Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Meta-Analysis

A Review and Meta-analysis on Trastuzumab Resistance in Patients with HER2+ Breast Cancer

Author(s): Alexandre Holzbach Júnior, Bernardo Perin Cima, Mari Dalva Staffen, Juliana Dal-Ri Lindenau and Yara Costa Netto Muniz*

Volume 23, Issue 11, 2023

Published on: 22 March, 2023

Page: [1222 - 1236] Pages: 15

DOI: 10.2174/1389557523666230224110738

Price: $65

conference banner
Abstract

Background: Trastuzumab is a monoclonal antibody that revolutionized the treatment of HER2+ breast cancer. However, about 30% of patients demonstrate resistance to this drug.

Objective: The purpose of this study is to identify the mechanisms involved in resistance to treatment. with trastuzumab in women undergoing HER2+ breast cancer treatment.

Methods: A wide review and meta-analysis were performed in the PubMed and Scielo databases up to January 2022. All articles that analyzed the efficacy of the drug in HER2+ human patients treated with trastuzumab were selected, except reviews, meta-analyses, and reports. Egger’s test was applied to verify publication bias. Forest plot and PRISMA flowchart were employed.

Results: 60 articles were selected for the review and 15 included in the meta-analysis. A total of 102 resistance mechanisms were identified, 73 of which are different from each other. The mechanisms have been classified into 5 different categories. The main resistance mechanisms found are in the PI3K/Akt/mTOR pathway or related to low HER2, often resulting from failure to assess HER2 status. Both groups presented statistical significance. The two groups were not significantly different from each other.

Conclusion: Drug resistance is the main challenge of trastuzumab-based treatment. To overcome this challenge, it is important to continue efforts to understand the mechanisms of cancer drug resistance, identify therapies that can treat refractory cancer to current therapies, and possibly create a panel of genes that predict resistance, avoiding symptomatic and economic costs. The main limitation of this study was the selection and population bias.

« Previous
Graphical Abstract

[1]
Wild, CP; Weiderpass, E; Stewart, BW. World Cancer Report: Cancer Research for Cancer Prevention. Lyon, France: International Agency for Research on Cancer, 2020. Available from: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-Cancer-Research-For-Cancer-Prevention-2020.
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.G.; Cronin, K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst., 2014, 106(5), dju055.
[http://dx.doi.org/10.1093/jnci/dju055] [PMID: 24777111]
[4]
Ross, J.S.; Slodkowska, E.A.; Symmans, W.F.; Pusztai, L.; Ravdin, P.M.; Hortobagyi, G.N. The HER-2 receptor and breast cancer: Ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist, 2009, 14(4), 320-368.
[http://dx.doi.org/10.1634/theoncologist.2008-0230] [PMID: 19346299]
[5]
Onitilo, A.A.; Engel, J.M.; Greenlee, R.T.; Mukesh, B.N. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin. Med. Res., 2009, 7(1-2), 4-13.
[http://dx.doi.org/10.3121/cmr.2008.825] [PMID: 19574486]
[6]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[7]
Fabi, A.; Malaguti, P.; Vari, S.; Cognetti, F. First-line therapy in HER2 positive metastatic breast cancer: Is the mosaic fully completed or are we missing additional pieces? J. Exp. Clin. Cancer Res., 2016, 35(1), 104.
[http://dx.doi.org/10.1186/s13046-016-0380-5] [PMID: 27357210]
[8]
Maximiano, S.; Magalhães, P.; Guerreiro, M.P.; Morgado, M. Trastuzumab in the treatment of breast cancer. BioDrugs, 2016, 30(2), 75-86.
[http://dx.doi.org/10.1007/s40259-016-0162-9] [PMID: 26892619]
[9]
Carter, P.; Presta, L.; Gorman, C.M.; Ridgway, J.B.; Henner, D.; Wong, W.L.; Rowland, A.M.; Kotts, C.; Carver, M.E.; Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci., 1992, 89(10), 4285-4289.
[http://dx.doi.org/10.1073/pnas.89.10.4285] [PMID: 1350088]
[10]
Modi, S.; Murphy HER2 breast cancer therapies: A review. Biologics, 2009, 289, 289.
[http://dx.doi.org/10.2147/BTT.S3479]
[11]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[12]
Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol., 2017, 8(2), 120-134.
[http://dx.doi.org/10.5306/wjco.v8.i2.120] [PMID: 28439493]
[13]
Dawood, S.; Broglio, K.; Buzdar, A.U.; Hortobagyi, G.N.; Giordano, S.H. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J. Clin. Oncol., 2010, 28(1), 92-98.
[http://dx.doi.org/10.1200/JCO.2008.19.9844] [PMID: 19933921]
[14]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg., 2010, 8(5), 336-341.
[http://dx.doi.org/10.1016/j.ijsu.2010.02.007] [PMID: 20171303]
[15]
RECIST. Available from: https://recist.eortc.org/
[16]
Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; Hodi, F.S.; Therasse, P.; Hoekstra, O.S.; Shankar, L.K.; Wolchok, J.D.; Ballinger, M.; Caramella, C.; de Vries, E.G.E. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol., 2017, 18(3), e143-e152.
[http://dx.doi.org/10.1016/S1470-2045(17)30074-8] [PMID: 28271869]
[17]
Howard, J.P., II Meta-analysis with R. J. Stat. Softw., 2016, 70(1), 1-3.
[http://dx.doi.org/10.18637/jss.v070.b01]
[18]
Hunter, J.E.; Schmidt, F.L. Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge. Int. J. Sel. Assess., 2000, 8(4), 275-292.
[http://dx.doi.org/10.1111/1468-2389.00156]
[19]
Hedges, L.V.; Vevea, J.L. Fixed- and random-effects models in meta-analysis. Psychol. Methods, 1998, 3(4), 486-504.
[http://dx.doi.org/10.1037/1082-989X.3.4.486]
[20]
Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414), 557-560.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[21]
Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997, 315(7109), 629-634.
[http://dx.doi.org/10.1136/bmj.315.7109.629] [PMID: 9310563]
[22]
Satpathy, S.; Jaehnig, E.J.; Krug, K.; Kim, B.J.; Saltzman, A.B.; Chan, D.W.; Holloway, K.R.; Anurag, M.; Huang, C.; Singh, P.; Gao, A.; Namai, N.; Dou, Y.; Wen, B.; Vasaikar, S.V.; Mutch, D.; Watson, M.A.; Ma, C.; Ademuyiwa, F.O.; Rimawi, M.F.; Schiff, R.; Hoog, J.; Jacobs, S.; Malovannaya, A.; Hyslop, T.; Clauser, K.R.; Mani, D.R.; Perou, C.M.; Miles, G.; Zhang, B.; Gillette, M.A.; Carr, S.A.; Ellis, M.J. Microscaled proteogenomic methods for precision oncology. Nat. Commun., 2020, 11(1), 532.
[http://dx.doi.org/10.1038/s41467-020-14381-2] [PMID: 31988290]
[23]
Tanioka, M.; Fan, C.; Parker, J.S.; Hoadley, K.A.; Hu, Z.; Li, Y.; Hyslop, T.M.; Pitcher, B.N.; Soloway, M.G.; Spears, P.A.; Henry, L.N.; Tolaney, S.; Dang, C.T.; Krop, I.E.; Harris, L.N.; Berry, D.A.; Mardis, E.R.; Winer, E.P.; Hudis, C.A.; Carey, L.A.; Perou, C.M. Integrated analysis of rna and dna from the phase iii trial calgb 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in her2-positive breast cancer. Clin. Cancer Res., 2018, 24(21), 5292-5304.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3431] [PMID: 30037817]
[24]
Rimawi, M.F.; De Angelis, C.; Contreras, A.; Pareja, F.; Geyer, F.C.; Burke, K.A.; Herrera, S.; Wang, T.; Mayer, I.A.; Forero, A.; Nanda, R.; Goetz, M.P.; Chang, J.C.; Krop, I.E.; Wolff, A.C.; Pavlick, A.C.; Fuqua, S.A.W.; Gutierrez, C.; Hilsenbeck, S.G.; Li, M.M.; Weigelt, B.; Reis-Filho, J.S.; Kent Osborne, C.; Schiff, R. Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Res. Treat., 2018, 167(3), 731-740.
[http://dx.doi.org/10.1007/s10549-017-4533-9] [PMID: 29110152]
[25]
Majewski, I.J.; Nuciforo, P.; Mittempergher, L.; Bosma, A.J.; Eidtmann, H.; Holmes, E.; Sotiriou, C.; Fumagalli, D.; Jimenez, J.; Aura, C.; Prudkin, L.; Díaz-Delgado, M.C.; de la Peña, L.; Loi, S.; Ellis, C.; Schultz, N.; de Azambuja, E.; Harbeck, N.; Piccart-Gebhart, M.; Bernards, R.; Baselga, J. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J. Clin. Oncol., 2015, 33(12), 1334-1339.
[http://dx.doi.org/10.1200/JCO.2014.55.2158] [PMID: 25559818]
[26]
Wang, L.; Zhang, Q.; Zhang, J.; Sun, S.; Guo, H.; Jia, Z.; Wang, B.; Shao, Z.; Wang, Z.; Hu, X. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer, 2011, 11(1), 248.
[http://dx.doi.org/10.1186/1471-2407-11-248] [PMID: 21676217]
[27]
Dave, B.; Migliaccio, I.; Gutierrez, M.C.; Wu, M.F.; Chamness, G.C.; Wong, H.; Narasanna, A.; Chakrabarty, A.; Hilsenbeck, S.G.; Huang, J.; Rimawi, M.; Schiff, R.; Arteaga, C.; Osborne, C.K.; Chang, J.C. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J. Clin. Oncol., 2011, 29(2), 166-173.
[http://dx.doi.org/10.1200/JCO.2009.27.7814] [PMID: 21135276]
[28]
Toomey, S.; Madden, S.F.; Furney, S.J.; Fan, Y.; McCormack, M.; Stapleton, C.; Cremona, M.; Cavalleri, G.L.; Milewska, M.; Elster, N.; Carr, A.; Fay, J.; Kay, E.W.; Kennedy, S.; Crown, J.; Gallagher, W.M.; Hennessy, B.T.; Eustace, A.J. The impact of ERBB-family germline single nucleotide polymorphisms on survival response to adjuvant trastuzumab treatment in HER2-positive breast cancer. Oncotarget, 2016, 7(46), 75518-75525.
[http://dx.doi.org/10.18632/oncotarget.12782] [PMID: 27776352]
[29]
Chen, Z.; Sun, T.; Yang, Z.; Zheng, Y.; Yu, R.; Wu, X.; Yan, J.; Shao, Y.W.; Shao, X.; Cao, W.; Wang, X. Monitoring treatment efficacy and resistance in breast cancer patients via circulating tumor DNA genomic profiling. Mol. Genet. Genomic Med., 2020, 8(2), e1079.
[http://dx.doi.org/10.1002/mgg3.1079] [PMID: 31867841]
[30]
Pohlmann, P.R.; Mayer, I.A.; Mernaugh, R. Resistance to trastuzumab in breast cancer. Clin. Cancer Res., 2009, 15(24), 7479-7491.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0636] [PMID: 20008848]
[31]
Chumsri, S.; Sperinde, J.; Liu, H.; Gligorov, J.; Spano, J.P.; Antoine, M.; Moreno Aspitia, A.; Tan, W.; Winslow, J.; Petropoulos, C.J.; Chenna, A.; Bates, M.; Weidler, J.M.; Huang, W.; Dueck, A.; Perez, E.A. High p95HER2/HER2 ratio associated with poor outcome in trastuzumab-treated her2-positive metastatic breast cancer NCCTG N0337 and NCCTG 98-32-52 (Alliance). Clin. Cancer Res., 2018, 24(13), 3053-3058.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1864] [PMID: 29530935]
[32]
Stocker, A.; Hilbers, M.L.; Gauthier, C.; Grogg, J.; Kullak-Ublick, G.A.; Seifert, B.; Varga, Z.; Trojan, A. HER2/CEP17 ratios and clinical outcome in her2-positive early breast cancer undergoing trastuzumab-containing therapy. PLoS One, 2016, 11(7), e0159176.
[http://dx.doi.org/10.1371/journal.pone.0159176] [PMID: 27463363]
[33]
Seo, A.N.; Lee, H.J.; Kim, E.J.; Jang, M.H.; Kim, Y.J.; Kim, J.H.; Kim, S.W.; Ryu, H.S.; Park, I.A.; Im, S.A.; Gong, G.; Jung, K.H.; Kim, H.J.; Park, S.Y. Expression of breast cancer stem cell markers as predictors of prognosis and response to trastuzumab in HER2-positive breast cancer. Br. J. Cancer, 2016, 114(10), 1109-1116.
[http://dx.doi.org/10.1038/bjc.2016.101] [PMID: 27115469]
[34]
Chung, A.; Choi, M.; Han, B.; Bose, S.; Zhang, X.; Medina-Kauwe, L.; Sims, J.; Murali, R.; Taguiam, M.; Varda, M.; Schiff, R.; Giuliano, A.; Cui, X. Basal protein expression is associated with worse outcome and trastuzamab resistance in her2+ invasive breast cancer. Clin. Breast Cancer, 2015, 15(6), 448-457.e2.
[http://dx.doi.org/10.1016/j.clbc.2015.06.001] [PMID: 26248960]
[35]
Martin-Castillo, B.; Lopez-Bonet, E.; Buxó, M.; Dorca, J.; Tuca-Rodríguez, F.; Ruano, M.A.; Colomer, R.; Menendez, J.A. Cytokeratin 5/6 fingerprinting in HER2-positive tumors identifies a poor prognosis and trastuzumab-resistant Basal-HER2 subtype of breast cancer. Oncotarget, 2015, 6(9), 7104-7122.
[http://dx.doi.org/10.18632/oncotarget.3106] [PMID: 25742793]
[36]
Lipton, A.; Goodman, L.; Leitzel, K.; Cook, J.; Sperinde, J.; Haddad, M.; Köstler, W.J.; Huang, W.; Weidler, J.M.; Ali, S.; Newton, A.; Fuchs, E.M.; Paquet, A.; Singer, C.F.; Horvat, R.; Jin, X.; Banerjee, J.; Mukherjee, A.; Tan, Y.; Shi, Y.; Chenna, A.; Larson, J.; Lie, Y.; Sherwood, T.; Petropoulos, C.J.; Williams, S.; Winslow, J.; Parry, G.; Bates, M. HER3, p95HER2, and HER2 protein expression levels define multiple subtypes of HER2-positive metastatic breast cancer. Breast Cancer Res. Treat., 2013, 141(1), 43-53.
[http://dx.doi.org/10.1007/s10549-013-2665-0] [PMID: 23959396]
[37]
Takada, M.; Higuchi, T.; Tozuka, K.; Takei, H.; Haruta, M.; Watanabe, J.; Kasai, F.; Inoue, K.; Kurosumi, M.; Miyazaki, M.; Sato-Otsubo, A.; Ogawa, S.; Kaneko, Y. Alterations of the genes involved in the PI3K and estrogen-receptor pathways influence outcome in human epidermal growth factor receptor 2-positive and hormone receptor-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy. BMC Cancer, 2013, 13(1), 241.
[http://dx.doi.org/10.1186/1471-2407-13-241] [PMID: 23679233]
[38]
Denkert, C.; Huober, J.; Loibl, S.; Prinzler, J.; Kronenwett, R.; Darb-Esfahani, S.; Brase, J.C.; Solbach, C.; Mehta, K.; Fasching, P.A.; Sinn, B.V.; Engels, K.; Reinisch, M.; Hansmann, M.L.; Tesch, H.; von Minckwitz, G.; Untch, M. HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer. Breast Cancer Res., 2013, 15(1), R11.
[http://dx.doi.org/10.1186/bcr3384] [PMID: 23391338]
[39]
Razis, E.; Bobos, M.; Kotoula, V.; Eleftheraki, A.G.; Kalofonos, H.P.; Pavlakis, K.; Papakostas, P.; Aravantinos, G.; Rigakos, G.; Efstratiou, I.; Petraki, K.; Bafaloukos, D.; Kostopoulos, I.; Pectasides, D.; Kalogeras, K.T.; Skarlos, D.; Fountzilas, G. Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer. Breast Cancer Res. Treat., 2011, 128(2), 447-456.
[http://dx.doi.org/10.1007/s10549-011-1572-5] [PMID: 21594665]
[40]
Sperinde, J.; Jin, X.; Banerjee, J.; Penuel, E.; Saha, A.; Diedrich, G.; Huang, W.; Leitzel, K.; Weidler, J.; Ali, S.M.; Fuchs, E.M.; Singer, C.F.; Köstler, W.J.; Bates, M.; Parry, G.; Winslow, J.; Lipton, A. Quantitation of p95HER2 in paraffin sections by using a p95-specific antibody and correlation with outcome in a cohort of trastuzumab-treated breast cancer patients. Clin. Cancer Res., 2010, 16(16), 4226-4235.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0410] [PMID: 20664024]
[41]
Duchnowska, R.; Sperinde, J.; Chenna, A.; Haddad, M.; Paquet, A.; Lie, Y.; Weidler, J.M.; Huang, W.; Winslow, J.; Jankowski, T.; Czartoryska-Arłukowicz, B.; Wysocki, P.J.; Foszczyńska-Kłoda, M.; Radecka, B.; Litwiniuk, M.M.; Żok, J.; Wiśniewski, M.; Zuziak, D.; Biernat, W.; Jassem, J. Quantitative measurements of tumoral p95HER2 protein expression in metastatic breast cancer patients treated with trastuzumab: independent validation of the p95HER2 clinical cutoff. Clin. Cancer Res., 2014, 20(10), 2805-2813.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2782] [PMID: 24668646]
[42]
Han, M.; Gu, Y.; Lu, P.; Li, J.; Cao, H.; Li, X.; Qian, X.; Yu, C.; Yang, Y.; Yang, X.; Han, N.; Dou, D.; Hu, J.; Dong, H. RETRACTED ARTICLE: Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol. Cancer, 2020, 19(1), 26.
[http://dx.doi.org/10.1186/s12943-020-1145-5] [PMID: 32020881]
[43]
Christodoulou, C.; Oikonomopoulos, G.; Koliou, G.A.; Kostopoulos, I.; Kotoula, V.; Bobos, M.; Pentheroudakis, G.; Lazaridis, G.; Skondra, M.; Chrisafi, S.; Koutras, A.; Bafaloukos, D.; Razis, E.; Papadopoulou, K.; Papakostas, P.; Kalofonos, H.P.; Pectasides, D.; Skarlos, P.; Kalogeras, K.T.; Fountzilas, G. evaluation of the insulin-like growth factor receptor pathway in patients with advanced breast cancer treated with trastuzumab. Cancer Genomics Proteomics, 2018, 15(6), 461-471.
[http://dx.doi.org/10.21873/cgp.20105] [PMID: 30343280]
[44]
Coté, D.; Eustace, A.; Toomey, S.; Cremona, M.; Milewska, M.; Furney, S.; Carr, A.; Fay, J.; Kay, E.; Kennedy, S.; Crown, J.; Hennessy, B.; Madden, S. Germline single nucleotide polymorphisms in ERBB3 and BARD1 genes result in a worse relapse free survival response for HER2-positive breast cancer patients treated with adjuvant based docetaxel, carboplatin and trastuzumab (TCH). PLoS One, 2018, 13(8), e0200996.
[http://dx.doi.org/10.1371/journal.pone.0200996] [PMID: 30071039]
[45]
Menyhart, O.; Budczies, J.; Munkácsy, G.; Esteva, F.J.; Szabó, A.; Miquel, T.P.; Győrffy, B. DUSP4 is associated with increased resistance against anti-HER2 therapy in breast cancer. Oncotarget, 2017, 8(44), 77207-77218.
[http://dx.doi.org/10.18632/oncotarget.20430] [PMID: 29100381]
[46]
Merry, C.R.; McMahon, S.; Forrest, M.E.; Bartels, C.F.; Saiakhova, A.; Bartel, C.A.; Scacheri, P.C.; Thompson, C.L.; Jackson, M.W.; Harris, L.N.; Khalil, A.M. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget, 2016, 7(33), 53230-53244.
[http://dx.doi.org/10.18632/oncotarget.10637] [PMID: 27449296]
[47]
Gámez-Pozo, A.; Pérez, C.R.M.; Manso, L.; Crespo, C.; Mendiola, C.; López-Vacas, R.; Berges-Soria, J.; López, I.Á.; Margeli, M.; Calero, J.L.B.; Farre, X.G.; Santaballa, A.; Ciruelos, E.M.; Afonso, R.; Lao, J.; Catalán, G.; Gallego, J.V.Á.; López, J.M.; Bofill, F.J.S.; Borrego, M.R.; Espinosa, E.; Vara, J.A.F.; Zamora, P. The Long-HER study: clinical and molecular analysis of patients with HER2+ advanced breast cancer who become long-term survivors with trastuzumab-based therapy. PLoS One, 2014, 9(10), e109611.
[http://dx.doi.org/10.1371/journal.pone.0109611] [PMID: 25330188]
[48]
Peiró, G.; Ortiz-Martínez, F.; Gallardo, A.; Pérez-Balaguer, A.; Sánchez-Payá, J.; Ponce, J.J.; Tibau, A.; López-Vilaro, L.; Escuin, D.; Adrover, E.; Barnadas, A.; Lerma, E. Src, a potential target for overcoming trastuzumab resistance in HER2-positive breast carcinoma. Br. J. Cancer, 2014, 111(4), 689-695.
[http://dx.doi.org/10.1038/bjc.2014.327] [PMID: 24937674]
[49]
Gallardo, A.; Lerma, E.; Escuin, D.; Tibau, A.; Muñoz, J.; Ojeda, B.; Barnadas, A.; Adrover, E.; Sánchez-Tejada, L.; Giner, D.; Ortiz-Martínez, F.; Peiró, G. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br. J. Cancer, 2012, 106(8), 1367-1373.
[http://dx.doi.org/10.1038/bjc.2012.85] [PMID: 22454081]
[50]
Faratian, D.; Sims, A.H.; Mullen, P.; Kay, C.; Um, I.; Langdon, S.P.; Harrison, D.J. Sprouty 2 is an independent prognostic factor in breast cancer and may be useful in stratifying patients for trastuzumab therapy. PLoS One, 2011, 6(8), e23772.
[http://dx.doi.org/10.1371/journal.pone.0023772] [PMID: 21909357]
[51]
Gong, C.; Yao, Y.; Wang, Y.; Liu, B.; Wu, W.; Chen, J.; Su, F.; Yao, H.; Song, E. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J. Biol. Chem., 2011, 286(21), 19127-19137.
[http://dx.doi.org/10.1074/jbc.M110.216887] [PMID: 21471222]
[52]
Esteva, F.J.; Guo, H.; Zhang, S.; Santa-Maria, C.; Stone, S.; Lanchbury, J.S.; Sahin, A.A.; Hortobagyi, G.N.; Yu, D. PTEN, PIK3CA, p-AKT, and p-p70S6K Status. Am. J. Pathol., 2010, 177(4), 1647-1656.
[http://dx.doi.org/10.2353/ajpath.2010.090885] [PMID: 20813970]
[53]
Végran, F.; Boidot, R.; Coudert, B.; Fumoleau, P.; Arnould, L.; Garnier, J.; Causeret, S.; Fraise, J.; Dembélé, D.; Lizard-Nacol, S. Gene expression profile and response to trastuzumab–docetaxel-based treatment in breast carcinoma. Br. J. Cancer, 2009, 101(8), 1357-1364.
[http://dx.doi.org/10.1038/sj.bjc.6605310] [PMID: 19755993]
[54]
Zhang, S.; Huang, W.C.; Li, P.; Guo, H.; Poh, S.B.; Brady, S.W.; Xiong, Y.; Tseng, L.M.; Li, S.H.; Ding, Z.; Sahin, A.A.; Esteva, F.J.; Hortobagyi, G.N.; Yu, D. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat. Med., 2011, 17(4), 461-469.
[http://dx.doi.org/10.1038/nm.2309] [PMID: 21399647]
[55]
Berns, K.; Horlings, H.M.; Hennessy, B.T.; Madiredjo, M.; Hijmans, E.M.; Beelen, K.; Linn, S.C.; Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Hauptmann, M.; Beijersbergen, R.L.; Mills, G.B.; van de Vijver, M.J.; Bernards, R. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell, 2007, 12(4), 395-402.
[http://dx.doi.org/10.1016/j.ccr.2007.08.030] [PMID: 17936563]
[56]
Nagata, Y.; Lan, K.H.; Zhou, X.; Tan, M.; Esteva, F.J.; Sahin, A.A.; Klos, K.S.; Li, P.; Monia, B.P.; Nguyen, N.T.; Hortobagyi, G.N.; Hung, M.C.; Yu, D. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 2004, 6(2), 117-127.
[http://dx.doi.org/10.1016/j.ccr.2004.06.022] [PMID: 15324695]
[57]
Koukourakis, M.I.; Giatromanolaki, A.; Bottini, A.; Cappelletti, M.R.; Zanotti, L.; Allevi, G.; Strina, C.; Ardine, M.; Milani, M.; Brugnoli, G.; Martinotti, M.; Ferrero, G.; Bertoni, R.; Ferrozzi, F.; Harris, A.L.; Generali, D. Prospective neoadjuvant analysis of PET imaging and mechanisms of resistance to Trastuzumab shows role of HIF1 and autophagy. Br. J. Cancer, 2014, 110(9), 2209-2216.
[http://dx.doi.org/10.1038/bjc.2014.196] [PMID: 24722179]
[58]
Chandarlapaty, S.; Sakr, R.A.; Giri, D.; Patil, S.; Heguy, A.; Morrow, M.; Modi, S.; Norton, L.; Rosen, N.; Hudis, C.; King, T.A. Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin. Cancer Res., 2012, 18(24), 6784-6791.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1785] [PMID: 23092874]
[59]
Fernandez-Martinez, A.; Krop, I.E.; Hillman, D.W.; Polley, M.Y.; Parker, J.S.; Huebner, L.; Hoadley, K.A.; Shepherd, J.; Tolaney, S.; Henry, N.L.; Dang, C.; Harris, L.; Berry, D.; Hahn, O.; Hudis, C.; Winer, E.; Partridge, A.; Perou, C.M.; Carey, L.A. Survival, pathologic response, and genomics in CALGB 40601 (alliance), a neoadjuvant phase iii trial of paclitaxel-trastuzumab with or without lapatinib in her2-positive breast cancer. J. Clin. Oncol., 2020, 38(35), 4184-4193.
[http://dx.doi.org/10.1200/JCO.20.01276] [PMID: 33095682]
[60]
Veeraraghavan, J.; De Angelis, C.; Mao, R.; Wang, T.; Herrera, S.; Pavlick, A.C.; Contreras, A.; Nuciforo, P.; Mayer, I.A.; Forero, A.; Nanda, R.; Goetz, M.P.; Chang, J.C.; Wolff, A.C.; Krop, I.E.; Fuqua, S.A.W.; Prat, A.; Hilsenbeck, S.G.; Weigelt, B.; Reis-Filho, J.S.; Gutierrez, C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. A combinatorial biomarker predicts pathologic complete response to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2+ breast cancer. Ann. Oncol., 2019, 30(6), 927-933.
[http://dx.doi.org/10.1093/annonc/mdz076] [PMID: 30903140]
[61]
Adamczyk, A.; Grela-Wojewoda, A.; Domagała-Haduch, M.; Ambicka, A.; Harazin-Lechowska, A.; Janecka, A.; Cedrych, I.; Majchrzyk, K.; Kruczak, A.; Ryś, J.; Niemiec, J. Proteins involved in her2 signalling pathway, their relations and influence on metastasis-free survival in her2-positive breast cancer patients treated with trastuzumab in adjuvant setting. J. Cancer, 2017, 8(1), 131-139.
[http://dx.doi.org/10.7150/jca.16239] [PMID: 28123607]
[62]
Harris, L.N.; You, F.; Schnitt, S.J.; Witkiewicz, A.; Lu, X.; Sgroi, D.; Ryan, P.D.; Come, S.E.; Burstein, H.J.; Lesnikoski, B.A.; Kamma, M.; Friedman, P.N.; Gelman, R.; Iglehart, J.D.; Winer, E.P. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin. Cancer Res., 2007, 13(4), 1198-1207.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1304] [PMID: 17317830]
[63]
Rapti, V.; Moirogiorgou, E.; Koliou, G.A.; Papadopoulou, K.; Binas, I.; Pentheroudakis, G.; Bafaloukos, D.; Bobos, M.; Chatzopoulos, K.; Chrisafi, S.; Christodoulou, C.; Nicolaou, I.; Sotiropoulou, M.; Magkou, C.; Koutras, A.; Papakostas, P.; Kotsakis, A.; Razis, E.; Psyrri, A.; Tryfonopoulos, D.; Pectasides, D.; Res, E.; Alexopoulos, A.; Kotoula, V.; Fountzilas, G. mRNA expression of specific HER ligands and their association with clinical outcome in patients with metastatic breast cancer treated with trastuzumab. Oncol. Lett., 2021, 23(1), 23.
[http://dx.doi.org/10.3892/ol.2021.13141] [PMID: 34868360]
[64]
Ding, Y.; Gong, C.; Huang, D.; Chen, R.; Sui, P.; Lin, K.H.; Liang, G.; Yuan, L.; Xiang, H.; Chen, J.; Yin, T.; Alexander, P.B.; Wang, Q.F.; Song, E.W.; Li, Q.J.; Wood, K.C.; Wang, X.F. Synthetic lethality between HER2 and transaldolase in intrinsically resistant HER2-positive breast cancers. Nat. Commun., 2018, 9(1), 4274.
[http://dx.doi.org/10.1038/s41467-018-06651-x] [PMID: 30323337]
[65]
Dong, H.; Wang, W.; Mo, S.; Chen, R.; Zou, K.; Han, J.; Zhang, F.; Hu, J. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J. Exp. Clin. Cancer Res., 2018, 37(1), 202.
[http://dx.doi.org/10.1186/s13046-018-0875-3] [PMID: 30157918]
[66]
Dong, H.; Wang, W.; Mo, S.; Liu, Q.; Chen, X.; Chen, R.; Zhang, Y.; Zou, K.; Ye, M.; He, X.; Zhang, F.; Han, J.; Hu, J. Long non-coding RNA SNHG14 induces trastuzumab resistance of breast cancer via regulating PABPC1 expression through H3K27 acetylation. J. Cell. Mol. Med., 2018, 22(10), 4935-4947.
[http://dx.doi.org/10.1111/jcmm.13758] [PMID: 30063126]
[67]
Gogas, H.; Kotoula, V.; Alexopoulou, Z.; Christodoulou, C.; Kostopoulos, I.; Bobos, M.; Raptou, G.; Charalambous, E.; Tsolaki, E.; Xanthakis, I.; Pentheroudakis, G.; Koutras, A.; Bafaloukos, D.; Papakostas, P.; Aravantinos, G.; Psyrri, A.; Petraki, K.; Kalogeras, K.T.; Pectasides, D.; Fountzilas, G. MYC copy gain, chromosomal instability and PI3K activation as potential markers of unfavourable outcome in trastuzumab-treated patients with metastatic breast cancer. J. Transl. Med., 2016, 14(1), 136.
[http://dx.doi.org/10.1186/s12967-016-0883-z] [PMID: 27184134]
[68]
Sonnenblick, A.; Brohée, S.; Fumagalli, D.; Rothé, F.; Vincent, D.; Ignatiadis, M.; Desmedt, C.; Salgado, R.; Sirtaine, N.; Loi, S.; Neven, P.; Loibl, S.; Denkert, C.; Joensuu, H.; Piccart, M.; Sotiriou, C. Integrative proteomic and gene expression analysis identify potential biomarkers for adjuvant trastuzumab resistance: Analysis from the Fin-her phase III randomized trial. Oncotarget, 2015, 6(30), 30306-30316.
[http://dx.doi.org/10.18632/oncotarget.5080] [PMID: 26358523]
[69]
Scaltriti, M.; Eichhorn, P.J.; Cortés, J.; Prudkin, L.; Aura, C.; Jiménez, J.; Chandarlapaty, S.; Serra, V.; Prat, A.; Ibrahim, Y.H.; Guzmán, M.; Gili, M.; Rodríguez, O.; Rodríguez, S.; Pérez, J.; Green, S.R.; Mai, S.; Rosen, N.; Hudis, C.; Baselga, J.; Cyclin, E. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2 + breast cancer patients. Proc. Natl. Acad. Sci., 2011, 108(9), 3761-3766.
[http://dx.doi.org/10.1073/pnas.1014835108] [PMID: 21321214]
[70]
Han, M.; Hu, J.; Lu, P.; Cao, H.; Yu, C.; Li, X.; Qian, X.; Yang, X.; Yang, Y.; Han, N.; Dou, D.; Zhang, F.; Ye, M.; Yang, C.; Gu, Y.; Dong, H. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis., 2020, 11(1), 43.
[http://dx.doi.org/10.1038/s41419-020-2250-5] [PMID: 31969559]
[71]
Dong, H.; Wang, W.; Chen, R.; Zhang, Y.; Zou, K.; Ye, M.; He, X.; Zhang, F.; Han, J. Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int. J. Oncol., 2018, 53(3), 1013-1026.
[http://dx.doi.org/10.3892/ijo.2018.4467] [PMID: 30015837]
[72]
Hergueta-Redondo, M.; Sarrio, D.; Molina-Crespo, Á.; Vicario, R.; Bernadó-Morales, C.; Martínez, L.; Rojo-Sebastián, A.; Serra-Musach, J.; Mota, A.; Martínez-Ramírez, Á.; Castilla, M.Á.; González-Martin, A.; Pernas, S.; Cano, A.; Cortes, J.; Nuciforo, P.G.; Peg, V.; Palacios, J.; Pujana, M.Á.; Arribas, J.; Moreno-Bueno, G.; Gasdermin, B. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget, 2016, 7(35), 56295-56308.
[http://dx.doi.org/10.18632/oncotarget.10787] [PMID: 27462779]
[73]
Venturutti, L.; Cordo Russo, R.I.; Rivas, M.A.; Mercogliano, M.F.; Izzo, F.; Oakley, R.H.; Pereyra, M.G.; De Martino, M.; Proietti, C.J.; Yankilevich, P.; Roa, J.C.; Guzmán, P.; Cortese, E.; Allemand, D.H.; Huang, T.H.; Charreau, E.H.; Cidlowski, J.A.; Schillaci, R.; Elizalde, P.V. MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene, 2016, 35(48), 6189-6202.
[http://dx.doi.org/10.1038/onc.2016.151] [PMID: 27157613]
[74]
De Mattos-Arruda, L.; Bottai, G.; Nuciforo, P.G.; Di Tommaso, L.; Giovannetti, E.; Peg, V.; Losurdo, A.; Pérez-Garcia, J.; Masci, G.; Corsi, F.; Cortés, J.; Seoane, J.; Calin, G.A.; Santarpia, L. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget, 2015, 6(35), 37269-37280.
[http://dx.doi.org/10.18632/oncotarget.5495] [PMID: 26452030]
[75]
Sonnenblick, A.; Brohée, S.; Fumagalli, D.; Vincent, D.; Venet, D.; Ignatiadis, M.; Salgado, R.; Van den Eynden, G.; Rothé, F.; Desmedt, C.; Neven, P.; Loibl, S.; Denkert, C.; Joensuu, H.; Loi, S.; Sirtaine, N.; Kellokumpu-Lehtinen, P.L.; Piccart, M.; Sotiriou, C. Constitutive phosphorylated STAT3-associated gene signature is predictive for trastuzumab resistance in primary HER2-positive breast cancer. BMC Med., 2015, 13(1), 177.
[http://dx.doi.org/10.1186/s12916-015-0416-2] [PMID: 26234940]
[76]
Jung, E.J.; Santarpia, L.; Kim, J.; Esteva, F.J.; Moretti, E.; Buzdar, A.U.; Di Leo, A.; Le, X.F.; Bast, R.C., Jr; Park, S.T.; Pusztai, L.; Calin, G.A. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer, 2012, 118(10), 2603-2614.
[http://dx.doi.org/10.1002/cncr.26565] [PMID: 22370716]
[77]
Bates, M.; Sperinde, J.; Köstler, W.J.; Ali, S.M.; Leitzel, K.; Fuchs, E.M.; Paquet, A.; Lie, Y.; Sherwood, T.; Horvat, R.; Singer, C.F.; Winslow, J.; Weidler, J.M.; Huang, W.; Lipton, A. Identification of a subpopulation of metastatic breast cancer patients with very high HER2 expression levels and possible resistance to trastuzumab. Ann. Oncol., 2011, 22(9), 2014-2020.
[http://dx.doi.org/10.1093/annonc/mdq706] [PMID: 21289364]
[78]
Liang, Y.; Qian, C.; Xie, Y.; Huang, X.; Chen, J.; Ren, Y.; Fu, Z.; Li, Y.; Zeng, T.; Yang, F.; Zhou, J.; Li, W.; Yin, Y.; Wang, C. JWA suppresses proliferation in trastuzumab-resistant breast cancer by downregulating CDK12. Cell Death Discov., 2021, 7(1), 306.
[http://dx.doi.org/10.1038/s41420-021-00693-9] [PMID: 34686673]
[79]
Luo, L.; Zhang, Z.; Qiu, N.; Ling, L.; Jia, X.; Song, Y.; Li, H.; Li, J.; Lyu, H.; Liu, H.; He, Z.; Liu, B.; Zheng, G. Disruption of FOXO3a-miRNA feedback inhibition of IGF2/IGF-1R/IRS1 signaling confers Herceptin resistance in HER2-positive breast cancer. Nat. Commun., 2021, 12(1), 2699.
[http://dx.doi.org/10.1038/s41467-021-23052-9] [PMID: 33976188]
[80]
Han, M.; Qian, X.; Cao, H.; Wang, F.; Li, X.; Han, N.; Yang, X.; Yang, Y.; Dou, D.; Hu, J.; Wang, W.; Han, J.; Zhang, F.; Dong, H. lncRNA ZNF649-AS1 induces trastuzumab resistance by promoting atg5 expression and autophagy. Mol. Ther., 2020, 28(11), 2488-2502.
[http://dx.doi.org/10.1016/j.ymthe.2020.07.019] [PMID: 32735773]
[81]
Honkanen, T.J.; Tikkanen, A.; Karihtala, P.; Mäkinen, M.; Väyrynen, J.P.; Koivunen, J.P. Prognostic and predictive role of tumour-associated macrophages in HER2 positive breast cancer. Sci. Rep., 2019, 9(1), 10961.
[http://dx.doi.org/10.1038/s41598-019-47375-2] [PMID: 31358801]
[82]
Ling, Y.; Liang, G.; Lin, Q.; Fang, X.; Luo, Q.; Cen, Y.; Mehrpour, M.; Hamai, A.; Liu, Z.; Shi, Y.; Li, J.; Lin, W.; Jia, S.; Yang, W.; Liu, Q.; Song, E.; Li, J.; Gong, C. circCDYL2 promotes trastuzumab resistance via sustaining HER2 downstream signaling in breast cancer. Mol. Cancer, 2022, 21(1), 8.
[http://dx.doi.org/10.1186/s12943-021-01476-7] [PMID: 34980129]
[83]
Tomlinson, D.; Martin, H.; Smith, L. Multidrug-resistant breast cancer: Current perspectives. Breast Cancer, 2014, 6, 1-13.
[http://dx.doi.org/10.2147/BCTT.S37638] [PMID: 24648765]
[84]
Gajria, D.; Chandarlapaty, S. HER2-amplified breast cancer: Mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther., 2011, 11(2), 263-275.
[http://dx.doi.org/10.1586/era.10.226] [PMID: 21342044]
[85]
Mayer, I.A. Clinical implications of mutations in the pi3k pathway in her2+ breast cancer: prognostic or predictive? Curr. Breast Cancer Rep., 2015, 7(4), 210-214.
[http://dx.doi.org/10.1007/s12609-015-0197-9] [PMID: 26881050]
[86]
Christopoulos, P.F.; Msaouel, P.; Koutsilieris, M. The role of the insulin-like growth factor-1 system in breast cancer. Mol. Cancer, 2015, 14(1), 43.
[http://dx.doi.org/10.1186/s12943-015-0291-7] [PMID: 25743390]
[87]
Yang, L.; Li, Y.; Shen, E.; Cao, F.; Li, L.; Li, X.; Wang, X.; Kariminia, S.; Chang, B.; Li, H.; Li, Q. NRG1-dependent activation of HER3 induces primary resistance to trastuzumab in HER2-overexpressing breast cancer cells. Int. J. Oncol., 2017, 51(5), 1553-1562.
[http://dx.doi.org/10.3892/ijo.2017.4130] [PMID: 29048656]
[88]
Chyu, K.Y.; Dimayuga, P.C.; Shah, P.K. Vaccine against arteriosclerosis: An update. Ther. Adv. Vaccines, 2017, 5(2), 39-47.
[http://dx.doi.org/10.1177/2051013617693753] [PMID: 28515939]
[89]
Sergina, N.V.; Moasser, M.M. The HER family and cancer: Emerging molecular mechanisms and therapeutic targets. Trends Mol. Med., 2007, 13(12), 527-534.
[http://dx.doi.org/10.1016/j.molmed.2007.10.002] [PMID: 17981505]
[90]
Adamczyk, A.; Kruczak, A.; Harazin-Lechowska, A.; Ambicka, A.; Grela-Wojewoda, A.; Domagała-Haduch, M.; Janecka-Widła, A.; Majchrzyk, K.; Cichocka, A.; Ryś, J.; Niemiec, J. Relationship between HER2 gene status and selected potential biological features related to trastuzumab resistance and its influence on survival of breast cancer patients undergoing trastuzumab adjuvant treatment. OncoTargets Ther., 2018, 11, 4525-4535.
[http://dx.doi.org/10.2147/OTT.S166983] [PMID: 30122944]
[91]
Dong, C.; Wu, J.; Chen, Y.; Nie, J.; Chen, C. Activation of pi3k/akt/mtor pathway causes drug resistance in breast cancer. Front. Pharmacol., 2021, 12, 628690.
[http://dx.doi.org/10.3389/fphar.2021.628690] [PMID: 33790792]
[92]
Dittrich, A.; Gautrey, H.; Browell, D.; Tyson-Capper, A. The HER2 signaling network in breast cancer-like a spider in its web. J. Mammary Gland Biol. Neoplasia, 2014, 19(3-4), 253-270.
[http://dx.doi.org/10.1007/s10911-014-9329-5] [PMID: 25544707]
[93]
Costantini, D.L.; Chan, C.; Cai, Z.; Vallis, K.A.; Reilly, R.M. (111)In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J. Nucl. Med., 2007, 48(8), 1357-1368.
[http://dx.doi.org/10.2967/jnumed.106.037937] [PMID: 17631548]
[94]
Nahta, R.; Takahashi, T.; Ueno, N.T.; Hung, M.C.; Esteva, F.J. P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res., 2004, 64(11), 3981-3986.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3900] [PMID: 15173011]
[95]
Singh, R.; Kim, W.J.; Kim, P.H.; Hong, H.J. Combined blockade of HER2 and VEGF exerts greater growth inhibition of HER2-overexpressing gastric cancer xenografts than individual blockade. Exp. Mol. Med., 2013, 45(11), e52.
[http://dx.doi.org/10.1038/emm.2013.111] [PMID: 24176949]
[96]
Boone, J.J.M.; Bhosle, J.; Tilby, M.J.; Hartley, J.A.; Hochhauser, D. Involvement of the HER2 pathway in repair of DNA damage produced by chemotherapeutic agents. Mol. Cancer Ther., 2009, 8(11), 3015-3023.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0219] [PMID: 19887555]
[97]
Campos-Parra, A.; López-Urrutia, E.; Orozco Moreno, L.; López-Camarillo, C.; Meza-Menchaca, T.; Figueroa, G.G.; Bustamante, M.L.; Pérez-Plasencia, C. Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int. J. Mol. Sci., 2018, 19(9), 2711.
[http://dx.doi.org/10.3390/ijms19092711] [PMID: 30208633]
[98]
Ma, T.; Yang, L.; Zhang, J. miRNA-542-3p downregulation promotes trastuzumab resistance in breast cancer cells via AKT activation. Oncol. Rep., 2015, 33(3), 1215-1220.
[http://dx.doi.org/10.3892/or.2015.3713] [PMID: 25586125]
[99]
Rolfsen, G.B.; Castelli, E.C.; Donadi, E.A.; Duarte, R.A.; Soares, C.P. HLA-G polymorphism and breast cancer. Int. J. Immunogenet., 2014, 41(2), 143-148.
[http://dx.doi.org/10.1111/iji.12092] [PMID: 24164707]
[100]
Wang, J.; Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther., 2019, 4(1), 34.
[http://dx.doi.org/10.1038/s41392-019-0069-2] [PMID: 31637013]
[101]
Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V.; Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Smith, D.; Richards, D.; Yeatman, T.J.; Cohn, A.L.; Lapham, R.; Clement, J.; Parker, A.S.; Tummala, M.K.; McIntyre, K.; Sekeres, M.A.; Bryce, A.H.; Siegel, R.; Wang, X.; Cosgrove, D.P.; Abu-Rustum, N.R.; Trent, J.; Thiel, D.D.; Becerra, C.; Agrawal, M.; Garbo, L.E.; Giguere, J.K.; Michels, R.M.; Harris, R.P.; Richey, S.L.; McCarthy, T.A.; Waterhouse, D.M.; Couch, F.J.; Wilks, S.T.; Krie, A.K.; Balaraman, R.; Restrepo, A.; Meshad, M.W.; Rieger-Christ, K.; Sullivan, T.; Lee, C.M.; Greenwald, D.R.; Oh, W.; Tsao, C-K.; Fleshner, N.; Kennecke, H.F.; Khalil, M.F.; Spigel, D.R.; Manhas, A.P.; Ulrich, B.K.; Kovoor, P.A.; Stokoe, C.; Courtright, J.G.; Yimer, H.A.; Larson, T.G.; Swanton, C.; Seiden, M.V.; Cummings, S.R.; Absalan, F.; Alexander, G.; Allen, B.; Amini, H.; Aravanis, A.M.; Bagaria, S.; Bazargan, L.; Beausang, J.F.; Berman, J.; Betts, C.; Blocker, A.; Bredno, J.; Calef, R.; Cann, G.; Carter, J.; Chang, C.; Chawla, H.; Chen, X.; Chien, T.C.; Civello, D.; Davydov, K.; Demas, V.; Desai, M.; Dong, Z.; Fayzullina, S.; Fields, A.P.; Filippova, D.; Freese, P.; Fung, E.T.; Gnerre, S.; Gross, S.; Halks-Miller, M.; Hall, M.P.; Hartman, A-R.; Hou, C.; Hubbell, E.; Hunkapiller, N.; Jagadeesh, K.; Jamshidi, A.; Jiang, R.; Jung, B.; Kim, T.H.; Klausner, R.D.; Kurtzman, K.N.; Lee, M.; Lin, W.; Lipson, J.; Liu, H.; Liu, Q.; Lopatin, M.; Maddala, T.; Maher, M.C.; Melton, C.; Mich, A.; Nautiyal, S.; Newman, J.; Newman, J.; Nicula, V.; Nicolaou, C.; Nikolic, O.; Pan, W.; Patel, S.; Prins, S.A.; Rava, R.; Ronaghi, N.; Sakarya, O.; Satya, R.V.; Schellenberger, J.; Scott, E.; Sehnert, A.J.; Shaknovich, R.; Shanmugam, A.; Shashidhar, K.C.; Shen, L.; Shenoy, A.; Shojaee, S.; Singh, P.; Steffen, K.K.; Tang, S.; Toung, J.M.; Valouev, A.; Venn, O.; Williams, R.T.; Wu, T.; Xu, H.H.; Yakym, C.; Yang, X.; Yecies, J.; Yip, A.S.; Youngren, J.; Yue, J.; Zhang, J.; Zhang, L.; Zhang, L.Q.; Zhang, N.; Curtis, C.; Berry, D.A. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol., 2020, 31(6), 745-759.
[http://dx.doi.org/10.1016/j.annonc.2020.02.011] [PMID: 33506766]
[102]
Mohan, N.; Jiang, J.; Dokmanovic, M.; Wu, W.J. Trastuzumab-mediated cardiotoxicity: Current understanding, challenges, and frontiers. Antib. Ther., 2018, 1(1), 13-17.
[http://dx.doi.org/10.1093/abt/tby003] [PMID: 30215054]
[103]
Suter, T.M.; Procter, M.; van Veldhuisen, D.J.; Muscholl, M.; Bergh, J.; Carlomagno, C.; Perren, T.; Passalacqua, R.; Bighin, C.; Klijn, J.G.M.; Ageev, F.T.; Hitre, E.; Groetz, J.; Iwata, H.; Knap, M.; Gnant, M.; Muehlbauer, S.; Spence, A.; Gelber, R.D.; Piccart-Gebhart, M.J. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J. Clin. Oncol., 2007, 25(25), 3859-3865.
[http://dx.doi.org/10.1200/JCO.2006.09.1611] [PMID: 17646669]
[104]
Tan-Chiu, E.; Yothers, G.; Romond, E.; Geyer, C.E., Jr; Ewer, M.; Keefe, D.; Shannon, R.P.; Swain, S.M.; Brown, A.; Fehrenbacher, L.; Vogel, V.G.; Seay, T.E.; Rastogi, P.; Mamounas, E.P.; Wolmark, N.; Bryant, J. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J. Clin. Oncol., 2005, 23(31), 7811-7819.
[http://dx.doi.org/10.1200/JCO.2005.02.4091] [PMID: 16258083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy