Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Protective Impact of Vanillic Acid on Lipid Profile and Lipid Metabolic Enzymes in Diabetic Hypertensive Rat Model Generated by a High-Fat Diet

Author(s): Natarajan Ashokkumar* and Kolanji Vinothiya*

Volume 20, Issue 3, 2023

Published on: 07 April, 2023

Article ID: e240223214005 Pages: 8

DOI: 10.2174/1570163820666230224100643

Price: $65

conference banner
Abstract

Introduction: Diabetes is the most common component of metabolic syndrome, including abdominal obesity, insulin resistance, hypertension, and dyslipoproteinemia.

Objective: This study aims to determine whether vanillic acid has antihyperlipidemic properties in diabetic hypertensive rats.

Methods: For this study healthy male albino Wister rats (180-220 gm) were selected. A 20-week highfat diet (HFD) was given to produce diabetic hypertension in Wister rats. Control and diabetic hypertensive rats were treated with vanillic acid. Vanillic acid effects on lipid profiles (cholesterol, triglycerides, phospholipids, free fatty acids, high-density lipoproteins (HDL)) and lipid metabolizing enzymes LPL, LCAT, and HMG CoA reductase studied by a conventional method. To understand the effect of vanillic acid control, experimental rat lipid and metabolic enzymes were studied and treated and controlled animal liver tissues were observed using the different histology staining agents.

Results: Vanillic acid caused considerable lipid profile reductions except for HDL and increased plasma HDL levels. After eight weeks of vanillic acid administration also boosts lipid marker enzyme activity (HMG CoA reductase, LPL, and LCAT). In addition, vanillic acid reduces the accumulation of collagen in liver tissues.

Conclusion: These research studies suggest that vanillic acid has antihyperlipidemic effects in diabetic hypertensive rats fed an HFD.

Graphical Abstract

[1]
Karpe, F.; Steiner, G.; Uffelman, K.; Olivecrona, T.; Hamsten, A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis, 1994, 106(1), 83-97.
[http://dx.doi.org/10.1016/0021-9150(94)90085-X] [PMID: 8018110]
[2]
Tkác̆, I.; Kimball, B.P.; Lewis, G.; Uffelman, K.; Steiner, G. The severity of coronary atherosclerosis in type 2 diabetes mellitus is related to the number of circulating triglyceride-rich lipoprotein particles. Arterioscler. Thromb. Vasc. Biol., 1997, 17(12), 3633-3638.
[http://dx.doi.org/10.1161/01.ATV.17.12.3633] [PMID: 9437215]
[3]
Stas, S.N.; El-Atat, F.A.; Sowers, J.R. Pathogenesis of hypertension in diabetes. Rev. Endocr. Metab. Disord., 2004, 5(3), 221-225.
[http://dx.doi.org/10.1023/B:REMD.0000032410.75638.da] [PMID: 15211093]
[4]
Sakata, K.; Miho, N.; Shirotani, M.; Yoshida, H.; Takada, Y.; Takada, A. Remnant-like particle cholesterol is a major risk factor for myocardial infarction in vasospastic angina with nearly normal coronary artery. Atherosclerosis, 1998, 136(2), 225-231.
[http://dx.doi.org/10.1016/S0021-9150(97)00209-8] [PMID: 9543092]
[5]
Ramirez, L.C.; Pacheco, C.A.; Lackner, C. Lipoprotein (a) levels in diabetes mellisus: Relationship to metabolic control. Ann. Intem. Med., 1992, 1, 1742-1747.
[6]
Akiyama, T.; Tachibana, I.; Shirohara, H.; Watanabe, N.; Otsuki, M. High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat. Diabetes Res. Clin. Pract., 1996, 31(1-3), 27-35.
[http://dx.doi.org/10.1016/0168-8227(96)01205-3] [PMID: 8792099]
[7]
Pedersen, O.; Kahn, C.R.; Flier, J.S.; Kahn, B.B. High fat feeding causes insulin resistance and a marked decrease in the expression of glucose transporters (Glut 4) in fat cells of rats. Endocrinology, 1991, 129(2), 771-777.
[http://dx.doi.org/10.1210/endo-129-2-771] [PMID: 1855475]
[8]
Danforth, E., Jr Diet and obesity. Am. J. Clin. Nutr., 1985, 41(5)(Suppl.), 1132-1145.
[http://dx.doi.org/10.1093/ajcn/41.5.1132] [PMID: 3993620]
[9]
Mayer, E.J.; Newman, B.; Quesenberry, C.P., Jr; Selby, J.V. Usual dietary fat intake and insulin concentrations in healthy women twins. Diabetes Care, 1993, 16(11), 1459-1469.
[http://dx.doi.org/10.2337/diacare.16.11.1459] [PMID: 8299435]
[10]
Lee, J.H.; Kim, J.Y.; Kim, Y.W.; Park, S.Y.; Youn, W.K.; Jang, E.C.; Park, D.I.; Kim, S.J.; Kim, E.J.; Lee, S.K. Combined trial of fish oil and exercise training prevents impairment in insulin action on glucose transport of skeletal muscle induced by high-fat diet in rats. Korean J. Physiol. Pharmacol., 2000, 4, 91-97.
[11]
Schwartz, C.J.; Valente, A.J.; Sprague, E.A.; Kelley, J.L.; Cayatte, A.J.; Rozek, M.M. Pathogenesis of the atherosclerotic lesion: Implications for diabetes mellitus. Diabetes Care, 1992, 15(9), 1156-1167.
[http://dx.doi.org/10.2337/diacare.15.9.1156] [PMID: 1396013]
[12]
Stem, M.R. Does glycaemic control of type 2 diabetes suffice to control diabetic dyslipidaemia? Diabetes Care, 1992, 15, 638-44.
[13]
Inzucchi, S.E. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA, 2002, 287(3), 360-372.
[http://dx.doi.org/10.1001/jama.287.3.360] [PMID: 11790216]
[14]
Kim, Y.Y.; Kang, H.J.; Ko, S.K.; Chung, S.H. Sopungsungi-won (SP) prevents the onset of hyperglycemia and hyperlipidemia in zucker diabetic fatty rats. Arch. Pharm. Res., 2002, 25(6), 923-931.
[http://dx.doi.org/10.1007/BF02977015] [PMID: 12510849]
[15]
Retelny, V.S.; Neuendorf, A.; Roth, J.L. Nutrition protocols for the prevention of cardiovascular disease. Nutr. Clin. Pract., 2008, 23(5), 468-476.
[http://dx.doi.org/10.1177/0884533608323425] [PMID: 18849551]
[16]
Civolani, C.; Barghini, P.; Roncetti, A.R.; Ruzzi, M.; Schiesser, A. Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl. Environ. Microbiol., 2000, 66(6), 2311-2317.
[http://dx.doi.org/10.1128/AEM.66.6.2311-2317.2000] [PMID: 10831404]
[17]
Delaquis, P.; Stanich, K.; Toivonen, P. Effect of pH on the inhibition of Listeria spp. by vanillin and vanillic acid. J. Food Prot., 2005, 68(7), 1472-1476.
[http://dx.doi.org/10.4315/0362-028X-68.7.1472] [PMID: 16013390]
[18]
Varma, R.S.; Shukla, A.; Chatterjee, R.K. Evaluation of vanillic acid analogues as a new class of antifilarial agents. Indian J. Exp. Biol., 1993, 31(10), 819-821.
[PMID: 8276433]
[19]
Singh, M.; Tiwari, V.; Jain, A.; Ghoshal, S. Protective activity of picroliv on hepatic amoebiasis associated with carbon tetrachloride toxicity. Indian J. Med. Res., 2005, 121(5), 676-682.
[PMID: 15937372]
[20]
Li, K.; Chen, X.; Jia, Y.; Bi, K. Reverse-phase HPLC determination and pharmacokinetic study of vanillic acid in the plasma of rats treated with the traditional Chinese medicinal preparation Di-Gu-Pi decoction. Yakugaku Zasshi, 2004, 124(7), 465-468.
[http://dx.doi.org/10.1248/yakushi.124.465] [PMID: 15235230]
[21]
Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem., 1974, 20(4), 470-475.
[http://dx.doi.org/10.1093/clinchem/20.4.470] [PMID: 4818200]
[22]
McGowan, M.W.; Artiss, J.D.; Strandbergh, D.R.; Zak, B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin. Chem., 1983, 29(3), 538-542.
[http://dx.doi.org/10.1093/clinchem/29.3.538] [PMID: 6825269]
[23]
Falholt, K.; Lund, B.; Falholt, W. An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin. Chim. Acta, 1973, 46(2), 105-111.
[http://dx.doi.org/10.1016/0009-8981(73)90016-8] [PMID: 4745354]
[24]
Zilversmit, D.B.; Davis, A.K. Micro determination of phospholipids by TCA precipitation. J. Lab. Clin. Med., 1950, 35, 155-159.
[PMID: 15400638]
[25]
Wilson, D.E.; Spiger, M.J. A dual precipitation method for quantitative plasma lipoprotein measurement without ultracentrifugation. J. Lab. Clin. Med., 1973, 82(3), 473-482.
[PMID: 4353880]
[26]
Philipp, B.W.; Shapiro, D.J. Improved methods for the assay and activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Lipid Res., 1979, 20(5), 588-593.
[http://dx.doi.org/10.1016/S0022-2275(20)40580-2] [PMID: 158623]
[27]
Korn, E.D. Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J. Biol. Chem., 1955, 215(1), 1-14.
[http://dx.doi.org/10.1016/S0021-9258(18)66011-9] [PMID: 14392137]
[28]
Hitz, J.; Steinmetz, J.; Siest, G. Plasma lecithin:cholesterol acyltransferase - reference values and effects of xenobiotics. Clin. Chim. Acta, 1983, 133(1), 85-96.
[http://dx.doi.org/10.1016/0009-8981(83)90023-2] [PMID: 6627678]
[29]
Milligan, M. Trichrome stain for formalin-fixed tissue. Am. J. Clin. Pathol., 1946, 16(11_ts), 184-185.
[http://dx.doi.org/10.1093/ajcp/16.11_ts.184] [PMID: 20273801]
[30]
Junqueira, L.C.U.; Bignolas, G.; Brentani, R.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J., 1979, 11(4), 447-455.
[http://dx.doi.org/10.1007/BF01002772] [PMID: 91593]
[31]
Aguila, M.B.; Mandarim-de-Lacerda, C.A. Heart and blood pressure adaptations in Wistar rats fed with different high-fat diets for 18 months. Nutrition, 2003, 19(4), 347-352.
[http://dx.doi.org/10.1016/S0899-9007(02)00934-6] [PMID: 12679170]
[32]
Neves, R.H.; Barros Alencar, A.C.M.; Aguila, M.B.; Mandarim-de-Lacerda, C.A.; Machado-Silva, J.R.; Gomes, D.C. Somatic, biochemical and hepatic alterations in wild type mice chronically fed high fat diet. Int. J. Morphol., 2006, 24(4), 625-632.
[http://dx.doi.org/10.4067/S0717-95022006000500018]
[33]
Sangeeta, D.; Sidhu, H.; Thind, S.K.; Nath, R.; Vaidyanathan, S. Therapeutic response of T. terrestris aqueous extract on hyperodaluria in male adults rats. Phytother. Res., 1993, 7(2), 116-119.
[http://dx.doi.org/10.1002/ptr.2650070204]
[34]
Pushparaj, P.; Tan, C.H.; Tan, B.K.H. Effects of Averrhoa bilimbi leaf extract on blood glucose and lipids in streptozotocin-diabetic rats. J. Ethnopharmacol., 2000, 72(1-2), 69-76.
[http://dx.doi.org/10.1016/S0378-8741(00)00200-2] [PMID: 10967456]
[35]
Aparna Berteri, R. Risk of coronary artery heart disease. Health Screen, 2003, 1, 28-29.
[36]
Vessby, B. Dietary fat and insulin action in humans. Br. J. Nutr., 2000, 83(S1)(Suppl. 1), S91-S96.
[http://dx.doi.org/10.1017/S000711450000101X] [PMID: 10889798]
[37]
Maruthappan, V.; Shree, K.S. Effects of Phyllanthus reticulatus on lipid profile and oxidative stress in hypercholesterolemic albino rats. Indian J. Pharmacol., 2010, 42(6), 388-391.
[38]
Faas, F.H.; Carter, W.J. Altered fatty acid desaturation and microsomal fatty acid composition in the streptozotocin diabetic rat. Lipids, 1980, 15(11), 953-961.
[http://dx.doi.org/10.1007/BF02534421]
[39]
Holman, R.T.; Johnson, S.B.; Gerrard, J.M.; Mauer, S.M.; Kupcho-Sandberg, S.; Brown, D.M. Arachidonic acid deficiency in streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA, 1983, 80(8), 2375-2379.
[http://dx.doi.org/10.1073/pnas.80.8.2375] [PMID: 6220410]
[40]
Dang, A.Q.; Faas, F.H.; Lee, J.A.; Carter, W.J. Altered fatty acid composition in the plasma, platelets, and aorta of the streptozotocin-induced diabetic rat. Metabolism, 1988, 37(11), 1065-1072.
[http://dx.doi.org/10.1016/0026-0495(88)90069-8] [PMID: 3185290]
[41]
Adaramoye, O.A.; Akintayo, O.; Achem, J.; Fafunso, M.A. Lipid-lowering effects of methanolic extract of Vernonia amygdalina leaves in rats fed on high cholesterol diet. Vasc. Health Risk Manag., 2008, 4(1), 235-241.
[http://dx.doi.org/10.2147/vhrm.2008.04.01.235] [PMID: 18629374]
[42]
Howard, B.V. Lipoprotein metabolism in diabetes mellitus. J. Lipid Res., 1987, 28(6), 613-628.
[http://dx.doi.org/10.1016/S0022-2275(20)38659-4] [PMID: 3302085]
[43]
Antonelli-Incalzi, R.; Pedone, C.; McDermott, M.M.; Bandinelli, S.; Miniati, B.; Lova, R.M.; Lauretani, F.; Ferrucci, L. Association between nutrient intake and peripheral artery disease: Results from the inchianti study. Atherosclerosis, 2006, 186(1), 200-206.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.07.016] [PMID: 16112120]
[44]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[45]
Enerbäck, S.; Gimble, J.M. Lipoprotein lipase gene expression: Physiological regulators at the transcriptional and post-transcriptional level. Biochim. Biophys. Acta Lipids Lipid Metab., 1993, 1169(2), 107-125.
[http://dx.doi.org/10.1016/0005-2760(93)90196-G] [PMID: 8343535]
[46]
Menaka, T.; Ravirajsinh, J. Dysregulation of lipid and cholesterol metabolism in high fat diet fed hyperlipidemic rats: Protective effect of Sida rhomboidea. roxb leaf extract. J. Health Sci., 2009, 55(3), 413-420.
[47]
Vasu, V.T.; Modi, H. Hypolipidaaemic and antioxidant effect of Enicostemma littorale Blume aqueous extract in cholesterol fed rats. J. Ethanopharmacol., 2005, 101, 277-282.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy