.; Oda, S.; Miyazaki, S.; Kudo, A. Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev. Biol., 2002, 247(2), 327-334.
[http://dx.doi.org/10.1006/dbio.2002.0694] [PMID: 12086470]
[58]
Chen, E.H.; Olson, E.N. Unveiling the mechanisms of cell-cell fusion. Science, 2005, 308(5720), 369-373.
[http://dx.doi.org/10.1126/science.1104799] [PMID: 15831748]
[59]
Gupta, S.; Primakoff, P.; Myles, D.G. Can the presence of wild-type oocytes during insemination rescue the fusion defect of CD9 null oocytes? Mol. Reprod. Dev., 2009, 76(7), 602.
[http://dx.doi.org/10.1002/mrd.21040] [PMID: 19363789]
[60]
Fanaei, M.; Monk, P.N.; Partridge, L.J. The role of tetraspanins in fusion. Biochem. Soc. Trans., 2011, 39(2), 524-528.
[http://dx.doi.org/10.1042/BST0390524] [PMID: 21428932]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy