Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Inhibitors Targeting Hepatitis C Virus (HCV) Entry

Author(s): Paulo Fernando da Silva Santos-Júnior, João Xavier de Araújo-Júnior and Edeildo Ferreira da Silva-Júnior*

Volume 23, Issue 11, 2023

Published on: 01 September, 2022

Page: [1193 - 1221] Pages: 29

DOI: 10.2174/1389557522666220428115152

Price: $65

Abstract

Infections caused by the Hepatitis C virus (HCV) affect around 70 million people worldwide, leading to serious liver problems, such as fibrosis, steatosis, and cirrhosis, in addition to progressing to hepatocellular carcinoma and becoming globally the main cause of liver disease. Despite great therapeutic advances in obtaining pan-genotypic direct-acting antivirals (DAAs), around 5-10% of affected individuals are unable to eliminate the virus by their own immune system’s activity. Still, there are no licensed vaccines so far. In this context, the orchestrated process of virus entry into host cells is a crucial step in the life cycle and the infectivity capability of most viruses. In recent years, the entry of viruses has become one of the main druggable targets used for designing effective antiviral molecules. This goal has come to be widely studied to develop pharmacotherapeutic strategies against HCV, combined or not with DAAs in multitarget approaches. Among the inhibitors found in the literature, ITX 5061 corresponds to the most effective one, with EC50 and CC50 values of 0.25 nM and >10 μM (SI: 10,000), respectively. This SRBI antagonist completed the phase I trial, constituting a promising compound against HCV. Interestingly, chlorcyclizine (an antihistamine drug) showed action both in E1 apolipoproteins (EC50 and CC50 values of 0.0331 and 25.1 μM, respectively), as well as in NPC1L1 (IC50 and CC50 values of 2.3 nM and > 15 μM, respectively). Thus, this review will discuss promising inhibitors targeting HCV entry, discussing their SAR analyzes, recent contributions, and advances in this field.

Keywords: Entry inhibitors, Adhesion, Fusion, Post-attachment, Host factors

Graphical Abstract

[1]
Tallan, A.; Feng, Z. Virus spread in the liver: Mechanisms, commonalities, and unanswered questions. Future Virol., 2020, 15(10), 707-715.
[http://dx.doi.org/10.2217/fvl-2020-0158] [PMID: 33250929]
[2]
Do, A.; Reau, N.S. Chronic viral hepatitis: Current management and future directions. Hepatol. Commun., 2020, 4(3), 329-341.
[http://dx.doi.org/10.1002/hep4.1480] [PMID: 32140652]
[3]
Terrault, N.A.; Levy, M.T.; Cheung, K.W. Viral hepatitis and pregnancy. Nat. Rev. Gastroenterol. Hepatol., 2021, 18, 117-130.
[http://dx.doi.org/10.1038/s41575-020-00361-w]
[4]
Hepatitis. Available from: https://www.who.int/health-topics/hepatitis#tab=tab_1 (Accessed Mar 15, 2021).
[5]
Cox, A.L.; El-Sayed, M.H.; Kao, J.H.; Lazarus, J.V.; Lemoine, M.; Lok, A.S.; Zoulim, F. Progress towards elimination goals for viral hepatitis. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(9), 533-542.
[http://dx.doi.org/10.1038/s41575-020-0332-6] [PMID: 32704164]
[6]
Houghton, M. The discovery of the hepatitis C virus. Top Med Chem; , 2019, 10, pp. 19-27.
[http://dx.doi.org/10.1007/7355_2018_53]
[7]
Alter, H.J. From B to non-B to C: The hepatitis C virus in historical perspective. Top Med Chem; , 2019, 10, pp. 3-17.
[8]
Pol, S.; Lagaye, S. The remarkable history of the hepatitis C virus. Genes Immun., 2019, 20(5), 436-446.
[http://dx.doi.org/10.1038/s41435-019-0066-z] [PMID: 31019253]
[9]
Bukh, J. The history of Hepatitis C Virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J. Hepatol., 2016, 65(1)(Suppl.), S2-S21.
[http://dx.doi.org/10.1016/j.jhep.2016.07.035] [PMID: 27641985]
[10]
Rabaan, A.A.; Al-Ahmed, S.H.; Bazzi, A.M.; Alfouzan, W.A.; Alsuliman, S.A.; Aldrazi, F.A.; Haque, S. Overview of hepatitis C infection, molecular biology, and new treatment. J. Infect. Public Health, 2020, 13(5), 773-783.
[http://dx.doi.org/10.1016/j.jiph.2019.11.015] [PMID: 31870632]
[11]
Das, D.; Pandya, M. Recent advancement of Direct-acting Antiviral Agents (DAAs) in hepatitis C therapy. Mini Rev. Med. Chem., 2018, 18(7), 584-596.
[http://dx.doi.org/10.2174/1389557517666170913111930] [PMID: 28901852]
[12]
Mailly, L.; Baumert, T.F. Hepatitis C virus infection and tight junction proteins : The ties that bind. BBA – Biomembr. 2020, 1862, 183296.
[13]
Sharma, G.; Raheja, H.; Das, S. Hepatitis C virus: Enslavement of host factors. IUBMB Life, 2018, 70(1), 41-49.
[http://dx.doi.org/10.1002/iub.1702] [PMID: 29281185]
[14]
Younossi, Z.M.; Infection, A. Systemic disease. Clin. Liver Dis., 2017, 21(3), 449-453.
[http://dx.doi.org/10.1016/j.cld.2017.03.001] [PMID: 28689584]
[15]
Spearman, C.W.; Dusheiko, G.M.; Hellard, M.; Sonderup, M.; Hepatitis, C. Lancet, 2019, 394(10207), 1451-1466.
[http://dx.doi.org/10.1016/S0140-6736(19)32320-7] [PMID: 31631857]
[16]
Pietschmann, T.; Brown, R.J.P. Hepatitis C virus. Trends Microbiol., 2019, 27(4), 379-380.
[http://dx.doi.org/10.1016/j.tim.2019.01.001] [PMID: 30709707]
[17]
Hepatitis, C. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (Accessed Mar 19, 2021).
[18]
Duncan, J.D.; Urbanowicz, R.A.; Tarr, A.W.; Ball, J.K. Hepatitis C virus vaccine: Challenges and prospects. Vaccines (Basel), 2020, 8(1), 90.
[http://dx.doi.org/10.3390/vaccines8010090] [PMID: 32079254]
[19]
Bailey, J.R.; Barnes, E.; Cox, A.L. Approaches, progress, and challenges to hepatitis C vaccine development. Gastroenterology, 2019, 156(2), 418-430.
[http://dx.doi.org/10.1053/j.gastro.2018.08.060] [PMID: 30268785]
[20]
Ghany, M.G.; Morgan, T.R. AASLD-IDSA Hepatitis C Guidance Panel. Hepatitis C guidance 2019 update: American association for the study of liver diseases-infectious diseases society of America recommendations for testing, managing, and treating hepatitis C virus infection. Hepatology, 2020, 71(2), 686-721.
[http://dx.doi.org/10.1002/hep.31060] [PMID: 31816111]
[21]
Hoofnagle, J.H.; Mullen, K.D.; Jones, D.B.; Rustgi, V.; Di Bisceglie, A.; Peters, M.; Waggoner, J.G.; Park, Y.; Jones, E.A. Treatment of chronic non-A,non-B hepatitis with recombinant human alpha interferon. A preliminary report. N. Engl. J. Med., 1986, 315(25), 1575-1578.
[http://dx.doi.org/10.1056/NEJM198612183152503] [PMID: 3097544]
[22]
Choo, Q.L.; Kuo, G.; Weiner, A.J.; Overby, L.R.; Bradley, D.W.; Houghton, M. Isolation of a CDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science (80-. ), 1989, 244, 359-362.
[23]
Manns, M.P.; McHutchison, J.G.; Gordon, S.C.; Rustgi, V.K.; Shiffman, M.; Reindollar, R.; Goodman, Z.D.; Koury, K.; Ling, M.; Albrecht, J.K. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: A randomised trial. Lancet, 2001, 358(9286), 958-965.
[http://dx.doi.org/10.1016/S0140-6736(01)06102-5] [PMID: 11583749]
[24]
Poynard, T.; Marcellin, P.; Lee, S.S.; Niederau, C.; Minuk, G.S.; Ideo, G.; Bain, V.; Heathcote, J.; Zeuzem, S.; Trepo, C.; Albrecht, J. Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. Lancet, 1998, 352(9138), 1426-1432.
[http://dx.doi.org/10.1016/S0140-6736(98)07124-4] [PMID: 9807989]
[25]
Fried, M.W.; Shiffman, M.L.; Reddy, K.R.; Smith, C.; Marinos, G.; Gonçales, F.L., Jr; Häussinger, D.; Diago, M.; Carosi, G.; Dhumeaux, D.; Craxi, A.; Lin, A.; Hoffman, J.; Yu, J. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med., 2002, 347(13), 975-982.
[http://dx.doi.org/10.1056/NEJMoa020047] [PMID: 12324553]
[26]
Falade-Nwulia, O.; Suarez-Cuervo, C.; Nelson, D.R.; Fried, M.W.; Segal, J.B.; Sulkowski, M.S. Oral direct-acting agent therapy for hepatitis C virus infection: A systematic review. Ann. Intern. Med., 2017, 166(9), 637-648.
[http://dx.doi.org/10.7326/M16-2575] [PMID: 28319996]
[27]
Milani, A.; Basimi, P.; Agi, E.; Bolhassani, A. Pharmaceutical approaches for treatment of hepatitis C virus. Curr Pharm. Des., 2020, 26(34), 4304-4314.
[http://dx.doi.org/10.2174/1381612826666200509233215]
[28]
Kish, T.; Aziz, A.; Sorio, M. Hepatitis C in a new era: A review of current therapies. P&T, 2017, 42(5), 316-329.
[PMID: 28479841]
[29]
Geddawy, A.; Ibrahim, Y.F.; Elbahie, N.M.; Ibrahim, M.A. Direct acting anti-hepatitis C virus drugs: Clinical pharmacology and future direction. J. Transl. Int. Med., 2017, 5(1), 8-17.
[http://dx.doi.org/10.1515/jtim-2017-0007] [PMID: 28680834]
[30]
Alazard-Dany, N.; Denolly, S.; Boson, B.; Cosset, F.L. Overview of HCV life cycle with a special focus on current and possible future antiviral targets. Viruses, 2019, 11(1), 11.
[http://dx.doi.org/10.3390/v11010030] [PMID: 30621318]
[31]
Kim, S.; Han, K.H.; Ahn, S.H. Hepatitis C virus and antiviral drug resistance. Gut Liver, 2016, 10(6), 890-895.
[http://dx.doi.org/10.5009/gnl15573] [PMID: 27784846]
[32]
Crouchet, E.; Wrensch, F.; Schuster, C.; Zeisel, M.B.; Baumert, T.F. Host-targeting therapies for hepatitis C virus infection: Current developments and future applications. Therap. Adv. Gastroenterol., 2018, 11, 1756284818759483.
[http://dx.doi.org/10.1177/1756284818759483] [PMID: 29619090]
[33]
Blach, S.; Kondili, L.A.; Aghemo, A.; Cai, Z.; Dugan, E.; Estes, C.; Gamkrelidze, I.; Ma, S.; Pawlotsky, J-M.; Razavi-Shearer, D.; Razavi, H.; Waked, I.; Zeuzem, S.; Craxi, A. Impact of Covid-19 on global HCV elimination efforts. J. Hepatol., 2021, 74(1), 31-36.
[http://dx.doi.org/10.1016/j.jhep.2020.07.042] [PMID: 32777322]
[34]
Kondili, L.A.; Marcellusi, A.; Ryder, S.; Craxì, A. Will the COVID-19 pandemic affect HCV disease burden? Dig. Liver Dis., 2020, 52(9), 947-949.
[http://dx.doi.org/10.1016/j.dld.2020.05.040] [PMID: 32527655]
[35]
Ganta, N.M.; Gedda, G.; Rathnakar, B.; Satyanarayana, M.; Yamajala, B.; Ahsan, M.J.; Jadav, S.S.; Balaraju, T. A review on HCV inhibitors: Significance of non-structural polyproteins. Eur. J. Med. Chem., 2019, 164, 576-601.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.045] [PMID: 30639895]
[36]
Colpitts, C.C.; Chung, R.T.; Baumert, T.F. Entry inhibitors: A perspective for prevention of hepatitis C virus infection in organ transplantation. 2017, 3(9), 620-623.
[http://dx.doi.org/10.1021/acsinfecdis.7b00091]
[37]
Qian, X.J.; Zhu, Y.Z.; Zhao, P.; Qi, Z.T. Entry inhibitors: New advances in HCV treatment. Emerg. Microbes Infect., 2016, 5(1), e3.
[http://dx.doi.org/10.1038/emi.2016.3] [PMID: 26733381]
[38]
Sorbo, M.C.; Cento, V.; Di Maio, V.C.; Howe, A.Y.M.; Garcia, F.; Perno, C.F.; Ceccherini-Silberstein, F. Hepatitis C virus drug resistance associated substitutions and their clinical relevance: Update 2018. Drug Resist. Updat., 2018, 37, 17-39.
[http://dx.doi.org/10.1016/j.drup.2018.01.004] [PMID: 29525636]
[39]
Dietz, J.; Susser, S.; Vermehren, J.; Peiffer, K.H.; Grammatikos, G.; Berger, A.; Ferenci, P.; Buti, M.; Müllhaupt, B.; Hunyady, B.; Hinrichsen, H.; Mauss, S.; Petersen, J.; Buggisch, P.; Felten, G.; Hüppe, D.; Knecht, G.; Lutz, T.; Schott, E.; Berg, C.; Spengler, U.; von Hahn, T.; Berg, T.; Zeuzem, S.; Sarrazin, C.; Antoni, C.; Vogelmann, R.; Ebert, M.; Backhus, J.; Seufferlein, T.; Balavoine, J.; Giostra, E.; Berg, C.; Cornberg, M.; Wedemeyer, H.; Manns, M.; De Gottardi, A.; Esteban, R.; Discher, T.; Roeb, E.; Gress, M.; Günther, R.; Wietzke-Braun, P.; Herrmann, A.; Stallmach, A.; Hoffmann, D.; Klinker, H.; Kodal, A.; Lammert, F.; Löbermann, M.; Schulze zur Wiesch, J.; von Felden, J.; Piecha, F.; Lohse, A.; Götze, T.; Malfertheiner, P.; Mayerle, J.; Moradpour, D.; Moreno, C.; Neumann-Haefelin, C.; Thimme, R.; Reinhardt, L.; Ellenrieder, V.; Schattenberg, J.; Sprinzl, M.; Galle, P.; Schmidt, J.; Schott, E.; Epple, H.J.; Siebler, J.; Stauber, R.; Steckstor, M.; Schmiegel, W.; Stremmel, W.; Strey, B.; Tomasiewicz, K.; Trautwein, C.; Zachoval, R.; Angeli, W.; Beckebaum, S.; Doberauer, C.; Ende, K.; Erhardt, A.; Garrido-Lüneburg, A.; Gattringer, H.; Genné, D.; Gschwantler, M.; Gundling, F.; Hartmann, C.; Heyer, T.; Hirschi, C.; Kanzler, S.; Kordecki, N.; Kraus, M.; Kullig, U.; Magenta, L.; Terziroli Beretta-Piccoli, B.; Menges, M.; Mohr, L.; Muehlenberg, K.; Niederau, C.; Paulweber, B.; Petrides, A.; Piso, R.; Rambach, W.; Reiser, M.; Riecken, B.; Roth, J.; Schöfl, R.; Maieron, A.; Schneider, A.; Schuchmann, M.; Schulten-Baumer, U.; Seelhoff, A.; Semela, D.; Stich, A.; Vollmer, C.; Brückner, J.; Ungemach, J.; Walter, E.; Weber, A.; Winzer, T.; Abels, W.; Adler, M.; Audebert, F.; Baermann, C.; Bästlein, E.; Barth, R.; Barthel, K.; Baumgartl, K.; Becker, W.; Benninger, J.; Beyer, T.; Bodtländer, A.; Böhm, G.; Bohr, U.; Moll, A.; Naumann, U.; Börner, N.; Bruch, H.R.; Busch, N.; Burkhard, O.; Chirca, C.; Dienethal, A.; Dietel, P.; Dreher, F.; Efken, P.; Ehrle, U.; Emke, F.; Fischer, J.; Fischer, U.; Frederking, D.; Frick, B.; Gantke, B. European HCV Resistance Study Group. Patterns of resistance-associated substitutions in patients with chronic HCV infection following treatment with direct-acting antivirals. Gastroenterology, 2018, 154(4), 976-988.e4.
[http://dx.doi.org/10.1053/j.gastro.2017.11.007] [PMID: 29146520]
[40]
Wyles, D.L. Resistance to DAAs: When to look and when it matters. Curr. HIV/AIDS Rep., 2017, 14(6), 229-237.
[http://dx.doi.org/10.1007/s11904-017-0369-5] [PMID: 29116550]
[41]
de Torres Santos, A.P.; Martins Silva, V.C.; Mendes-Corrêa, M.C.; Lemos, M.F.; de Mello Malta, F.; Santana, R.A.F.; Dastoli, G.T.F.; de Castro, V.F.D.; Pinho, J.R.R.; Moreira, R.C. Prevalence and pattern of resistance in NS5A/NS5B in hepatitis C chronic patients genotype 3 examined at a public health laboratory in the state of São Paulo, Brazil. Infect. Drug Resist., 2021, 14, 723-730.
[http://dx.doi.org/10.2147/IDR.S247071] [PMID: 33658809]
[42]
Abouelkheir, A.D.; Ali, E.T.; Besheer, T.; Elsayed, F.R. Respiratory adverse effects of sofosbuvir-based regimens for treatment of chronic hepatitis C virus. Egypt. J. Chest Dis. Tuberc., 2017, 66(2), 363-367.
[http://dx.doi.org/10.1016/j.ejcdt.2016.12.004]
[43]
Colpitts, C.C.; Baumert, T.F. Hepatitis C virus cell entry: A target for novel antiviral strategies to address limitations of direct acting antivirals. Hepatol. Int., 2016, 10(5), 741-748.
[http://dx.doi.org/10.1007/s12072-016-9724-7] [PMID: 27048616]
[44]
Morozov, V.A.; Lagaye, S. Hepatitis C virus: Morphogenesis, infection and therapy. World J. Hepatol., 2018, 10(2), 186-212.
[http://dx.doi.org/10.4254/wjh.v10.i2.186] [PMID: 29527256]
[45]
Sharma, S.D. Hepatitis C virus: Molecular biology & current therapeutic options. Indian J. Med. Res., 2010, 131, 17-34.
[PMID: 20167971]
[46]
Fraser, C.S.; Doudna, J.A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat. Rev. Microbiol., 2007, 5(1), 29-38.
[http://dx.doi.org/10.1038/nrmicro1558] [PMID: 17128284]
[47]
Shi, G.; Suzuki, T. Molecular basis of encapsidation of hepatitis C virus genome. Front. Microbiol., 2018, 9, 396.
[http://dx.doi.org/10.3389/fmicb.2018.00396] [PMID: 29563905]
[48]
Kim, C.W.; Chang, K.M. Hepatitis C virus: Virology and life cycle. Clin. Mol. Hepatol., 2013, 19(1), 17-25.
[http://dx.doi.org/10.3350/cmh.2013.19.1.17] [PMID: 23593605]
[49]
Dubuisson, J.; Helle, F.; Cocquerel, L. Early steps of the hepatitis C virus life cycle. Cell. Microbiol., 2008, 10(4), 821-827.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01107.x] [PMID: 18081727]
[50]
Lindenbach, B.D.; Evans, M.J.; Syder, A.J.; Wölk, B.; Tellinghuisen, T.L.; Liu, C.C.; Maruyama, T.; Hynes, R.O.; Burton, D.R.; McKeating, J.A.; Rice, C.M. Complete replication of hepatitis C virus in cell culture. Science, 2005, 309, 623-626.
[51]
Bartlett, C.; Curd, A.; Peckham, M.; Harris, M. Visualisation and analysis of hepatitis C virus non-structural proteins using super-resolution microscopy. Sci. Rep., 2018, 8(1), 13604.
[http://dx.doi.org/10.1038/s41598-018-31861-0] [PMID: 30206266]
[52]
Suzuki, T.; Suzuki, R. Role of nonstructural proteins in HCV replication. In: Hepatitis C Virus I: Cellular and Molecular Virology; Miyamura, T.; Lemon, S.; Walker, C.; Wakita, T., Eds.; Springer: Tokyo, Japan, 2016; pp. 129-148.
[http://dx.doi.org/10.1007/978-4-431-56098-2_7]
[53]
Scheel, T.K.H.; Rice, C.M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat. Med., 2013, 19(7), 837-849.
[http://dx.doi.org/10.1038/nm.3248] [PMID: 23836234]
[54]
Niepmann, M.; Gerresheim, G.K. Hepatitis C virus translation regulation. Int. J. Mol. Sci., 2020, 21(7), 2328.
[http://dx.doi.org/10.3390/ijms21072328] [PMID: 32230899]
[55]
Sarrazin, C. Treatment failure with DAA therapy: Importance of resistance. J. Hepatol., 2021, 74(6), 1472-1482.
[http://dx.doi.org/10.1016/j.jhep.2021.03.004] [PMID: 33716089]
[56]
Douam, F.; Lavillette, D.; Cosset, F.L. The Mechanism of HCV Entry into Host Cells.Progress in Molecular Biology and Translational Science; Elsevier B.V.: Amsterdam, The Netherlands, 2015, Vol. 129, pp. 63-107.
[57]
Gerold, G.; Moeller, R.; Pietschmann, T. Hepatitis C virus entry: Protein interactions and fusion determinants governing productive hepatocyte invasion. Cold Spring Harb. Perspect. Med., 2020, 10(2), a036830.
[http://dx.doi.org/10.1101/cshperspect.a036830] [PMID: 31427285]
[58]
Tong, Y.; Lavillette, D.; Li, Q.; Zhong, J. Role of hepatitis C virus envelope glycoprotein E1 in virus entry and assembly. Front. Immunol., 2018, 9, 1411.
[http://dx.doi.org/10.3389/fimmu.2018.01411] [PMID: 29971069]
[59]
Lupberger, J.; Zeisel, M.B.; Xiao, F.; Thumann, C.; Fofana, I.; Zona, L.; Davis, C.; Mee, C.J.; Turek, M.; Gorke, S.; Royer, C.; Fischer, B.; Zahid, M.N.; Lavillette, D.; Fresquet, J.; Cosset, F-L.; Rothenberg, S.M.; Pietschmann, T.; Patel, A.H.; Pessaux, P.; Doffoël, M.; Raffelsberger, W.; Poch, O.; McKeating, J.A.; Brino, L.; Baumert, T.F. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med., 2011, 17(5), 589-595.
[http://dx.doi.org/10.1038/nm.2341] [PMID: 21516087]
[60]
Sainz, B., Jr; Barretto, N.; Martin, D.N.; Hiraga, N.; Imamura, M.; Hussain, S.; Marsh, K.A.; Yu, X.; Chayama, K.; Alrefai, W.A.; Uprichard, S.L. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat. Med., 2012, 18(2), 281-285.
[http://dx.doi.org/10.1038/nm.2581] [PMID: 22231557]
[61]
Chen, F.; Lairson, L.L.; Law, M. Into the unknown: A chemical biology approach provides mechanistic insight into HCV entry. Cell Chem. Biol., 2020, 27(7), 767-769.
[http://dx.doi.org/10.1016/j.chembiol.2020.06.018] [PMID: 32679091]
[62]
Miao, Z.; Xie, Z.; Miao, J.; Ran, J.; Feng, Y.; Xia, X. Regulated entry of hepatitis C virus into hepatocytes. Viruses, 2017, 9(5), 100.
[http://dx.doi.org/10.3390/v9050100] [PMID: 28486435]
[63]
Dorner, M.; Horwitz, J.A.; Robbins, J.B.; Barry, W.T.; Feng, Q.; Mu, K.; Jones, C.T.; Schoggins, J.W.; Catanese, M.T.; Burton, D.R.; Law, M.; Rice, C.M.; Ploss, A. A genetically humanized mouse model for hepatitis C virus infection. Nature, 2011, 474(7350), 208-211.
[http://dx.doi.org/10.1038/nature10168] [PMID: 21654804]
[64]
Dorner, M.; Horwitz, J.A.; Donovan, B.M.; Labitt, R.N.; Budell, W.C.; Friling, T.; Vogt, A.; Catanese, M.T.; Satoh, T.; Kawai, T.; Akira, S.; Law, M.; Rice, C.M.; Ploss, A. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature, 2013, 501(7466), 237-241.
[http://dx.doi.org/10.1038/nature12427] [PMID: 23903655]
[65]
Heida, R.; Bhide, Y.C.; Gasbarri, M.; Kocabiyik, Ö.; Stellacci, F.; Huckriede, A.L.W.; Hinrichs, W.L.J.; Frijlink, H.W. Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discov. Today, 2021, 26(1), 122-137.
[http://dx.doi.org/10.1016/j.drudis.2020.10.009] [PMID: 33099021]
[66]
Colpitts, C.C.; Tsai, P.L.; Zeisel, M.B. Hepatitis C virus entry: An intriguingly complex and highly regulated process. Int. J. Mol. Sci., 2020, 21(6), 2091.
[http://dx.doi.org/10.3390/ijms21062091] [PMID: 32197477]
[67]
Padmanabhan, P.; Dixit, N.M. Modeling suggests a mechanism of synergy between hepatitis C virus entry inhibitors and drugs of other classes. CPT Pharmacometrics Syst. Pharmacol., 2015, 4(8), 445-453.
[http://dx.doi.org/10.1002/psp4.12005] [PMID: 26380153]
[68]
Hong, C.M.; Lin, Y.Y.; Liu, C.J.; Lai, Y.Y.; Yeh, S.H.; Yang, H.C.; Kao, J.H.; Hsu, S.J.; Huang, Y.H.; Yang, S.S.; Kuo, H.T.; Cheng, P.N.; Yu, M.L.; Chen, P.J. Drug resistance profile and clinical features for hepatitis C patients experiencing DAA failure in Taiwan. Viruses, 2021, 13(11), 2294.
[http://dx.doi.org/10.3390/v13112294] [PMID: 34835100]
[69]
Paolucci, S.; Premoli, M.; Novati, S.; Gulminetti, R.; Maserati, R.; Barbarini, G.; Sacchi, P.; Piralla, A.; Sassera, D.; De Marco, L.; Girello, A.; Mondelli, M.U.; Baldanti, F. Baseline and breakthrough resistance mutations in HCV patients failing DAAs. Sci. Rep., 2017, 7(1), 16017.
[http://dx.doi.org/10.1038/s41598-017-15987-1] [PMID: 29167469]
[70]
Xiao, F.; Fofana, I.; Heydmann, L.; Barth, H.; Soulier, E.; Habersetzer, F.; Doffoël, M.; Bukh, J.; Patel, A.H.; Zeisel, M.B.; Baumert, T.F. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents. PLoS Pathog., 2014, 10(5), e1004128.
[http://dx.doi.org/10.1371/journal.ppat.1004128] [PMID: 24830295]
[71]
Mohamed, A.A.; El-Toukhy, N.E.R.; Said, E.M.; Gabal, H.M.R.; AbdelAziz, H.; Doss, W.; El-Hanafi, H.; El Deeb, H.H.; Mahmoud, S.; Elkadeem, M.; Shalby, H.S.; Abd-Elsalam, S. Hepatitis C virus: Efficacy of new DAAs regimens. Infect. Disord. Drug Targets, 2020, 20(2), 143-149.
[http://dx.doi.org/10.2174/1871526519666190121114003] [PMID: 30663575]
[72]
Cortesi, P.A.; Mantovani, L.G.; Ciaccio, A.; Rota, M.; Mazzarelli, C.; Cesana, G.; Strazzabosco, M.; Belli, L.S. Cost-effectiveness of new direct-acting antivirals to prevent post-liver transplant recurrent hepatitis. Am. J. Transplant., 2015, 15(7), 1817-1826.
[http://dx.doi.org/10.1111/ajt.13320] [PMID: 26086300]
[73]
Colpitts, C.C.; Baumert, T.F. Addressing the challenges of hepatitis C virus resistance and treatment failure. Viruses, 2016, 8(8), 226.
[http://dx.doi.org/10.3390/v8080226] [PMID: 27537906]
[74]
Baumert, T.F.; Jühling, F.; Ono, A.; Hoshida, Y. Hepatitis C-related hepatocellular carcinoma in the era of new generation antivirals. BMC Med., 2017, 15(1), 52.
[http://dx.doi.org/10.1186/s12916-017-0815-7] [PMID: 28288626]
[75]
Soliman, H.; Ziada, D.; Salama, M.; Hamisa, M.; Badawi, R.; Hawash, N.; Selim, A.; Abd-Elsalam, S. Predictors for fibrosis regression in chronic HCV patients after the treatment with DAAS: Results of a real-world cohort study. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(1), 104-111.
[http://dx.doi.org/10.2174/1871530319666190826150344] [PMID: 31448717]
[76]
Hanafy, A.S.; Soliman, S.; Abd-Elsalam, S. Rescue therapy for chronic hepatitis C virus infection after repeated treatment failures: Impact on disease progression and risk of hepatocellular carcinoma. Hepatol. Res., 2019, 49(4), 377-384.
[http://dx.doi.org/10.1111/hepr.13303] [PMID: 30570817]
[77]
Hwang, J.Y.; Kim, H.Y.; Park, D.S.; Choi, J.; Baek, S.M.; Kim, K.; Kim, S.; Seong, S.; Choi, I.; Lee, H.G.; Windisch, M.P.; Lee, J. Identification of a series of 1,3,4-trisubstituted pyrazoles as novel hepatitis C virus entry inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(23), 6467-6473.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.039] [PMID: 24125883]
[78]
Windisch, M.P.; Jo, S.; Kim, H.Y.; Kim, S.H.; Kim, K.; Kong, S.; Jeong, H.; Ahn, S.; No, Z.; Hwang, J.Y. Discovery of 2-iminobenzimidazoles as potent hepatitis C virus inhibitors with a novel mechanism of action. Eur. J. Med. Chem., 2014, 78, 35-42.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.030] [PMID: 24675178]
[79]
Hsu, W.C.; Chang, S.P.; Lin, L.C.; Li, C.L.; Richardson, C.D.; Lin, C.C.; Lin, L.T. Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antiviral Res., 2015, 118, 139-147.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.003] [PMID: 25865056]
[80]
Chung, C.Y.; Liu, C.H.; Burnouf, T.; Wang, G.H.; Chang, S.P.; Jassey, A.; Tai, C.J.; Tai, C.J.; Huang, C.J.; Richardson, C.D.; Yen, M.H.; Lin, C.C.; Lin, L.T. Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral Res., 2016, 130, 58-68.
[http://dx.doi.org/10.1016/j.antiviral.2016.03.012] [PMID: 27012176]
[81]
Han, Z.; Liang, X.; Wang, Y.; Qing, J.; Cao, L.; Shang, L.; Yin, Z. The discovery of indole derivatives as novel hepatitis C virus inhibitors. Eur. J. Med. Chem., 2016, 116, 147-155.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.062] [PMID: 27061978]
[82]
Lee, M.; Yang, J.; Park, S.; Jo, E.; Kim, H.Y.; Bae, Y.S.; Windisch, M.P. Micrococcin P1, a naturally occurring macrocyclic peptide inhibiting hepatitis C virus entry in a pan-genotypic manner. Antiviral Res., 2016, 132, 287-295.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.002] [PMID: 27387825]
[83]
Kim, H.Y.; Kong, S.; Oh, S.; Yang, J.; Jo, E.; Ko, Y.; Kim, S.H.; Hwang, J.Y.; Song, R.; Windisch, M.P. Benzothiazepinecarboxamides: Novel hepatitis C virus inhibitors that interfere with viral entry and the generation of infectious virions. Antiviral Res., 2016, 129, 39-46.
[http://dx.doi.org/10.1016/j.antiviral.2016.01.010] [PMID: 26850830]
[84]
Lee, M.; Yang, J.; Jo, E.; Lee, J.Y.; Kim, H.Y.; Bartenschlager, R.; Shin, E.C.; Bae, Y.S.; Windisch, M.P. A novel inhibitor IDPP interferes with entry and egress of HCV by targeting glycoprotein E1 in a genotype-specific manner. Sci. Rep., 2017, 7(1), 44676.
[http://dx.doi.org/10.1038/srep44676] [PMID: 28333153]
[85]
Yin, P.; Zhang, L.; Ye, F.; Deng, Y.; Lu, S.; Li, Y.P.; Zhang, L.; Tan, W. A screen for inhibitory peptides of hepatitis C virus identifies a novel entry inhibitor targeting E1 and E2. Sci. Rep., 2017, 7(1), 3976.
[http://dx.doi.org/10.1038/s41598-017-04274-8] [PMID: 28638089]
[86]
Hu, Z.; Rolt, A.; Hu, X.; Ma, C.D.; Le, D.J.; Park, S.B.; Houghton, M.; Southall, N.; Anderson, D.E.; Talley, D.C.; Lloyd, J.R.; Marugan, J.C.; Liang, T.J. Chlorcyclizine inhibits viral fusion of hepatitis C virus entry by directly targeting HCV envelope glycoprotein 1. Cell Chem. Biol., 2020, 27(7), 780-792.e5.
[http://dx.doi.org/10.1016/j.chembiol.2020.04.006] [PMID: 32386595]
[87]
He, S.; Lin, B.; Chu, V.; Hu, Z.; Hu, X.; Xiao, J.; Wang, A.Q.; Schweitzer, C.J.; Li, Q.; Imamura, M.; Hiraga, N.; Southall, N.; Ferrer, M.; Zheng, W.; Chayama, K.; Marugan, J.J.; Liang, T.J. Repurposing of the antihistamine chlorcyclizine and related compounds for treatment of hepatitis C virus infection. Sci. Transl. Med., 2015, 7, 282ra49-282ra49.
[http://dx.doi.org/10.1126/scitranslmed.3010286]
[88]
Yu, F.; Wang, Q.; Zhang, Z.; Peng, Y.; Qiu, Y.; Shi, Y.; Zheng, Y.; Xiao, S.; Wang, H.; Huang, X.; Zhu, L.; Chen, K.; Zhao, C.; Zhang, C.; Yu, M.; Sun, D.; Zhang, L.; Zhou, D. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors. J. Med. Chem., 2013, 56(11), 4300-4319.
[http://dx.doi.org/10.1021/jm301910a] [PMID: 23662817]
[89]
Yu, F.; Peng, Y.; Wang, Q.; Shi, Y.; Si, L.; Wang, H.; Zheng, Y.; Lee, E.; Xiao, S.; Yu, M.; Li, Y.; Zhang, C.; Tang, H.; Wang, C.; Zhang, L.; Zhou, D. Development of bivalent oleanane-type triterpenes as potent HCV entry inhibitors. Eur. J. Med. Chem., 2014, 77, 258-268.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.017] [PMID: 24650713]
[90]
Cárdenas, P.D.; Almeida, A.; Bak, S. Evolution of structural diversity of triterpenoids. Front. Plant Sci., 2019, 10, 1523.
[http://dx.doi.org/10.3389/fpls.2019.01523] [PMID: 31921225]
[91]
Lin, L.T.; Chung, C.Y.; Hsu, W.C.; Chang, S.P.; Hung, T.C.; Shields, J.; Russell, R.S.; Lin, C.C.; Li, C.F.; Yen, M.H.; Tyrrell, D.L.J.; Lin, C.C.; Richardson, C.D. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J. Hepatol., 2015, 62(3), 541-548.
[http://dx.doi.org/10.1016/j.jhep.2014.10.040] [PMID: 25450204]
[92]
Nguyen, L.P.; Park, C.; Luong, T.T.D.; Park, E.M.; Choi, D.H.; Han, K.M.; Mai, H.N.; Nguyen, H.C.; Lim, Y.S.; Hwang, S.B. 5-Oxo-1-[(2,3,6,7-tetramethoxy-9-phenanthrenyl)methyl]-L-proline Inhibits Hepatitis C Virus Entry. Sci. Rep., 2019, 9(1), 7288.
[http://dx.doi.org/10.1038/s41598-019-43783-6] [PMID: 31086268]
[93]
Pham, L.V.; Ngo, H.T.T.; Lim, Y.S.; Hwang, S.B. Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation. J. Hepatol., 2012, 57(5), 960-966.
[http://dx.doi.org/10.1016/j.jhep.2012.07.006] [PMID: 22796893]
[94]
Hung, T.C.; Jassey, A.; Liu, C.H.; Lin, C.J.; Lin, C.C.; Wong, S.H.; Wang, J.Y.; Yen, M.H.; Lin, L.T. Berberine inhibits hepatitis C virus entry by targeting the viral E2 glycoprotein. Phytomedicine, 2019, 53, 62-69.
[http://dx.doi.org/10.1016/j.phymed.2018.09.025] [PMID: 30668413]
[95]
Haid, S.; Novodomská, A.; Gentzsch, J.; Grethe, C.; Geuenich, S.; Bankwitz, D.; Chhatwal, P.; Jannack, B.; Hennebelle, T.; Bailleul, F.; Keppler, O.T.; Poenisch, M.; Bartenschlager, R.; Hernandez, C.; Lemasson, M.; Rosenberg, A.R.; Wong-Staal, F.; Davioud-Charvet, E.; Pietschmann, T. A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology, 2012, 143(1), 213-22.e5.
[http://dx.doi.org/10.1053/j.gastro.2012.03.036] [PMID: 22465429]
[96]
Kaurinovic, B.; Vlaisavljevic, S.; Popovic, M.; Vastag, D.; Djurendic-Brenesel, M. Antioxidant properties of Marrubium peregrinum L. (Lamiaceae) essential oil. Molecules, 2010, 15(9), 5943-5955.
[http://dx.doi.org/10.3390/molecules15095943]
[97]
Xiao, S.; Wang, Q.; Si, L.; Zhou, X.; Zhang, Y.; Zhang, L.; Zhou, D. Synthesis and biological evaluation of novel pentacyclic triterpene α-cyclodextrin conjugates as HCV entry inhibitors. Eur. J. Med. Chem., 2016, 124, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.020] [PMID: 27565552]
[98]
Yu, F.; Wang, Q.; Wang, H.; Si, L.L.; Liu, J.X.; Han, X.; Xiao, S.L.; Zhang, L.H.; Zhou, D.M. Synthesis and biological evaluation of echinocystic acid derivatives as HCV entry inhibitors. Chin. Chem. Lett., 2016, 27(5), 711-713.
[http://dx.doi.org/10.1016/j.cclet.2016.01.050]
[99]
Wang, H.; Yu, F.; Peng, Y.; Wang, Q.; Han, X.; Xu, R.; Zhou, X.; Wan, C.; Fan, Z.; Jiao, P.; Zhang, Y.; Zhang, L.; Zhou, D.; Xiao, S. Synthesis and biological evaluation of ring A and/or C expansion and opening echinocystic acid derivatives for anti-HCV entry inhibitors. Eur. J. Med. Chem., 2015, 102, 594-599.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.034] [PMID: 26318066]
[100]
Wang, H.; Wang, Q.; Xiao, S.L.; Yu, F.; Ye, M.; Zheng, Y.X.; Zhao, C.K.; Sun, D.A.; Zhang, L.H.; Zhou, D.M. Elucidation of the pharmacophore of echinocystic acid, a new lead for blocking HCV entry. Eur. J. Med. Chem., 2013, 64, 160-168.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.041] [PMID: 23644199]
[101]
Yasuno, T.; Ohe, T.; Kataoka, H.; Hashimoto, K.; Ishikawa, Y.; Furukawa, K.; Tateishi, Y.; Kobayashi, T.; Takahashi, K.; Nakamura, S.; Mashino, T. Fullerene derivatives as dual inhibitors of HIV-1 reverse transcriptase and protease. Bioorg. Med. Chem. Lett., 2021, 31, 127675.
[http://dx.doi.org/10.1016/j.bmcl.2020.127675] [PMID: 33161121]
[102]
Functionalisation of Fullerenes for Biomedical Applications. In: Comprehensive Nanoscience and Nanotechnology; Andrews, D.L.; Lipson, R.H.; Nann, T.; Rašović, I.; Porfyrakis, K., Eds.; Elsevier: Amsterdam, 2019; pp. 109-122.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.11224-X]
[103]
Xiao, S.L.; Wang, Q.; Yu, F.; Peng, Y.Y.; Yang, M.; Sollogoub, M.; Sinaÿ, P.; Zhang, Y.M.; Zhang, L.H.; Zhou, D.M. Conjugation of cyclodextrin with fullerene as a new class of HCV entry inhibitors. Bioorg. Med. Chem., 2012, 20(18), 5616-5622.
[http://dx.doi.org/10.1016/j.bmc.2012.07.029] [PMID: 22884577]
[104]
Maus, A.; Strait, L.; Zhu, D. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Eng. Regen., 2021, 2, 31-46.
[http://dx.doi.org/10.1016/j.engreg.2021.03.001]
[105]
Garrido, P.F.; Calvelo, M.; Blanco-González, A.; Veleiro, U.; Suárez, F.; Conde, D.; Cabezón, A.; Piñeiro, Á.; Garcia-Fandino, R. The lord of the nanorings: Cyclodextrins and the battle against SARS-CoV-2. Int. J. Pharm., 2020, 588, 119689.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119689] [PMID: 32717282]
[106]
Perin, P.M.; Haid, S.; Brown, R.J.P.; Doerrbecker, J.; Schulze, K.; Zeilinger, C.; von Schaewen, M.; Heller, B.; Vercauteren, K.; Luxenburger, E.; Baktash, Y.M.; Vondran, F.W.R.; Speerstra, S.; Awadh, A.; Mukhtarov, F.; Schang, L.M.; Kirschning, A.; Müller, R.; Guzman, C.A.; Kaderali, L.; Randall, G.; Meuleman, P.; Ploss, A.; Pietschmann, T. Flunarizine prevents hepatitis C virus membrane fusion in a genotype-dependent manner by targeting the potential fusion peptide within E1. Hepatology, 2016, 63(1), 49-62.
[http://dx.doi.org/10.1002/hep.28111] [PMID: 26248546]
[107]
Banda, D.H.; Perin, P.M.; Brown, R.J.P.; Todt, D.; Solodenko, W.; Hoffmeyer, P.; Kumar, S.K.; Houghton, M.; Meuleman, P.; Müller, R.; Kirschning, A.; Pietschmann, T. A central hydrophobic E1 region controls the pH range of hepatitis C virus membrane fusion and susceptibility to fusion inhibitors. J. Hepatol., 2019, 70(6), 1082-1092.
[http://dx.doi.org/10.1016/j.jhep.2019.01.033] [PMID: 30769006]
[108]
He, S.; Li, K.; Lin, B.; Hu, Z.; Xiao, J.; Hu, X.; Wang, A.Q.; Xu, X.; Ferrer, M.; Southall, N.; Zheng, W.; Aubé, J.; Schoenen, F.J.; Marugan, J.J.; Liang, T.J.; Frankowski, K.J. Development of an aryloxazole class of hepatitis C virus inhibitors targeting the entry stage of the viral replication cycle. J. Med. Chem., 2017, 60(14), 6364-6383.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00561] [PMID: 28636348]
[109]
Ma, C.D.; Imamura, M.; Talley, D.C.; Rolt, A.; Xu, X.; Wang, A.Q.; Le, D.; Uchida, T.; Osawa, M.; Teraoka, Y.; Li, K.; Hu, X.; Park, S.B.; Chalasani, N.; Irvin, P.H.; Dulcey, A.E.; Southall, N.; Marugan, J.J.; Hu, Z.; Chayama, K.; Frankowski, K.J.; Liang, T.J. Fluoxazolevir inhibits hepatitis C virus infection in humanized chimeric mice by blocking viral membrane fusion. Nat. Microbiol., 2020, 5(12), 1532-1541.
[http://dx.doi.org/10.1038/s41564-020-0781-2] [PMID: 32868923]
[110]
Lv, X.Q.; Zou, L.L.; Tan, J.L.; Li, H.; Li, J.R.; Liu, N.N.; Dong, B.; Song, D.-Q.; Peng, Z.-G. Aloperine inhibits hepatitis C virus entry into cells by disturbing internalisation from endocytosis to the membrane fusion process. Eur. J. Pharmacol., 2020, 883, 173323.
[http://dx.doi.org/10.1016/j.ejphar.2020.173323] [PMID: 32622669]
[111]
Dang, Z.; Jung, K.; Zhu, L.; Lai, W.; Xie, H.; Lee, K.-H.; Huang, L.; Chen, C.-H. Identification and synthesis of quinolizidines with anti-influenza a virus activity. ACS Med. Chem. Lett., 2014, 5(8), 942-946.
[http://dx.doi.org/10.1021/ml500236n] [PMID: 25147619]
[112]
Zhang, X.; Liu, Q.; Zhang, N.; Li, Q.Q.; Liu, Z.D.; Li, Y.H.; Gao, L.M.; Wang, Y.C.; Deng, H.B.; Song, D.Q. Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. Eur. J. Med. Chem., 2018, 149, 45-55.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.061] [PMID: 29494844]
[113]
Dang, Z.; Zhu, L.; Lai, W.; Bogerd, H.; Lee, K.-H.; Huang, L.; Chen, C.-H. Aloperine and its derivatives as a new class of HIV-1 entry inhibitors. ACS Med. Chem. Lett., 2016, 7(3), 240-244.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00339] [PMID: 26985308]
[114]
Syder, A.J.; Lee, H.; Zeisel, M.B.; Grove, J.; Soulier, E.; Macdonald, J.; Chow, S.; Chang, J.; Baumert, T.F.; McKeating, J.A.; McKelvy, J.; Wong-Staal, F. Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J. Hepatol., 2011, 54(1), 48-55.
[http://dx.doi.org/10.1016/j.jhep.2010.06.024] [PMID: 20932595]
[115]
Masson, D.; Koseki, M.; Ishibashi, M.; Larson, C.J.; Miller, S.G.; King, B.D.; Tall, A.R. Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler. Thromb. Vasc. Biol., 2009, 29(12), 2054-2060.
[http://dx.doi.org/10.1161/ATVBAHA.109.191320] [PMID: 19815817]
[116]
Mittapalli, G.K.; Jackson, A.; Zhao, F.; Lee, H.; Chow, S.; McKelvy, J.; Wong-Staal, F.; Macdonald, J.E. Discovery of highly potent small molecule Hepatitis C Virus entry inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(22), 6852-6855.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.019] [PMID: 21978675]
[117]
Mittapalli, G.K.; Zhao, F.; Jackson, A.; Gao, H.; Lee, H.; Chow, S.; Kaur, M.P.; Nguyen, N.; Zamboni, R.; McKelvy, J.; Wong-Staal, F.; Macdonald, J.E. Discovery of ITX 4520: A highly potent orally bioavailable hepatitis C virus entry inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(15), 4955-4961.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.038] [PMID: 22784640]
[118]
Maloney, P.R.; Parks, D.J.; Haffner, C.D.; Fivush, A.M.; Chandra, G.; Plunket, K.D.; Creech, K.L.; Moore, L.B.; Wilson, J.G.; Lewis, M.C.; Jones, S.A.; Willson, T.M. Identification of a chemical tool for the orphan nuclear receptor FXR. J. Med. Chem., 2000, 43(16), 2971-2974.
[http://dx.doi.org/10.1021/jm0002127] [PMID: 10956205]
[119]
Trujillo-Murillo, K.; Rincón-Sánchez, A.R.; Martínez-Rodríguez, H.; Bosques-Padilla, F.; Ramos-Jiménez, J.; Barrera-Saldaña, H.A.; Rojkind, M.; Rivas-Estilla, A.M. Acetylsalicylic acid inhibits hepatitis C virus RNA and protein expression through cyclooxygenase 2 signaling pathways. Hepatology, 2008, 47(5), 1462-1472.
[http://dx.doi.org/10.1002/hep.22215] [PMID: 18393288]
[120]
Ríos-Ibarra, C.P.; Lozano-Sepulveda, S.; Muñoz-Espinosa, L.; Rincón-Sánchez, A.R.; Cordova-Fletes, C.; Rivas-Estilla, A.M.G. Downregulation of inducible Nitric Oxide Synthase (iNOS) expression is implicated in the antiviral activity of acetylsalicylic acid in HCV-expressing cells. Arch. Virol., 2014, 159(12), 3321-3328.
[http://dx.doi.org/10.1007/s00705-014-2201-5] [PMID: 25106115]
[121]
Yin, P.; Zhang, L. Aspirin inhibits hepatitis C virus entry by downregulating claudin-1. J. Viral Hepat., 2016, 23(1), 62-64.
[http://dx.doi.org/10.1111/jvh.12446] [PMID: 26289738]
[122]
Chamoun-Emanuelli, A.M.; Pécheur, E.I.; Chen, Z. Benzhydrylpiperazine compounds inhibit cholesterol-dependent cellular entry of hepatitis C virus. Antiviral Res., 2014, 109, 141-148.
[http://dx.doi.org/10.1016/j.antiviral.2014.06.014] [PMID: 25019406]
[123]
Liu, S.; Wang, W.; Brown, L.E.; Qiu, C.; Lajkiewicz, N.; Zhao, T.; Zhou, J.; Porco, J.A., Jr; Wang, T.T. A novel class of small molecule compounds that inhibit hepatitis c virus infection by targeting the prohibitin-CRaf pathway. EBioMedicine, 2015, 2(11), 1600-1606.
[http://dx.doi.org/10.1016/j.ebiom.2015.09.018] [PMID: 26870784]
[124]
McClung, J.K.; Danner, D.B.; Stewart, D.A.; Smith, J.R.; Schneider, E.L.; Lumpkin, C.K.; Dell’Orco, R.T.; Nuell, M.J. Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver. Biochem. Biophys. Res. Commun., 1989, 164(3), 1316-1322.
[http://dx.doi.org/10.1016/0006-291X(89)91813-5] [PMID: 2480116]
[125]
Montano, M.M.; Ekena, K.; Delage-Mourroux, R.; Chang, W.; Martini, P.; Katzenellenbogen, B.S. An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc. Natl. Acad. Sci., 1999, 96(12), 6947-6952.
[http://dx.doi.org/10.1073/pnas.96.12.6947] [PMID: 10359819]
[126]
Emerson, V.; Holtkotte, D.; Pfeiffer, T.; Wang, I.H.; Schnölzer, M.; Kempf, T.; Bosch, V. Identification of the cellular prohibitin 1/prohibitin 2 heterodimer as an interaction partner of the C-terminal cytoplasmic domain of the HIV-1 glycoprotein. J. Virol., 2010, 84(3), 1355-1365.
[http://dx.doi.org/10.1128/JVI.01641-09] [PMID: 19906925]
[127]
Kuadkitkan, A.; Wikan, N.; Fongsaran, C.; Smith, D.R. Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells. Virology, 2010, 406(1), 149-161.
[http://dx.doi.org/10.1016/j.virol.2010.07.015] [PMID: 20674955]
[128]
Wintachai, P.; Thuaud, F.; Basmadjian, C.; Roytrakul, S.; Ubol, S.; Désaubry, L.; Smith, D.R. Assessment of flavaglines as potential chikungunya virus entry inhibitors. Microbiol. Immunol., 2015, 59(3), 129-141.
[http://dx.doi.org/10.1111/1348-0421.12230] [PMID: 25643977]
[129]
Too, I.H.K.; Bonne, I.; Tan, E.L.; Chu, J.J.H.; Alonso, S. Prohibitin plays a critical role in Enterovirus 71 neuropathogenesis. PLoS Pathog., 2018, 14(1), e1006778.
[http://dx.doi.org/10.1371/journal.ppat.1006778] [PMID: 29324904]
[130]
Polier, G.; Neumann, J.; Thuaud, F.; Ribeiro, N.; Gelhaus, C.; Schmidt, H.; Giaisi, M.; Köhler, R.; Müller, W.W.; Proksch, P.; Leippe, M.; Janssen, O.; Désaubry, L.; Krammer, P.H.; Li-Weber, M. The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem. Biol., 2012, 19(9), 1093-1104.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.012] [PMID: 22999878]
[131]
Hwang, J.Y.; Kim, H-Y.; Jo, S.; Park, E.; Choi, J.; Kong, S.; Park, D.S.; Heo, J.M.; Lee, J.S.; Ko, Y.; Choi, I.; Cechetto, J.; Kim, J.; Lee, J.; No, Z.; Windisch, M.P. Synthesis and evaluation of hexahydropyrimidines and diamines as novel hepatitis C virus inhibitors. Eur. J. Med. Chem., 2013, 70, 315-325.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.055] [PMID: 24177358]
[132]
Mull, E.S.; Sun, L.Q.; Zhao, Q.; Eggers, B.; Pokornowski, K.; Zhai, G.; Rajamani, R.; Jenkins, S.; Kramer, M.; Wang, Y.K.; Fang, H.; Tenney, D.; Baldick, C.J.; Cockett, M.I.; Meanwell, N.A.; Scola, P.M. Functionalized triazines as potent HCV entry inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 1089-1093.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.038] [PMID: 28089701]
[133]
Baldick, C.J.; Wichroski, M.J.; Pendri, A.; Walsh, A.W.; Fang, J.; Mazzucco, C.E.; Pokornowski, K.A.; Rose, R.E.; Eggers, B.J.; Hsu, M.; Zhai, W.; Zhai, G.; Gerritz, S.W.; Poss, M.A.; Meanwell, N.A.; Cockett, M.I.; Tenney, D.J. A novel small molecule inhibitor of hepatitis C virus entry. PLoS Pathog., 2010, 6(9), e1001086.
[http://dx.doi.org/10.1371/journal.ppat.1001086] [PMID: 20838466]
[134]
Calland, N.; Albecka, A.; Belouzard, S.; Wychowski, C.; Duverlie, G.; Descamps, V.; Hober, D.; Dubuisson, J.; Rouillé, Y.; Séron, K. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 2012, 55(3), 720-729.
[http://dx.doi.org/10.1002/hep.24803] [PMID: 22105803]
[135]
Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955.
[http://dx.doi.org/10.1002/hep.24610] [PMID: 21837753]
[136]
Bhat, R.; Adam, A.T.; Lee, J.J.; Deloison, G.; Rouillé, Y.; Séron, K.; Rotella, D.P. Structure-activity studies of (-)-epigallocatechin gallate derivatives as HCV entry inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4162-4165.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.051] [PMID: 25103601]
[137]
Shimizu, J.F.; Lima, C.S.; Pereira, C.M.; Bittar, C.; Batista, M.N.; Nazaré, A.C.; Polaquini, C.R.; Zothner, C.; Harris, M.; Rahal, P.; Regasini, L.O.; Carolina, A.; Jardim, G. Flavonoids from Pterogyne nitens inhibit hepatitis C virus entry. Sci. Rep., 2017, 7(1), 1-9.
[http://dx.doi.org/10.1038/s41598-017-16336-y]
[138]
Bush, C.O.; Pokrovskii, M.V.; Saito, R.; Morganelli, P.; Canales, E.; Clarke, M.O.; Lazerwith, S.E.; Golde, J.; Reid, B.G.; Babaoglu, K.; Pagratis, N.; Zhong, W.; Delaney, W.E., IV; Paulson, M.S.; Beran, R.K.F. A small-molecule inhibitor of hepatitis C virus infectivity. Antimicrob. Agents Chemother., 2014, 58(1), 386-396.
[http://dx.doi.org/10.1128/AAC.02083-13] [PMID: 24165192]
[139]
Tawar, R.G.; Heydmann, L.; Bach, C.; Schüttrumpf, J.; Chavan, S.; King, B.J.; McClure, C.P.; Ball, J.K.; Pessaux, P.; Habersetzer, F.; Bartenschlager, R.; Zeisel, M.B.; Baumert, T.F. Broad neutralization of hepatitis C virus-resistant variants by Civacir hepatitis C immunoglobulin. Hepatology, 2016, 64(5), 1495-1506.
[http://dx.doi.org/10.1002/hep.28767] [PMID: 27531416]
[140]
Rowe, I.A.; Tully, D.C.; Armstrong, M.J.; Parker, R.; Guo, K.; Barton, D.; Morse, G.D.; Venuto, C.S.; Ogilvie, C.B.; Hedegaard, D.L.; McKelvy, J.F.; Wong-Staal, F.; Allen, T.M.; Balfe, P.; McKeating, J.A.; Mutimer, D.J. Effect of scavenger receptor class B type I antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation. Liver Transpl., 2016, 22(3), 287-297.
[http://dx.doi.org/10.1002/lt.24349] [PMID: 26437376]
[141]
Cowton, V.M.; Angus, A.G.N.; Cole, S.J.; Markopoulou, C.K.; Owsianka, A.; Dunlop, J.I.; Gardner, D.E.; Krey, T.; Patel, A.H. Role of conserved E2 residue W420 in receptor binding and hepatitis C virus infection. J. Virol., 2016, 90(16), 7456-7468.
[http://dx.doi.org/10.1128/JVI.00685-16] [PMID: 27279607]
[142]
Feld, J.J.; Cypel, M.; Kumar, D.; Dahari, H.; Pinto Ribeiro, R.V.; Marks, N.; Kamkar, N.; Bahinskaya, I.; Onofrio, F.Q.; Zahoor, M.A.; Cerrochi, O.; Tinckam, K.; Kim, S.J.; Schiff, J.; Reichman, T.W.; McDonald, M.; Alba, C.; Waddell, T.K.; Sapisochin, G.; Selzner, M.; Keshavjee, S.; Janssen, H.L.A.; Hansen, B.E.; Singer, L.G.; Humar, A. Short-course, direct-acting antivirals and ezetimibe to prevent HCV infection in recipients of organs from HCV-infected donors: A phase 3, single-centre, open-label study. Lancet Gastroenterol. Hepatol., 2020, 5(7), 649-657.
[http://dx.doi.org/10.1016/S2468-1253(20)30081-9] [PMID: 32389183]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy