Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Organocatalyzed Stereoselective Glycosylation: An Overview of the Last Decade

Author(s): Mildred López, Cecilia Anaya de Parrodi*, Gabriela Huelgas and José Daniel Lozada-Ramírez

Volume 21, Issue 3, 2024

Published on: 28 April, 2023

Page: [318 - 345] Pages: 28

DOI: 10.2174/1570193X20666230223144523

Price: $65

Abstract

Even though there has been an important evolution in the synthesis of oligosaccharides, the efficient and stereoselective study of glycosidic bonds through non-toxic, moderate, and inexpensive techniques is one of the most challenging fields in organic synthesis. Glycosyl reactions play a fundamental role in biological material and structure-activity relationships, having numerous medicinal chemistry applications. For this, interesting strategies have evolved over the years to control the stereoselectivity of glycosidic bonds, including the manipulation of different reaction elements, mainly promoters or catalysts, but also involving the nature of donors and solvents. This review looks at glycosylation methodologies in the last decade resulting in the specific formation of alpha or beta glycosidic bonds.

Graphical Abstract

[1]
Bohé, L.; Crich, D. Synthesis of glycosides. In: Comprehensive Organic Synthesis; Knochel, P., Ed.; Elsevier: Amsterdam, 2014.
[2]
Gouliaras, C.; Lee, D.; Chan, L.; Taylor, M.S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J. Am. Chem. Soc., 2011, 133(35), 13926-13929.
[http://dx.doi.org/10.1021/ja2062715] [PMID: 21838223]
[3]
Tomita, S.; Tanaka, M.; Inoue, M.; Inaba, K.; Takahashi, D.; Toshima, K. Diboron-catalyzed regio- and 1,2- cis -α-stereoselective glycosylation of trans -1,2-diols. J. Org. Chem., 2020, 85(24), 16254-16262.
[http://dx.doi.org/10.1021/acs.joc.0c02093] [PMID: 33052679]
[4]
Demchenko, A. General aspects of the glycosidic bond formation. In: Handbook of Chemical Glycosylation; Advances in Stereoselectivity and Therapeutic Relevance, 2008; pp. 1-27.
[http://dx.doi.org/10.1002/9783527621644.ch1]
[5]
Shaw, M.; Kumar, Y.; Thakur, R.; Kumar, A. Electron-deficient pyridinium salts/thiourea cooperative catalyzed O -glycosylation via activation of O -glycosyl trichloroacetimidate donors. Beilstein J. Org. Chem., 2017, 13, 2385-2395.
[http://dx.doi.org/10.3762/bjoc.13.236] [PMID: 29181119]
[6]
Ling, J.; Bennett, C.S. Recent developments in stereoselective chemical glycosylation. Asian J. Org. Chem., 2019, 8(6), 802-813.
[http://dx.doi.org/10.1002/ajoc.201900102] [PMID: 31534883]
[7]
Yu, B. Gold(I)-catalyzed glycosylation with glycosyl o -alkynylbenzoates as donors. Acc. Chem. Res., 2018, 51(2), 507-516.
[http://dx.doi.org/10.1021/acs.accounts.7b00573] [PMID: 29297680]
[8]
Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Stereocontrolled photoinduced glycosylation using an aryl thiourea as an organo photoacid. Org. Lett., 2016, 18(13), 3190-3193.
[http://dx.doi.org/10.1021/acs.orglett.6b01404] [PMID: 27337411]
[9]
Nigudkar, S.S.; Parameswar, A.R.; Pornsuriyasak, P.; Stine, K.J.; Demchenko, A.V. O-Benzoxazolyl imidates as versatile glycosyl donors for chemical glycosylation. Org. Biomol. Chem., 2013, 11(24), 4068-4076.
[http://dx.doi.org/10.1039/c3ob40667a] [PMID: 23674052]
[10]
Tanaka, M.; Nashida, J.; Takahashi, D.; Toshima, K. Glycosyl-acceptor-derived borinic ester-promoted direct and β-stereoselective mannosylation with a 1,2-anhydromannose donor. Org. Lett., 2016, 18(9), 2288-2291.
[http://dx.doi.org/10.1021/acs.orglett.6b00926] [PMID: 27093366]
[11]
Dimitrijević E.; Taylor, M.S. Organoboron acids and their derivatives as catalysts for organic synthesis. ACS Catal., 2013, 3(5), 945-962.
[http://dx.doi.org/10.1021/cs4000848]
[12]
Morelli, L.; Legnani, L.; Ronchi, S.; Confalonieri, L.; Imperio, D.; Toma, L.; Compostella, F. 2,3-Carbamate mannosamine glycosyl donors in glycosylation reactions of diacetone-d-glucose. An experimental and theoretical study. Carbohydr. Res., 2021, 509, 108421.
[http://dx.doi.org/10.1016/j.carres.2021.108421] [PMID: 34450528]
[13]
Michael, A.; Norton, L. On the action of iodine monochloride upon aromatic amines. J. Am. Chem. Soc., 1879, 1(11), 484-485.
[http://dx.doi.org/10.1021/ja02151a603]
[14]
Fischer, E. On the glucosides of alcohols. Ber. Dtsch. Chem. Ges., 1893, 26(3), 2400-2412.
[http://dx.doi.org/10.1002/cber.18930260327]
[15]
Koenigs, W.; Knorr, E. On some derivatives of glucose and galactose. Ber. Dtsch. Chem. Ges., 1901, 34(1), 957-981.
[http://dx.doi.org/10.1002/cber.190103401162]
[16]
Davis, B.G. Recent developments in oligosaccharide synthesis. J. Chem. Soc., Perkin Trans. 1, 2000, (14), 2137-2160.
[http://dx.doi.org/10.1039/a809774g]
[17]
Schmelzer, U.; Zhang, Z.; Schmidt, R.R. Dichloro‐cyanoacetimidates as glycosyl donors. J. Carbohydr. Chem., 2007, 26(4), 223-238.
[http://dx.doi.org/10.1080/07328300701410650]
[18]
Williams, R.; Galan, M.C. Recent advances in organocatalytic glycosylations. Eur. J. Org. Chem., 2017, 2017(42), 6247-6264.
[http://dx.doi.org/10.1002/ejoc.201700785]
[19]
Zhu, X.; Schmidt, R.R. New principles for glycoside-bond formation. Angew. Chem. Int. Ed., 2009, 48(11), 1900-1934.
[http://dx.doi.org/10.1002/anie.200802036] [PMID: 19173361]
[20]
El-Badry, M.H.; Gervay-Hague, J. Thermal effect in β-selective glycosylation reactions using glycosyl iodides. Tetrahedron Lett., 2005, 46(39), 6727-6728.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.129]
[21]
Lam, S.N.; Gervay-Hague, J. Solution- and solid-phase oligosaccharide synthesis using glucosyl iodides: A comparative study. Carbohydr. Res., 2002, 337(21-23), 1953-1965.
[http://dx.doi.org/10.1016/S0008-6215(02)00227-6] [PMID: 12433461]
[22]
Dabideen, D.R.; Gervay-Hague, J. Unique reactions of glycosyl iodides with oxa- and thiocycloalkane acceptors. Org. Lett., 2004, 6(6), 973-975.
[http://dx.doi.org/10.1021/ol049966w] [PMID: 15012078]
[23]
Lam, S.N.; Gervay-Hague, J. Efficient route to 2-deoxy β-O-aryl-d-glycosides via direct displacement of glycosyl iodides. Org. Lett., 2003, 5(22), 4219-4222.
[http://dx.doi.org/10.1021/ol035705v] [PMID: 14572289]
[24]
Du, W.; Gervay-Hague, J. Efficient synthesis of α-galactosyl ceramide analogues using glycosyl iodide donors. Org. Lett., 2005, 7(10), 2063-2065.
[http://dx.doi.org/10.1021/ol050659f] [PMID: 15876055]
[25]
Pleuss, N.; Kunz, H. N-glycosyl amides: Removal of the anomeric protecting group and conversion into glycosyl donors. Angew. Chem. Int. Ed., 2003, 42(27), 3174-3176.
[http://dx.doi.org/10.1002/anie.200351351] [PMID: 12866110]
[26]
Bickley, J.; Cottrell, J.A.; Ferguson, J.R.; Field, R.A.; Harding, J.R.; Hughes, D.L.; Ravindanathan Kartha, K.P.; Law, J.L.; Scheinmann, F.; Stachulski, A.V. Preparation, X-ray structure and reactivity of a stable glycosyl iodide. Chem. Commun., 2003, (11), 1266-1267.
[http://dx.doi.org/10.1039/b302629a] [PMID: 12809223]
[27]
Harding, J.R.; King, C.D.; Perrie, J.A.; Sinnott, D.; Stachulski, A.V. Glucuronidation of steroidal alcohols using iodosugar and imidate donors. Org. Biomol. Chem., 2005, 3(8), 1501-1507.
[http://dx.doi.org/10.1039/b412217h] [PMID: 15827648]
[28]
Codée, J.D.C.; Litjens, R.E.J.N.; van den Bos, L.J.; Overkleeft, H.S.; van der Marel, G.A. Thioglycosides in sequential glycosylation strategies. Chem. Soc. Rev., 2005, 34(9), 769-782.
[http://dx.doi.org/10.1039/b417138c] [PMID: 16100617]
[29]
Jona, H.; Takeuchi, K.; Saitoh, T.; Mukaiyama, T. Effective activation of ‘armed’ thioglycoside with a new combination of trityl tetrakis(pentafluorophenyl)borate [TrB(C6F5)4] and N-(Ethylthio)phthalimide (PhthNSEt). Chem. Lett., 2000, 29(10), 1178-1179.
[http://dx.doi.org/10.1246/cl.2000.1178]
[30]
Durón, S.G.; Polat, T.; Wong, C.H.N. -(phenylthio)-ε-caprolactam: A new promoter for the activation of thioglycosides. Org. Lett., 2004, 6(5), 839-841.
[http://dx.doi.org/10.1021/ol0400084] [PMID: 14986988]
[31]
Tatai, J.; Fügedi, P. A new, powerful glycosylation method: Activation of thioglycosides with dimethyl disulfide-triflic anhydride. Org. Lett., 2007, 9(22), 4647-4650.
[http://dx.doi.org/10.1021/ol702139u] [PMID: 17910468]
[32]
Codée, J.D.C.; van den Bos, L.J.; Litjens, R.E.J.N.; Overkleeft, H.S.; van Boeckel, C.A.A.; van Boom, J.H.; van der Marel, G.A. Chemoselective glycosylations using sulfonium triflate activator systems. Tetrahedron, 2004, 60(5), 1057-1064.
[http://dx.doi.org/10.1016/j.tet.2003.11.084]
[33]
Ye, X-S.; Wang, C.; Wang, H.; Huang, X.; Zhang, L-H. Benzenesulfinyl morpholine: A new promoter for one-pot oligosaccharide synthesis using thioglycosides by pre-activation strategy. Synlett, 2006, 2006(17), 2846-2850.
[http://dx.doi.org/10.1055/s-2006-950247]
[34]
Carthy, C.M.; Tacke, M.; Zhu, X. N-Trifluoromethylthiosaccharin/TMSOTf: A new mild promoter system for thioglycoside activation. Eur. J. Org. Chem., 2019, 2019(16), 2729-2734.
[http://dx.doi.org/10.1002/ejoc.201900265]
[35]
Zinner, H.; Peseke, K.; Benzazole, X.X. Reaction of benzoxazole thione salts with α‐acetobromoglucose. Chem. Ber., 1965, 98(11), 3515-3519.
[http://dx.doi.org/10.1002/cber.19650981111]
[36]
Nuhn, P.; Wagner, G. On glucosides from imidazol-, oxazol- and thiazolethiones-(2). 30. On the “glycosides from heterocyclic” compounds. Arch. Pharm. Ber. Dtsch. Pharm. Ges., 1968, 301(3), 186-200.
[http://dx.doi.org/10.1002/ardp.19683010304] [PMID: 5244199]
[37]
Demchenko, A.V.; Pornsuriyasak, P.; De Meo, C.; Malysheva, N.N. Potent, versatile, and stable: Thiazolyl thioglycosides as glycosyl donors. Angew. Chem. Int. Ed., 2004, 43(23), 3069-3072.
[http://dx.doi.org/10.1002/anie.200454047] [PMID: 15188484]
[38]
Scheffler, G.; Schmidt, R.R. Glycosylation reactions with a (4-Alkoxypentadienyl)oxy leaving group linking the glycosyl donor and the acceptor moiety. J. Org. Chem., 1999, 64(4), 1319-1325.
[http://dx.doi.org/10.1021/jo971778e]
[39]
Kim, K.S.; Kim, J.H.; Lee, Y.J.; Lee, Y.J.; Park, J. 2-(Hydroxycarbonyl)benzyl glycosides: A novel type of glycosyl donors for highly efficient β-mannopyranosylation and oligosaccharide synthesis by latent-active glycosylation. J. Am. Chem. Soc., 2001, 123(35), 8477-8481.
[http://dx.doi.org/10.1021/ja015842s] [PMID: 11525654]
[40]
Kim, K. Glycosylation with 2′-carboxybenzylglycosides as glycosyl donors: Scope and application tothe synthesis of a tetrasaccharide. Synlett, 2003, 34, 1311-1314.
[41]
Yamago, S.; Kokubo, K.; Murakami, H.; Mino, Y.; Hara, O.; Yoshida, J. Glycosylation with telluroglycosides. Stereoselective construction of α- and β-anomers. Tetrahedron Lett., 1998, 39(43), 7905-7908.
[http://dx.doi.org/10.1016/S0040-4039(98)01753-5]
[42]
Mukaiyama, T.; Miyazaki, K.; Uchiro, H. Highly stereoselective synthesis of 1,2-trans-glycosides using p-Chlorobenzylated Glycosyl carbonate as glycosyl donor. Chem. Lett., 1998, 27(7), 635-636.
[http://dx.doi.org/10.1246/cl.1998.635]
[43]
Yasukochi, T.; Fukase, K.; Kusumoto, S. 3-Nitro-2-pyridyl glycoside as donor for chemical glycosylation and its application to chemoenzymatic synthesis of oligosaccharide. Tetrahedron Lett., 1999, 40(36), 6591-6593.
[http://dx.doi.org/10.1016/S0040-4039(99)01280-0]
[44]
Herzner, H.; Eberling, J.; Schultz, M.; Zimmer, J.; Kunz, H. Oligosaccharide synthesis via electrophile-induced activation of glycosyl-n-allylcarbamates. J. Carbohydr. Chem., 1998, 17(4), 759-776.
[http://dx.doi.org/10.1080/07328309808002350]
[45]
Larsen, K.; Worm-Leonhard, K.; Olsen, P.; Hoel, A.; Jensen, K.J. Reconsidering glycosylations at high temperature: Precise microwave heating. Org. Biomol. Chem., 2005, 3(21), 3966-3970.
[http://dx.doi.org/10.1039/b511266d] [PMID: 16240015]
[46]
Petersen, L.; Jensen, K.J. A new, efficient glycosylation method for oligosaccharide synthesis under neutral conditions: Preparation and use of new DISAL donors. J. Org. Chem., 2001, 66(19), 6268-6275.
[http://dx.doi.org/10.1021/jo0057654] [PMID: 11559173]
[47]
Davis, B.G.; Ward, S.J.; Rendle, P.M. Glycosyldisulfides: A new class of solution and solid phase glycosyl donors. Chem. Commun., 2001, (2), 189-190.
[http://dx.doi.org/10.1039/b008734n]
[48]
Chéry, F.; Cassel, S.; Wessel, H.P.; Rollin, P. Synthesis of anomeric sulfimides and their use as a new family of glycosyl donors. Eur. J. Org. Chem., 2002, 2002(1), 171-180.
[http://dx.doi.org/10.1002/1099-0690(20021)2002:1<171:AID-EJOC171>3.0.CO;2-7]
[49]
Kim, K.S.; Lee, Y.J.; Kim, H.Y.; Kang, S.S.; Kwon, S.Y. Glycosylation with glycosyl benzyl phthalates as a new type of glycosyl donorElectronic supplementary information (ESI) available: Spectroscopic and analytical data for all new compounds. Org. Biomol. Chem., 2004, 2(17), 2408-2410.
[http://dx.doi.org/10.1039/b405793g] [PMID: 15326517]
[50]
Lee, J.C.; Pan, G-R.; Kulkarni, S.S.; Luo, S-Y.; Liao, C-C.; Hung, S-C. 2-Allyloxyphenyl glycoside as a new and stable type of glycosyl donors. Tetrahedron Lett., 2006, 47(10), 1621-1624.
[http://dx.doi.org/10.1016/j.tetlet.2005.12.127]
[51]
Imagawa, H.; Kinoshita, A.; Fukuyama, T.; Yamamoto, H.; Nishizawa, M. Hg(OTf)2-catalyzed glycosylation using alkynoate as the leaving group. Tetrahedron Lett., 2006, 47(27), 4729-4731.
[http://dx.doi.org/10.1016/j.tetlet.2006.04.114]
[52]
Hotha, S.; Kashyap, S. Propargyl glycosides as stable glycosyl donors: Anomeric activation and glycoside syntheses. J. Am. Chem. Soc., 2006, 128(30), 9620-9621.
[http://dx.doi.org/10.1021/ja062425c] [PMID: 16866502]
[53]
Schmidt, R.R. New methods for the synthesis of glycosides and oligosaccharides?are there alternatives to the koenigs-knorr method? [New synthetic methods (56)]. Angew. Chem. Int. Ed. Engl., 1986, 25(3), 212-235.
[http://dx.doi.org/10.1002/anie.198602121]
[54]
Schmidt, R.R.; Gaden, H.; Jatzke, H. New catalysts for the glycosyl transfer with O-glycosyl trichloroacetimidates. Tetrahedron Lett., 1990, 31(3), 327-329.
[http://dx.doi.org/10.1016/S0040-4039(00)94546-5]
[55]
Ohashi, I.; Lear, M.J.; Yoshimura, F.; Hirama, M. Use of polystyrene-supported DBU in the synthesis and α-selective glycosylation study of the unstable Schmidt donor of L-kedarosamine. Org. Lett., 2004, 6(5), 719-722.
[http://dx.doi.org/10.1021/ol036353v] [PMID: 14986958]
[56]
Oikawa, M.; Tanaka, T.; Fukuda, N.; Kusumoto, S. One-pot preparation and activation of glycosyl trichloroacetimidates: operationally simple glycosylation induced by combined use of solid-supported, reactivity-opposing reagents. Tetrahedron Lett., 2004, 45(21), 4039-4042.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.170]
[57]
Chiara, J.L.; Encinas, L.; Díaz, B. A study of polymer-supported bases for the solution phase synthesis of glycosyl trichloroacetimidates. Tetrahedron Lett., 2005, 46(14), 2445-2448.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.055]
[58]
Nakajima, N.; Saito, M.; Kudo, M.; Ubukata, M. Allyl, epoxy and glycosyl perfluoroimidates. One-pot preparation and reaction. Tetrahedron, 2002, 58(18), 3579-3588.
[http://dx.doi.org/10.1016/S0040-4020(02)00305-8]
[59]
Yu, B.; Tao, H. Glycosyl trifluoroacetimidates. 2. Synthesis of dioscin and xiebai saponin I. J. Org. Chem., 2002, 67(25), 9099-9102.
[http://dx.doi.org/10.1021/jo026103c] [PMID: 12467439]
[60]
Adinolfi, M.; Iadonisi, A.; Ravidà, A.; Schiattarella, M. Versatile use of ytterbium(III) triflate and acid washed molecular sieves in the activation of glycosyl trifluoroacetimidate donors. Assemblage of a biologically relevant tetrasaccharide sequence of Globo H. J. Org. Chem., 2005, 70(13), 5316-5319.
[http://dx.doi.org/10.1021/jo050301x] [PMID: 15960539]
[61]
Adinolfi, M.; Barone, G.; Guariniello, L.; Iadonisi, A. Efficient activation of armed glycosyl trichloroacetimidates with Sm(OTf)3 in the stereoselective glycosidation of saccharidic acceptors. Tetrahedron Lett., 2000, 41(46), 9005-9008.
[http://dx.doi.org/10.1016/S0040-4039(00)01622-1]
[62]
Adinolfi, M.; Barone, G.; Iadonisi, A.; Mangoni, L.; Schiattarella, M. Activation of disarmed 2-O-alkoxycarbonylated glycosyl trichloroacetimidates with lanthanide triflates: an efficient approach for the synthesis of 1,2-trans glycosides. Tetrahedron Lett., 2001, 42(34), 5967-5969.
[http://dx.doi.org/10.1016/S0040-4039(01)01158-3]
[63]
Griswold, K.; Horstmann, T.; Miller, S. Acyl sulfonamide catalysts for glycosylation reactions with trichloroacetimidate donors. Synlett, 2003, 2003, 1923-1926.
[http://dx.doi.org/10.1055/s-2003-41493]
[64]
Du, Y.; Wei, G.; Cheng, S.; Hua, Y.; Linhardt, R.J. HClO4-SiO2 catalyzed glycosylation using sugar trichloroacetimidates as glycosyl donors. Tetrahedron Lett., 2006, 47(3), 307-310.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.025]
[65]
Mukhopadhyay, B.; Maurer, S.V.; Rudolph, N.; van Well, R.M.; Russell, D.A.; Field, R.A. From solution phase to “on-column” chemistry: Trichloroacetimidate-based glycosylation promoted by perchloric acid-silica. J. Org. Chem., 2005, 70(22), 9059-9062.
[http://dx.doi.org/10.1021/jo051390g] [PMID: 16238354]
[66]
Yang, J.; Cooper-Vanosdell, C.; Mensah, E.A.; Nguyen, H.M. Cationic palladium(II)-catalyzed stereoselective glycosylation with glycosyl trichloroacetimidates. J. Org. Chem., 2008, 73(3), 794-800.
[http://dx.doi.org/10.1021/jo702436p] [PMID: 18184010]
[67]
Pakulski, Z. Glycosylation in ionic liquids. Synthesis, 2003, 2003(13), 2074-2078.
[http://dx.doi.org/10.1055/s-2003-41446]
[68]
Tanaka, S-i. Highly β-selective mannosylation towards Manβ1-4GlcNAc Synthesis: TMSB(C6F5) as a lewis acid/cation trap catalyst. Synlett, 2005, 2005(15), 2325-2328.
[69]
Tanaka, H.; Iwata, Y.; Takahashi, D.; Adachi, M.; Takahashi, T. Efficient stereoselective synthesis of γ-N-glycosyl asparagines by N-glycosylation of primary amide groups. J. Am. Chem. Soc., 2005, 127(6), 1630-1631.
[http://dx.doi.org/10.1021/ja0450298] [PMID: 15700984]
[70]
Ding, N.; Wang, P.; Zhang, Z.; Liu, Y.; Li, Y. Synthesis of the tetrasaccharide residue of clarhamnoside, a novel glycosphingolipid isolated from the marine sponge Agelas clathrodes. Carbohydr. Res., 2006, 341(17), 2769-2776.
[http://dx.doi.org/10.1016/j.carres.2006.09.018] [PMID: 17049498]
[71]
Peng, W.; Han, X.; Yu, B. Synthesis of a typical glucuronide-containing saponin, 28-O-β-d-Glucopyranosyl Oleanate 3-O-β-d-Galactopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→3)]-β. Synthesis, 2004, 2004(10), 1641-1647.
[http://dx.doi.org/10.1055/s-2004-829103]
[72]
Kowalska, K. Pedersen, C.M. α-Selective glycosylations using glycosyl N -(ortho -methoxyphenyl)trifluoroacetimidates. Org. Biomol. Chem., 2020, 18(10), 1918-1925.
[http://dx.doi.org/10.1039/C9OB02696G] [PMID: 32101221]
[73]
Schmidt, R.R. Stumpp, M.; Michel, J. α- and β-d-glucopyranosyl phosphates from 0-α-D-glucoypyranosyl trichloroacetimidates. Tetrahedron Lett., 1982, 23(4), 405-408.
[http://dx.doi.org/10.1016/S0040-4039(00)86843-4]
[74]
Plante, O.J.; Andrade, R.B.; Seeberger, P.H. Synthesis and use of glycosyl phosphates as glycosyl donors. Org. Lett., 1999, 1(2), 211-214.
[http://dx.doi.org/10.1021/ol9905452] [PMID: 10905866]
[75]
Carrel, F.R.; Seeberger, P.H. Protecting group manipulations on glycosyl phosphate triesters. J. Carbohydr. Chem., 2007, 26(2), 125-139.
[http://dx.doi.org/10.1080/07328300701298204]
[76]
Hashimoto, S.; Honda, T.; Ikegami, S. A rapid and efficient synthesis of 1,2-trans-β-linked glycosides via benzyl- or benzoyl-protected glycopyranosyl phosphates. J. Chem. Soc. Chem. Commun., 1989, (11), 685-687.
[http://dx.doi.org/10.1039/C39890000685]
[77]
Vankayalapati, H.; Jiang, S.; Singh, G. Glycosylation based on glycosyl phosphates as glycosyl donors. Synlett, 2002, 2002(01), 0016-0025.
[http://dx.doi.org/10.1055/s-2002-19315]
[78]
Plante, O.J.; Palmacci, E.R.; Andrade, R.B.; Seeberger, P.H. Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents. J. Am. Chem. Soc., 2001, 123(39), 9545-9554.
[http://dx.doi.org/10.1021/ja016227r] [PMID: 11572674]
[79]
Vankayalapati, H.; Singh, G.; Tranoy, I. Stereoselective O-glycosylation reactions using glycosyl donors with diphenylphosphinate and propane-1,3-diyl phosphate leaving groups. Tetrahedron Asymmetry, 2001, 12(9), 1373-1381.
[http://dx.doi.org/10.1016/S0957-4166(01)00227-0]
[80]
Bernardes, G.J.L.; Gamblin, D.P.; Davis, B.G. The direct formation of glycosyl thiols from reducing sugars allows one-pot protein glycoconjugation. Angew. Chem. Int. Ed., 2006, 45(24), 4007-4011.
[http://dx.doi.org/10.1002/anie.200600685] [PMID: 16673441]
[81]
Hariprasad, V.; Singh, G.; Tranoy, I. Stereoselective O-glycosylation reactions employing diphenylphosphinate and propane-1,3-diyl phosphate as anomeric leaving groups. Chem. Commun., 1998, (19), 2129-2130.
[http://dx.doi.org/10.1039/a805206i]
[82]
Bennett, C.S. Selective glycosylations: Synthetic methods and catalysts; Wiley-VCH: Weinheim, Germany, 2017.
[http://dx.doi.org/10.1002/9783527696239]
[83]
Martin, A.; Arda, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y. Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nat. Chem., 2016, 8(2), 186-191.
[http://dx.doi.org/10.1038/nchem.2399] [PMID: 26791903]
[84]
Kafle, A.; Liu, J.; Cui, L. Controlling the stereoselectivity of glycosylation via solvent effects. Cancer. J. Chem., 2016, 94(11), 894-901.
[http://dx.doi.org/10.1139/cjc-2016-0417]
[85]
Satoh, H.; Hansen, H.S.; Manabe, S.; van Gunsteren, W.F.; Hünenberger, P.H. Theoretical investigation of solvent effects on glycosylation reactions: Stereoselectivity controlled by preferential conformations of the intermediate oxacarbenium-counterion complex. J. Chem. Theory Comput., 2010, 6(6), 1783-1797.
[http://dx.doi.org/10.1021/ct1001347] [PMID: 26615839]
[86]
Lewis, C.A.; Miller, S.J. Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew. Chem. Int. Ed., 2006, 45(34), 5616-5619.
[http://dx.doi.org/10.1002/anie.200601490] [PMID: 16858713]
[87]
Lewis, C.A.; Merkel, J.; Miller, S.J. Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs. Bioorg. Med. Chem. Lett., 2008, 18(22), 6007-6011.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.019] [PMID: 18819795]
[88]
Tay, J.H.; Argüelles, A.J.; DeMars, M.D., II; Zimmerman, P.M.; Sherman, D.H.; Nagorny, P. Regiodivergent glycosylations of 6-deoxy-erythronolide b and oleandomycin-derived macrolactones enabled by chiral acid catalysis. J. Am. Chem. Soc., 2017, 139(25), 8570-8578.
[http://dx.doi.org/10.1021/jacs.7b03198] [PMID: 28627172]
[89]
Park, Y.; Harper, K.C.; Kuhl, N.; Kwan, E.E.; Liu, R.Y.; Jacobsen, E.N. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science, 2017, 355(6321), 162-166.
[http://dx.doi.org/10.1126/science.aal1875] [PMID: 28082586]
[90]
Kobayashi, Y.; Nakatsuji, Y.; Li, S.; Tsuzuki, S.; Takemoto, Y.; Direct, N. Glycofunctionalization of amides with glycosyl trichloroacetimidate by thiourea/halogen bond donor co-catalysis. Angew. Chem. Int. Ed., 2018, 57(14), 3646-3650.
[http://dx.doi.org/10.1002/anie.201712726] [PMID: 29412493]
[91]
D’Angelo, K.A.; Taylor, M.S. Borinic acid catalyzed stereo and regioselective couplings of glycosyl methanesulfonates. J. Am. Chem. Soc., 2016, 138(34), 11058-11066.
[http://dx.doi.org/10.1021/jacs.6b06943] [PMID: 27533523]
[92]
Tanaka, M.; Nakagawa, A.; Nishi, N.; Iijima, K.; Sawa, R.; Takahashi, D.; Toshima, K. Boronic-acid-catalyzed regioselective and 1,2- cis -stereoselective glycosylation of unprotected sugar acceptors via SNi-type mechanism. J. Am. Chem. Soc., 2018, 140(10), 3644-3651.
[http://dx.doi.org/10.1021/jacs.7b12108] [PMID: 29457892]
[93]
Nishi, N.; Nashida, J.; Kaji, E.; Takahashi, D.; Toshima, K. Regio- and stereoselective β-mannosylation using a boronic acid catalyst and its application in the synthesis of a tetrasaccharide repeating unit of lipopolysaccharide derived from E. coli O75. Chem. Commun., 2017, 53(21), 3018-3021.
[http://dx.doi.org/10.1039/C7CC00269F] [PMID: 28239730]
[94]
Boebel, T.A.; Gin, D.Y. Sulfoxide covalent catalysis: Application to glycosidic bond formation. Angew. Chem. Int. Ed., 2003, 42(47), 5874-5877.
[http://dx.doi.org/10.1002/anie.200352761] [PMID: 14673924]
[95]
Geng, Y.; Zhang, L.H.; Ye, X.S. Pre-activation protocol leading to highly stereoselectivity-controllable glycosylations of oxazolidinone protected glucosamines. Chem. Commun., 2008, (5), 597-599.
[http://dx.doi.org/10.1039/B712591G] [PMID: 18209801]
[96]
Ghosh, T.; Mukherji, A.; Kancharla, P.K. Sterically hindered 2,4,6-Tri- tert -butylpyridinium salts as single hydrogen bond donors for highly stereoselective glycosylation reactions of glycals. Org. Lett., 2019, 21(10), 3490-3495.
[http://dx.doi.org/10.1021/acs.orglett.9b00626] [PMID: 31050439]
[97]
Sun, L.; Wu, X.; Xiong, D.C.; Ye, X.S. Stereoselective koenigs-knorr glycosylation catalyzed by urea. Angew. Chem. Int. Ed., 2016, 55(28), 8041-8044.
[http://dx.doi.org/10.1002/anie.201600142] [PMID: 27244701]
[98]
Dubey, A.; Sangwan, R.; Mandal, P.K. N-benzoylglycine/thiourea cooperative catalyzed stereoselective O-glycosidation: Activation of O-glycosyl trichloroacetimidate donors. Catal. Commun., 2019, 125, 123-129.
[http://dx.doi.org/10.1016/j.catcom.2019.04.006]
[99]
Geng, Y.; Kumar, A.; Faidallah, H.M.; Albar, H.A.; Mhkalid, I.A.; Schmidt, R.R. Cooperative catalysis in glycosidation reactions with O-glycosyl trichloroacetimidates as glycosyl donors. Angew. Chem. Int. Ed., 2013, 52(38), 10089-10092.
[http://dx.doi.org/10.1002/anie.201302158] [PMID: 23893796]
[100]
Galan, M.; McGarrigle, E.; Balmond, E. Recent developments in the application of organocatalysis to glycosylations. Synlett, 2013, 24(18), 2335-2339.
[http://dx.doi.org/10.1055/s-0033-1338970]
[101]
Schreiner, P.; Kotke, M. Generally applicable organocatalytic tetrahydropyranylation of hydroxy functionalities with very low catalyst loading. Synthesis, 2007, 2007(5), 779-790.
[http://dx.doi.org/10.1055/s-2007-965917]
[102]
Palo-Nieto, C.; Sau, A.; Williams, R.; Galan, M.C. Cooperative brønsted acid-type organocatalysis for the stereoselective synthesis of deoxyglycosides. J. Org. Chem., 2017, 82(1), 407-414.
[http://dx.doi.org/10.1021/acs.joc.6b02498] [PMID: 28004941]
[103]
Bradshaw, G.A.; Colgan, A.C.; Allen, N.P.; Pongener, I.; Boland, M.B.; Ortin, Y.; McGarrigle, E.M. Stereoselective organocatalyzed glycosylations - thiouracil, thioureas and monothiophthalimide act as Brønsted acid catalysts at low loadings. Chem. Sci., 2019, 10(2), 508-514.
[http://dx.doi.org/10.1039/C8SC02788A] [PMID: 30713648]
[104]
Kumar, A.; Kumar, V.; Dere, R.T.; Schmidt, R.R. Glycoside bond formation via acid-base catalysis. Org. Lett., 2011, 13(14), 3612-3615.
[http://dx.doi.org/10.1021/ol201231v] [PMID: 21675711]
[105]
Kumar, A.; Schmidt, R.R. Reversal of anomeric selectivity with o-glycosyl trichloroacetimidates as glycosyl donors and thiols as acceptors under acid/base catalysis. Eur. J. Org. Chem., 2012, 2012(14), 2715-2719.
[http://dx.doi.org/10.1002/ejoc.201200138]
[106]
D’Angelo, K.A.; Taylor, M.S. Borinic acid-catalyzed stereo and site-selective synthesis of β-glycosylceramides. Chem. Commun., 2017, 53(44), 5978-5980.
[http://dx.doi.org/10.1039/C7CC01673E] [PMID: 28509929]
[107]
Mishra, K.B.; Singh, A.K.; Kandasamy, J. Tris(pentafluorophenyl)-borane-promoted stereoselective glycosylation with glycosyl trichloroacetimidates under mild conditions. J. Org. Chem., 2018, 83(7), 4204-4212.
[http://dx.doi.org/10.1021/acs.joc.8b00215] [PMID: 29536731]
[108]
Izumi, S.; Kobayashi, Y.; Takemoto, Y. Regio- and stereoselective synthesis of 1,2-cis-glycosides by anomeric O-alkylation with organoboron catalysis. Org. Lett., 2019, 21(3), 665-670.
[http://dx.doi.org/10.1021/acs.orglett.8b03823] [PMID: 30632761]
[109]
Izumi, S.; Kobayashi, Y.; Takemoto, Y. Stereoselective synthesis of 1,1′‐Disaccharides by organoboron catalysis. Angew. Chem. Int. Ed., 2020, 59(33), 14054-14059.
[http://dx.doi.org/10.1002/anie.202004476] [PMID: 32385890]
[110]
Misra, A.; Sau, A.; Santra, A. Stereoselective glycosylations by nitrosyl tetrafluoroborate-catalyzed activation of glycosyl trichloroacetimidate derivatives. Synlett, 2012, 23(16), 2341-2348.
[http://dx.doi.org/10.1055/s-0032-1317135]
[111]
Issa, J.P.; Lloyd, D.; Steliotes, E.; Bennett, C.S. Reagent controlled β-specific dehydrative glycosylation reactions with 2-deoxy-sugars. Org. Lett., 2013, 15(16), 4170-4173.
[http://dx.doi.org/10.1021/ol4018547] [PMID: 23906042]
[112]
Schmalisch, S.; Mahrwald, R. Organocatalyzed direct glycosylation of unprotected and unactivated carbohydrates. Org. Lett., 2013, 15(22), 5854-5857.
[http://dx.doi.org/10.1021/ol402914v] [PMID: 24180643]
[113]
Liu, J.L.; Zhang, Y.T.; Liu, H.F.; Zhou, L.; Chen, J. N -Heterocyclic carbene catalyzed stereoselective glycosylation of 2-nitrogalactals. Org. Lett., 2017, 19(19), 5272-5275.
[http://dx.doi.org/10.1021/acs.orglett.7b02543] [PMID: 28906121]
[114]
Ghosh, T.; Mukherji, A.; Srivastava, H.K.; Kancharla, P.K. Secondary amine salt catalyzed controlled activation of 2-deoxy sugar lactols towards alpha-selective dehydrative glycosylation. Org. Biomol. Chem., 2018, 16(16), 2870-2875.
[http://dx.doi.org/10.1039/C8OB00423D] [PMID: 29633773]
[115]
Hsu, M.Y.; Lam, S.; Wu, C.H.; Lin, M.H.; Lin, S.C.; Wang, C.C. Direct dehydrative glycosylation catalyzed by diphenylammonium triflate. Molecules, 2020, 25(5), 1103.
[http://dx.doi.org/10.3390/molecules25051103] [PMID: 32131396]
[116]
Traboni, S.; Bedini, E.; Silipo, A.; Vessella, G.; Iadonisi, A. Solvent‐free glycosylation from per‐ O ‐Acylated donors catalyzed by methanesulfonic acid. Eur. J. Org. Chem., 2021, 2021(41), 5669-5676.
[http://dx.doi.org/10.1002/ejoc.202101121]
[117]
Cox, D.J.; Smith, M.D.; Fairbanks, A.J. Glycosylation catalyzed by a chiral Brønsted acid. Org. Lett., 2010, 12(7), 1452-1455.
[http://dx.doi.org/10.1021/ol1001895] [PMID: 20199058]
[118]
Kimura, T.; Sekine, M.; Takahashi, D.; Toshima, K. Chiral Brønsted acid mediated glycosylation with recognition of alcohol chirality. Angew. Chem. Int. Ed., 2013, 52(46), 12131-12134.
[http://dx.doi.org/10.1002/anie.201304830] [PMID: 24115608]
[119]
Liu, D.; Sarrafpour, S.; Guo, W.; Goulart, B.; Bennett, C.S. Matched/mismatched interactions in chiral bronsted acid-catalyzed glycosylation reactions with 2-deoxy-sugar trichloroacetimidate donors. J. Carbohydr. Chem., 2014, 33(7-8), 423-434.
[http://dx.doi.org/10.1080/07328303.2014.927882]
[120]
Lee, J.; Borovika, A.; Khomutnyk, Y.; Nagorny, P. Chiral phosphoric acid-catalyzed desymmetrizative glycosylation of 2-deoxystreptamine and its application to aminoglycoside synthesis. Chem. Commun., 2017, 53(64), 8976-8979.
[http://dx.doi.org/10.1039/C7CC05052F] [PMID: 28744538]
[121]
Das, S.; Pekel, D.; Neudörfl, J.M.; Berkessel, A. Organocatalytic glycosylation by using electron-deficient pyridinium salts. Angew. Chem. Int. Ed., 2015, 54(42), 12479-12483.
[http://dx.doi.org/10.1002/anie.201503156] [PMID: 26220811]
[122]
Nielsen, M.M.; Holmstrøm, T.; Pedersen, C.M. Stereoselective O ‐glycosylations by pyrylium salt organocatalysis. Angew. Chem. Int. Ed., 2022, 61(6), e202115394.
[http://dx.doi.org/10.1002/anie.202115394] [PMID: 34847269]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy