Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

The Role of Medicinal Plants in the Treatment and Management of Type 2 Diabetes

Author(s): Tirna Paul*, Kalyani Pathak, Riya Saikia, Urvashee Gogoi, Jon Jyoti Sahariah and Aparoop Das

Volume 10, Issue 2, 2024

Published on: 05 May, 2023

Article ID: e230223213992 Pages: 14

DOI: 10.2174/2215083809666230223164613

Price: $65

Abstract

Diabetes is a severe metabolic disorder characterized by hyperglycemia. Hyperglycemia is a hallmark of diabetes, a life-threatening metabolic condition. There are a variety of oral hypoglycemic drugs in the market for the treatment of diabetes mellitus, including biguanides, sulphonylurea, and alpha-glucosidase inhibitors. On the other hand, these conventional methods of treating diabetes are costly and associated with a variety of long-term issues, whereas medicinal herbs used to treat diabetes are inexpensive and have no harmful consequences or side effects. Because of the existence of different therapeutically relevant active phytochemicals such as tannins, flavonoids, alkaloids, and other compounds in medicinal plants, they can be used in treating diabetes. Various medicinal plants used to treat diabetes mellitus and their bioactive components are discussed in this review article. In this review, the prospects of these medicinal plants, as well as the challenges associated with their use, are discussed.

[1]
Chandra A, Mahdi AA, Ahmad S, Singh RK. Indian herbs result in hypoglycemic responses in streptozotocin-induced diabetic rats. Nutr Res 2007; 27(3): 161-8.
[http://dx.doi.org/10.1016/j.nutres.2006.12.008]
[2]
Wang HJ, Chiang BH. Anti-diabetic effect of a traditional Chinese medicine formula. Food Funct 2012; 3(11): 1161-9.
[http://dx.doi.org/10.1039/c2fo30139c] [PMID: 22899105]
[3]
Zhang J. Progress of diabetes research in traditional Chinese medicine in recent years. J Chin Integr Med 2007; 5(4): 373-7.
[http://dx.doi.org/10.3736/jcim20070403] [PMID: 17631798]
[4]
Li Z, Qian YC, Gao F, Qian H, Wang XJ. Research progress of diabetes treatment by traditional Chinese Medicine. Chin J Pharm Biotechnol 2015; 22(112): 373-6.
[5]
Kar A, Choudhary BK, Bandyopadhyay NG. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol 2003; 84(1): 105-8.
[http://dx.doi.org/10.1016/S0378-8741(02)00144-7] [PMID: 12499084]
[6]
Gopukumar ST, Praseetha PK. Ficusbenghalensislinn-the sacred Indian medicinal tree with potent pharmacological remedies. Int J Pharm Sci Rev Res 2015; 32: 223-7.
[7]
Soumya D, Srilatha B. Late stage complications of diabetes and insulin resistance. J Diabetes Metab 2011; 2: 9.
[8]
Arumugam G, Manjula P, Paari N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis 2013; 2(3): 196-200.
[http://dx.doi.org/10.1016/S2221-6189(13)60126-2]
[9]
Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud 2012; 9(1): 6-22.
[http://dx.doi.org/10.1900/RDS.2012.9.6] [PMID: 22972441]
[10]
Buowari O. Diabetes mellitus in developing countries and case series. In: Diabetes mellitus-insights and perspectives. Rijeka,Croatia: InTechOpen 2013.
[11]
Folorunso O, Oguntibeju O. The role of nutrition in the management of diabetes mellitus. In: Diabetes mellitus-insights and perspectives Rijeka, Croatia: In TechOpen . 2013.
[12]
Salsali A, Nathan M. A review of types 1 and 2 diabetes mellitus and their treatment with insulin. Am J Ther 2006; 13(4): 349-61.
[http://dx.doi.org/10.1097/00045391-200607000-00012] [PMID: 16858171]
[13]
Sperling M, Tamborlane M, Batteling T, Weinzimer S, Phillip M. Pediatric endocrinology. In: Diabetes mellitus. (4th ed.), Amsterdam, The Netherlands: Elsevier 2014.
[14]
Thakur G, Pal K, Mitra A, Mukherjee S, Basak A, Rousseau D. Some common antidiabetic plants of the Indian subcontinent. Food Rev Int 2010; 26(4): 364-85.
[http://dx.doi.org/10.1080/87559129.2010.496024]
[15]
Ye XP, Song CQ, Yuan P, Mao RG. α-glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese Medicine used for diabetes mellitus. Chin J Nat Med 2011; 8(5): 349-52.
[http://dx.doi.org/10.3724/SP.J.1009.2010.00349]
[16]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[17]
Sarah W, Gojka R, Anders G, Richard S, Hilary K. Global prevalence of diabetes: Estimates for the year 2000 and projection for 2030. Diabetes Care 2004; 27(5): 1047e1053.
[http://dx.doi.org/ 10.2337/diacare.27.5.1047]
[18]
Li W, Yuan G, Pan Y, Wang C, Chen H. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front Pharmacol 2017; 8: 74.
[http://dx.doi.org/10.3389/fphar.2017.00074] [PMID: 28280467]
[19]
Mamun-or-Rashid A Hossain MS, Naim HB, Kumar DM, Sapon A, Sen MK. A review on medicinal plants with antidiabetic activity. J Pharmacogn Phytochem 2014; 3(4): 149-59.
[20]
Gupta PD, De A. Diabetes Mellitus and its herbal treatment. Int J Res Pharm Biomed Sci 2012; 3(2): 706-21.
[21]
Hegazy GA, Alnoury AM, Gad HG. The role of Acacia Arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 2013; 34(7): 727-33.
[PMID: 23860893]
[22]
Das A, Saikia R, Pathak K, Gogoi U, Pathak MPP. Anti-diabetic nano-formulation from herbal source. Springer Nature 2020.
[http://dx.doi.org/10.1007/978-981-15-6255-6_4]
[23]
Chakravarty S, Kalita CJ. An investigation on antidiabetic medicinal plants used by villagers in Nalbari district, Assam, India. IJPSR 2012; 3(6): 1693-7.
[24]
Das T, Mishra SB, Saha D, Agarwal S. Ethnobotanical survey of medicinal plants used by ethnic and rural people in Eastern Sikkim Himalayan region. Asian J Basic Appl Sci 2012; 4(1): 16-20.
[25]
Kavishankar GB, Lakshmidevi N, Prakash HS. Diabetes and medicinal plants-A review. Int J Pharma Bio Sci 2011; 2(3): 65-80.
[26]
Khan H, Yadava PS. Antidiabetic plants used in Thoubal district of Manipur, Northeast India. Indian J Tradit Knowl 2010; 9(3): 510-4.
[27]
Sudhir K. Medicinal plants of North East India Jodhpur. India: Scientific Publishers 2002; pp. 29-198.
[28]
Mondal P, Bhuyan N, Das S, Kumar M, Borah S, Mohato K. Herbal medicines useful for the treatment of diabetes in North-East India: A review. IJPBS 2013; 3(1): 575-89.
[29]
Sarmah PC. Ethno antidiabetic plants of Assam. Int J Appl Biol Pharm Technol 2011; 2(4): 246-51.
[30]
Das Pathak KA, Shakya A, Saikia R, Sarma H. Evaluation of anti-diabetic and anti-hyperlipidemic activity of isolated bioactive compounds of leaves of Annonareticulata Linn. Nat Prod J 2021; 11(3): 414-21.
[http://dx.doi.org/10.2174/2210315510999200511132940]
[31]
Zhu J, Wang C, Xu Y. Lycopene attenuates endothelial dysfunction in streptozotocin-induced diabetic rats by reducing oxidative stress. Pharm Biol 2011; 49(11): 1144-9.
[http://dx.doi.org/10.3109/13880209.2011.574707] [PMID: 21517710]
[32]
Li W, Wang G, Lu X, Jiang Y, Xu L, Zhao X. Lycopene ameliorates renal function in rats with streptozotocin-induced diabetes. Int J Clin Exp Pathol 2014; 7(8): 5008-15.
[PMID: 25197372]
[33]
Ali MM, Agha FG. Amelioration of streptozotocin‐induced diabetes mellitus, oxidative stress and dyslipidemia in rats by tomato extract lycopene. Scand J Clin Lab Invest 2009; 69(3): 371-9.
[http://dx.doi.org/10.1080/00365510802658473] [PMID: 19148834]
[34]
Kuhad A, Sethi R, Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci 2008; 83(3-4): 128-34.
[http://dx.doi.org/10.1016/j.lfs.2008.05.013] [PMID: 18585396]
[35]
Lombardo MF, Iacopino P, Cuzzola M, et al. Type 2 diabetes mellitus impairs the maturation of endothelial progenitor cells and increases the number of circulating endothelial cells in peripheral blood. Cytometry A 2012; 81A(10): 856-64.
[http://dx.doi.org/10.1002/cyto.a.22109] [PMID: 22930579]
[36]
Awuchi CG. Medicinal plants, bioactive compounds, and dietary therapies for treating type 1 and type 2 diabetes mellitus. Natural Drugs from Plants Intech open 2022.http://dxdoi.org/10.5772/intechopen.96470
[37]
Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E β-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 2011; 286(8): 6049-60.
[http://dx.doi.org/10.1074/jbc.M110.176842] [PMID: 21163946]
[38]
Granzotto A, Zatta P. Resveratrol and Alzheimer’s disease: message in a bottle on red wine and cognition. Front Aging Neurosci 2014; 6: 95.
[http://dx.doi.org/10.3389/fnagi.2014.00095] [PMID: 24860502]
[39]
Kitada M, Koya D. SIRT1 in type 2 diabetes: mechanisms and therapeutic potential. Diabetes Metab J 2013; 37(5): 315-25.
[http://dx.doi.org/10.4093/dmj.2013.37.5.315] [PMID: 24199159]
[40]
Cao MM, Lu X, Liu GD, Su Y, Li YB, Zhou J. Resveratrol attenuates type 2 diabetes mellitus by mediating mitochondrial biogenesis and lipid metabolism via Sirtuin type 1. Exp Ther Med 2018; 15(1): 576-84.
[PMID: 29387206]
[41]
Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies Biochimicaet Biophysica Acta (BBA –Molecular Basis of Disease) 2015; 1852(6): 1145-54.
[42]
Han MK. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic β-cell damage. Exp Mol Med 2003; 35(2): 136-9.
[http://dx.doi.org/10.1038/emm.2003.19] [PMID: 12754418]
[43]
Suh KS, Chon S, Oh S, et al. Prooxidative effects of green tea polyphenol (−)-epigallocatethin-3-gallate on the HIT-T15 pancreatic beta cell line. Cell Biol Toxicol 2010; 26(3): 189-99.
[http://dx.doi.org/10.1007/s10565-009-9137-7] [PMID: 19757103]
[44]
Peng J, Li Q, Li K, et al. Quercetin improves glucose and lipid metabolism of diabetic rats: involvement of Akt signaling and SIRT1. J Diabe Res 2017. Article ID: 3418306.
[http://dx.doi.org/10.1155/2017/3417306]
[45]
Ergul A. Endothelin-1 and diabetic complications: Focus on the vasculature. Pharmacol Res 2011; 63(6): 477-82.
[http://dx.doi.org/10.1016/j.phrs.2011.01.012] [PMID: 21292003]
[46]
Youl E, Bardy G, Magous R, et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol 2010; 161(4): 799-814.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00910.x] [PMID: 20860660]
[47]
Haddad PS, Eid HM, Nachar A, Thong F, Sweeney G. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag 2015; 11(41): 74-81.
[http://dx.doi.org/10.4103/0973-1296.149708] [PMID: 25709214]
[48]
Oh YS, Jun HS. Role of bioactive food components in diabetes prevention: effects on Beta-cell function and preservation. Nutr Metab Insights 2014; 7 NMI.S13589
[http://dx.doi.org/10.4137/NMI.S13589] [PMID: 25092987]
[49]
Fu Z, Zhang W, Zhen W, et al. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology 2010; 151(7): 3026-37.
[http://dx.doi.org/10.1210/en.2009-1294] [PMID: 20484465]
[50]
Tarabra E, Pelengaris S, Khan M. A simple matter of life and death-the trials of postnatal beta-cell mass regulation. Inter J Endocrinol 2012. Article ID: 516718
[http://dx.doi.org/10.1155/2012/516718]
[51]
Ae Park S, Choi MS, Cho SY, et al. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci 2006; 79(12): 1207-13.
[http://dx.doi.org/10.1016/j.lfs.2006.03.022] [PMID: 16647724]
[52]
Dkhar B, Khongsti K, Thabah D, Syiem D, Satyamoorthy K, Das B. Genistein represses PEPCK‐C expression in an insulin‐independent manner in HepG2 cells and in alloxan‐induced diabetic mice. J Cell Biochem 2018; 119(2): 1953-70.
[http://dx.doi.org/10.1002/jcb.26356] [PMID: 28816409]
[53]
Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications 2012; 26(6): 483-90.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.06.001] [PMID: 22809898]
[54]
Zhang Y, Wang B, Guo F, Li Z, Qin G. Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy. Biomed Pharmacother 2018; 105: 766-72.
[http://dx.doi.org/10.1016/j.biopha.2018.06.036] [PMID: 29909344]
[55]
Mahmoud AM, Ahmed OM, Ashour MB, Abdel-Moneim A. In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action. Int J Diabetes Dev Ctries 2015; 35(3): 250-63.
[http://dx.doi.org/10.1007/s13410-014-0268-x]
[56]
Shi X, Liao S, Mi H, et al. Hesperidin prevents retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Molecules 2012; 17(11): 12868-81.
[http://dx.doi.org/10.3390/molecules171112868] [PMID: 23117428]
[57]
Ahmed OM, Hassan MA, Abdel-Twab SM, Abdel AMN. Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats. Biomed Pharmacother 2017; 94: 197-205.
[http://dx.doi.org/10.1016/j.biopha.2017.07.094] [PMID: 28759757]
[58]
Kumar SA, Bharti S, Ojha S, et al. Up-regulation of PPARγ heat shock protein-27 and -72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr 2011; 106(11): 1713-23.
[http://dx.doi.org/10.1017/S000711451100225X] [PMID: 21736771]
[59]
Chen F, Wei G, Xu J, Ma X, Wang Q. Naringin ameliorates the high glucose-induced rat mesangial cell inflammatory reaction by modulating the NLRP3 Inflammasome. BMC Complement Altern Med 2018; 18(1): 192.
[http://dx.doi.org/10.1186/s12906-018-2257-y] [PMID: 29929501]
[60]
Li G, Xu Y, Sheng X, et al. Naringin protects against high glucose-induced human endothelial cell injury via antioxidation and CX3CL1 downregulation. Cell Physiol Biochem 2017; 42(6): 2540-51.
[http://dx.doi.org/10.1159/000480215] [PMID: 28848146]
[61]
Mahmoud AM. Hematological alterations in diabetic rats-role of adipocytokines and effect of citrus flavonoids. EXCLI J 2013; 12: 647-57.
[PMID: 26966427]
[62]
Qi Z, Xu Y, Liang Z, et al. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model. Mol Med Rep 2015; 12(5): 7093-101.
[http://dx.doi.org/10.3892/mmr.2015.4232] [PMID: 26300349]
[63]
Sancho RAS, Pastore GM. Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res Int 2012; 46(1): 378-86.
[http://dx.doi.org/10.1016/j.foodres.2011.11.021]
[64]
Luna-Vital DA, Gonzalez de Mejia E. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 2018; 13(7): e0200449.
[http://dx.doi.org/10.1371/journal.pone.0200449] [PMID: 29995924]
[65]
Zhang B, Buya M, Qin W, et al. Anthocyanins from Chinese bayberry extract activate transcription factor Nrf2 in β cells and negatively regulate oxidative stress-induced autophagy. J Agric Food Chem 2013; 61(37): 8765-72.
[http://dx.doi.org/10.1021/jf4012399] [PMID: 23930663]
[66]
Yan F, Dai G, Zheng X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem 2016; 36: 68-80.
[http://dx.doi.org/10.1016/j.jnutbio.2016.07.004] [PMID: 27580020]
[67]
Zhang B, Kang M, Xie Q, et al. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. J Agric Food Chem 2011; 59(2): 537-45.
[http://dx.doi.org/10.1021/jf1035405] [PMID: 21166417]
[68]
Lin J, Tang Y, Kang Q, Chen A. Curcumin eliminates the inhibitory effect of advanced glycation end-products (AGEs) on gene expression of AGE receptor-1 in hepatic stellate cells in vitro. Lab Invest 2012; 92(6): 827-41.
[http://dx.doi.org/10.1038/labinvest.2012.53] [PMID: 22449800]
[69]
Lin J, Tang Y, Kang Q, Feng Y, Chen A. Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br J Pharmacol 2012; 166(8): 2212-27.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01910.x] [PMID: 22352842]
[70]
Su L, Wang Y, Chi H. Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-α in serum of type 2 diabetes mellitus rat models. Saudi J Biol Sci 2017; 24(8): 1776-80.
[http://dx.doi.org/10.1016/j.sjbs.2017.11.011] [PMID: 29551922]
[71]
Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 2017; 96: 305-12.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[72]
Ahmed OM, Moneim AA, Yazid IA, Mahmoud AM. Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Rutagraveo- lens infusion and rutin in nicotinamide-streptozotocin induced diabetic rats. Diabetol Croat 2010; 39(1): 15-35.
[73]
Choudhury H, Pandey M, Hua CK, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med 2018; 8(3): 361-76.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012] [PMID: 29992107]
[74]
Barner JC, Bohman TM, Brown CM, Richards KM. The use of complementary and alternative medicine by the American public. Phys Educ Sport Child Youth with Spec Needs Res – Best Pract – Situat 2005; pp. 343-54.
[75]
Braun LA, Tiralongo E, Wilkinson JM, et al. Perceptions, use and attitudes of pharmacy customers on complementary medicines and pharmacy practice. BMC Complement Altern Med 2010; 10(1): 38.
[http://dx.doi.org/10.1186/1472-6882-10-38] [PMID: 20646290]
[76]
Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[77]
Raynor DK, Dickinson R, Knapp P, Long AF, Nicolson DJ. Buyer beware? Does the information provided with herbal products available over the counter enable safe use? BMC Med 2011; 9(1): 94.
[http://dx.doi.org/10.1186/1741-7015-9-94] [PMID: 21827684]
[78]
Kaur R, Afzal M, Kazmi I, et al. Polypharmacy (herbal and synthetic drug combination): A novel approach in the treatment of type-2 diabetes and its complications in rats. J Nat Med 2013; 67(3): 662-71.
[http://dx.doi.org/10.1007/s11418-012-0720-5] [PMID: 23151907]
[79]
Chourey S, Narsinghani T, Soni LK. Effect of Allium sativum on the pharmacokinetic of Metformin in rat plasma: A herb-drug interaction study. Der Pharma Chem 2011; 3(2): 287-91.
[80]
Gupta RC, Chang D, Nammi S, Bensoussan A, Bilinski K, Roufogalis BD. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr 2017; 9(1): 59.
[http://dx.doi.org/10.1186/s13098-017-0254-9] [PMID: 28770011]
[81]
Lin Y, Sun Z. Current views on type 2 diabetes. J Endocrinol 2010; 204(1): 1-11.
[http://dx.doi.org/10.1677/JOE-09-0260] [PMID: 19770178]
[82]
Tian X, Liu L. Drug discovery enters a new era with multi-target intervention strategy. Chin J Integr Med 2012; 18(7): 539-42.
[http://dx.doi.org/10.1007/s11655-011-0900-2] [PMID: 22528756]
[83]
Chang CL, Lin Y, Bartolome AP, Chen YC, Chiu SC. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. Evidence Based Complement Alternat Med 2013; 2013: 378657.
[84]
Firenzuoli F, Gori L. Herbal medicine today: Clinical and research issues. Evid Based Complement Alternat Med 2007; 4(s1): 37-40.
[http://dx.doi.org/10.1093/ecam/nem096] [PMID: 18227931]
[85]
Kim S, Kim B, Mun S, et al. Development of a template for the classification of traditional medical knowledge in Korea. J Ethnopharmacol 2016; 178: 82-103.
[http://dx.doi.org/10.1016/j.jep.2015.11.045] [PMID: 26657579]
[86]
Yao L, Zhang Y, Wei B, Li Z, Huang X. Traditional Chinese medicine clinical records classification using knowledge-powered document embedding. Proc - 2016 IEEE Int Conf Bioinforma Biomed BIBM . 2016: 1926-8.
[87]
Dans AML, Villarruz MVC, Jimeno CA, et al. The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. J Clin Epidemiol 2007; 60(6): 554-9.
[http://dx.doi.org/10.1016/j.jclinepi.2006.07.009] [PMID: 17493509]
[88]
Chikara G, Sharma PK, Dwivedi P, Charan J, Ambwani S, Singh S. A narrative review of potential future antidiabetic drugs: Should we expect more? Indian J Clin Biochem 2018; 33(2): 121-31.
[http://dx.doi.org/10.1007/s12291-017-0668-z] [PMID: 29651202]
[89]
Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X] [PMID: 23569923]
[90]
Pandey R, Pandey R, Shukla SS. Toxicity profile of traditional herbal medicine Anti-inflammatory potential of ethanol extract of Rubus ulmifolius (Schott). View project formulation and evaluation of curcumin loaded liposome and its bio-enhancement view project toxicity profile of traditional herbal medicine. J Ayurvedic Herb Med 2015; 1(3): 81-90.
[91]
Ahmad S, Parveen A, Parveen B, Parveen R. Challenges and guidelines for clinical trial of herbal drugs. J Pharm Bioallied Sci 2015; 7(4): 329-33.
[http://dx.doi.org/10.4103/0975-7406.168035] [PMID: 26681895]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy