Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

A Review of Functional Composite Materials using PSZ-based Siliconnitride Preceramic Polymer

Author(s): Jing Xue, Lijuan Zhang*, Yongzhao Hou*, Dong Wang, Ling Li, Guangwu Wen* and Jing Wang

Volume 21, Issue 3, 2024

Published on: 15 March, 2023

Page: [295 - 317] Pages: 23

DOI: 10.2174/1570193X20666230202165158

Price: $65

Abstract

The silicon-nitride ceramics gain a lot of interest for applications under severe conditions due to their thermal stability, thermal shock resistance and chemical stability arising from the threedimensional lattice structure. The silicon-nitride ceramics can be synthesized from silicon-nitride preceramic polymers based on polysilazane (PSZ), as the ability to fabricate ceramic components of specific geometries is difficult to obtain otherwise. This review systematically summarized the applications of PSZ-based silicon-nitride preceramic polymers in the processing of functional materials. A particular focus is made on the relation between the chemical structure of polymer and the properties of the polymer-derived ceramic. The tailored properties as well as characteristics of ceramic are highlighted and the trend of nowadays research for the future evolution of silicon-nitride preceramic polymer was proposed.

Graphical Abstract

[1]
Verbeek, W. Production of shaped articles of homogeneous mixtures of silicon carbide and nitride. US Patent 3853567, 1974.
[2]
Wang, C.; Chen, K.; Huang, Z.; Wang, T.; Chen, F. Effect of polymer-derived silicon carbonitride on thermal performances of polyethylene glycol based composite phase change materials. Sol. Energy, 2020, 208, 282-288.
[http://dx.doi.org/10.1016/j.solener.2020.07.092]
[3]
Yang, T.; Chen, S.; Li, X.; Xu, X.; Gao, F.; Wang, L.; Chen, J.; Yang, W.; Hou, X.; Fang, X. High-Performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv. Funct. Mater., 2019, 29(11), 1806250.
[http://dx.doi.org/10.1002/adfm.201806250]
[4]
Ichikawa, H. Polymer-derived ceramic fibers. Annu. Rev. Mater. Res., 2016, 46(1), 335-356.
[http://dx.doi.org/10.1146/annurev-matsci-070115-032127]
[5]
Andrade, A.V.B.; Ribeiro, L.F.B.; Acosta, E.D. Polyimide as carbon and ceramic polysilazane precursors to obtain high carbon content ceramic for high-temperature applications; AIP Conference Proceedings. America: American Institute of Physics Inc., 2020, Vol. 2289, p. 020008.
[6]
Yang, S.; Wang, J.; Wang, G.; Tong, S.; Wang, Z.; Zhang, M.; Lin, Z.; Feng, Z.; Xiong, Y. Study on high-temperature erosion resistance of precursor ceramic coatings. IOP Conf. Ser. Earth Environ. Sci., 2020, 474(5), 052082.
[http://dx.doi.org/10.1088/1755-1315/474/5/052082]
[7]
Wang, G.; Zhang, B.; Wang, J.; Chi, Z.; Zhang, G. li, J.; Wang, J.; Qian, P.; Yang, S. Slagging resistance mechanism of precursor ceramic coating for solid fuel-fired boilers. IOP Conf. Series Mater. Sci. Eng., 2020, 721(1), 012023.
[http://dx.doi.org/10.1088/1757-899X/721/1/012023]
[8]
Wang, J.; Tong, S.; Wang, J.; Yang, S.; Qian, P.; Wang, Z.; Chi, Z. High temperature chlorine corrosion resistance of organopolysilazane precursor ceramic coating. Corrosion Protect., 2021, 42, 8-13.
[9]
García-Garrido, C.; Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Perejón, A.; Criado, J.M. Combined TGA-MS kinetic analysis of multistep processes. Thermal decomposition and ceramification of polysilazane and polysiloxane preceramic polymers. Phys. Chem. Chem. Phys., 2016, 18(42), 29348-29360.
[http://dx.doi.org/10.1039/C6CP03677E] [PMID: 27734044]
[10]
Seher, M.; Bill, J.; Aldinger, F.; Riedel, R. Crystallization kinetics of polysilazane-derived amorphous silicon nitride. J. Cryst. Growth, 1994, 137(3-4), 452-456.
[http://dx.doi.org/10.1016/0022-0248(94)90984-9]
[11]
D’Elia, R.; Dusserre, G.; Del Confetto, S.; Eberling-Fux, N.; Descamps, C.; Cutard, T. Cure kinetics of a polysilazane system: Experimental characterization and numerical modelling. Eur. Polym. J., 2016, 76, 40-52.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.01.025]
[12]
Wichmann, T.; Bill, J.; Aldinger, F.; Mayer, J.; Müller, G.; Schumacher, U. Microwave-induced crystallization of polysilazane-derived silicon carbonitride. Z. Metallk., 2003, 94(3), 208-210.
[http://dx.doi.org/10.3139/146.030208]
[13]
Smokovych, I.; Scheffler, M. Polysilazane-type coatings on Mo-Si-B Alloys: A thermodynamic assessment of the phase composition. Adv. Eng. Mater., 2018, 20(5), 1700936.
[http://dx.doi.org/10.1002/adem.201700936]
[14]
Eranezhuth, W.A.; Sridar, S.; Adhimoolam, B.K.; Kumar, R. Ablation resistance of precursor derived Si-Hf-C-N(O) ceramics. J. Eur. Ceram. Soc., 2016, 36(15), 3717-3723.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2016.03.038]
[15]
Liu, J.; Qiao, Y.; Zhang, P.; Xue, Y.C.; Cai, Z. Synthesis of SiC ceramics from polysilazane by laser pyrolysis. Surf. Coat. Tech., 2017, 321, 491-495.
[http://dx.doi.org/10.1016/j.surfcoat.2017.05.021]
[16]
Krüger, C.R.; Rochow, E.G. Polyorganosilazanes. J. Polym. Sci. A, 1964, 2(7), 3179-3189.
[http://dx.doi.org/10.1002/pol.1964.100020717]
[17]
Blum, Y.D.; Laine, R.M. Polysilazanes and related compounds synthesis by transition metal catalysis, Polymeric Materials Science and Engineering. Proc. ACS Div. Polymer. Mater., 1987, 56, 854.
[18]
Kroke, E.; Li, Y.L.; Konetschny, C.; Lecomte, E.; Fasel, C.; Riedel, R. Silazane derived ceramics and related materials. Mater. Sci. Eng. Rep., 2000, 26(4-6), 97-199.
[http://dx.doi.org/10.1016/S0927-796X(00)00008-5]
[19]
Papendorf, B.; Nonnenmacher, K.; Ionescu, E.; Kleebe, H.J.; Riedel, R. Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization. Small, 2011, 7(7), 970-978.
[http://dx.doi.org/10.1002/smll.201001938] [PMID: 21381195]
[20]
Salameh, C.; Bernard, S.; Gervais, C.; Babonneau, F.; Bruma, A.; Malo, S.; Miele, P. Chemistry of a series of aluminum-modified polysilazanes: Synthesis, pyrolysis behaviour and microstructural evolution. J. Eur. Ceram. Soc., 2019, 39(2-3), 183-194.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2018.09.027]
[21]
Andrianov, K.A.; Delazari, N.V. Reactions of trialkylsiloxychlorosilanes. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1972, 21(12), 2679-2681.
[http://dx.doi.org/10.1007/BF00849839]
[22]
Teng, Y.; Tong, X.; Wang, S.; Li, X. Synthesis of hexaphenyl cyclotrisilazane. Huagong Xuebao/J. Chem. Industry Eng. (China), 2007, 58(2007), 522-525.
[23]
Lücke, J.; Hacker, J.; Suttor, D. Synthesis and characterization of silazane-based polymers as precursors for ceramic matrix composites. Appl. Organomet. Chem., 1997, 11, 181-194.
[http://dx.doi.org/10.1002/(SICI)1099-0739(199702)11:2<181:AID-AOC566>3.0.CO;2-Q]
[24]
Seyferth, D.; Wiseman, G.H.; Prud’homme, C. A liquid silazane precursor to silicon nitride. J. Am. Ceram. Soc., 1983, 66(1), C-13-C-14.
[http://dx.doi.org/10.1111/j.1151-2916.1983.tb09979.x]
[25]
Qi, G.J.; Zhang, C.R.; Hu, H.F. Synthesis, characterization of perhydropolysilazane and its application in the preparation of 3D SiO2f/Si3N4 composites. Key Eng. Mater., 2007, 336-338(II), 1233-1235.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.336-338.1233]
[26]
Isoda, T.; Kaya, H.; Nishii, H.; Funayama, O.; Suzuki, T.; Tashiro, Y. Perhydropolysilazane precursors to silicon nitride ceramics. J. Inorg. Organomet. Polym., 1992, 2(1), 151-160.
[http://dx.doi.org/10.1007/BF00696542]
[27]
Coons, T.P.; Reutenauer, J.W.; Richards, G.; Frueh, S.; Suib, S.L. Characterization of a modified polyvinylsilazane preceramic polymer. J. Am. Ceram. Soc., 2012, 95(10), 3339-3345.
[http://dx.doi.org/10.1111/j.1551-2916.2012.05367.x]
[28]
Barysheva, A.V.; Mochalov, G.M.; Suvorov, S.S. Synthesis of polysilazane by ammonolysis of dichlorosilane in a nucleophilic solvent. Russ. J. Appl. Chem., 2021, 94(9), 1226-1231.
[http://dx.doi.org/10.1134/S1070427221090056]
[29]
Liu, X.; Tang, Z.; Xue, J. Enhanced microwave absorption properties of polymer-derived SiC/SiCN composite ceramics modified by TiC, J. Mater. Sci-Mater El., 2021, 13, 20742-20750.
[30]
Sukmarani, G.; Noviyanto, A.; Kusumaningrum, R.; Muhammad Habieb, A.; Fauzi, F.; Bambang Widayatno, W.; Sukarto Wismogroho, A.; Ikhlasul Amal, M.; Taufiqu Rochman, N. Densification of SiC from amorphous polysilazane with the addition of ß-SiC as a filler prepared by hot pressing furnace. IOP Conf. Series Mater. Sci. Eng., 2020, 924(1), 012003.
[http://dx.doi.org/10.1088/1757-899X/924/1/012003]
[31]
Mirkhalaf, M.; Yazdani Sarvestani, H.; Yang, Q.; Jakubinek, M.B.; Ashrafi, B. A comparative study of nano-fillers to improve toughness and modulus of polymer-derived ceramics. Sci. Rep., 2021, 11(1), 6951.
[http://dx.doi.org/10.1038/s41598-021-82365-3] [PMID: 33772038]
[32]
Lee, S.; Kim, J. Incorporating MXene into boron nitride/poly(vinyl alcohol) composite films to enhance thermal andmechanical properties. Polymers (Basel), 2021, 13, 1-11.
[33]
Neckel, L., Jr; Weiss, A.G.; Motz, G. Particle-filled polysilazane coatings for steel protection. Adv. Mat. Res., 2014, 975, 149-153.
[34]
Mainzer, B.; Lin, C.; Frieß, M.; Riedel, R.; Riesch, J.; Feichtmayer, A.; Fuhr, M.; Almanstötter, J.; Koch, D. Novel ceramic matrix composites with tungsten and molybdenum fiber reinforcement. J. Eur. Ceram. Soc., 2021, 41(5), 3030-3036.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2019.10.049]
[35]
Riedel, R.; Seher, M.; Mayer, J.; Szabó, D.V. Polymer-derived Si-based bulk ceramics, part I: Preparation, processing and properties. J. Eur. Ceram. Soc., 1995, 15(8), 703-715.
[http://dx.doi.org/10.1016/0955-2219(95)00041-R]
[36]
Yazdani, S.H.; Mirkhalaf, M.; Yang, Q. Mechanical properties of polymer-derived ceramics modified by active nanoparticles Proceedings of the International Astronautical Congress IAC, Washington, America: International Astronautical Federation2019.
[37]
Luan, X.; Chang, S.; Riedel, R.; Cheng, L. The improvement in thermal and mechanical properties of TiB2 modified adhesive through the polymer-derived-ceramic route. Ceram. Int., 2018, 44(16), 19505-19511.
[http://dx.doi.org/10.1016/j.ceramint.2018.07.190]
[38]
Parchovianský, M.; Petríková, I.; Barroso, G.S. Corrosion and oxidation behavior of polymer derived ceramic coatings with passive glass fillers on AISI 441 stainless steel. Ceram. Silik., 2018, 62, 146-157.
[http://dx.doi.org/10.13168/cs.2018.0006]
[39]
Barroso, G.S.; Krenkel, W.; Motz, G. Low thermal conductivity coating system for application up to 1000°C by simple PDC processing with active and passive fillers. J. Eur. Ceram. Soc., 2015, 35(12), 3339-3348.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2015.02.006]
[40]
Kong, C.; Zhu, Y.P.; Wang, F. Preparation of TiSi2/YSZ ceramic coatings by preceramic polymer pyrolysis. Rengong Jingti Xuebao/J. Synth. Crystals, 2019, 48(2019), 1341-1349.
[41]
Lewis, R.H.; Maciel, G.E. Magnetic resonance characterization of solid-state intermediates in the generation of ceramics by pyrolysis of hydridopolysilazane. J. Mater. Sci., 1995, 30(19), 5020-5030.
[http://dx.doi.org/10.1007/BF01154517]
[42]
Kienzle, A.; Aldinger, F.; Obermeyer, A.; Simon, A.; Riedel, R. Synthese und Struktur des ersten oligomeren cyclischen Dimethylsilyl‐substituierten Carbodiimids. Chem. Ber., 1993, 126(12), 2569-2571.
[http://dx.doi.org/10.1002/cber.19931261202]
[43]
Wang, Y.; Zhang, L.; Xu, W.; Jiang, T.; Fan, Y.; Jiang, D.; An, L. Effect of thermal initiator concentration on the electrical behavior of polymer-derived amorphous silicon carbonitrides. J. Am. Ceram. Soc., 2008, 91(12), 3971-3975.
[http://dx.doi.org/10.1111/j.1551-2916.2008.02782.x]
[44]
Wang, Yan-Song; Wang, Wen-Quan; Yuan, Zhou; Zhang, Li-Gong; Xu, Shi-Feng Effect of thermal initiator concentration on piezoresistivity of polymer-derived amorphous silicon carbonitrides. Wuli Xuebao, 2008, 57(10), 6540-6544.
[http://dx.doi.org/10.7498/aps.57.6540]
[45]
Zhang, W.; Wang, S.; Ding, H.; Zhai, X.; Yang, D. Improved crystallisation of polysilazane‐derived Si3N4/SiC nanocomposites with Fe2O3 catalyst. Micro. Nano Lett., 2021, 16(7), 399-404.
[http://dx.doi.org/10.1049/mna2.12064]
[46]
Zhang, T.; Zhang, X.; Han, W. Effect of Si3N4 nanowires on the mechanical properties and dielectric constant of porous Si3N4 ceramics. J. Ceram. Soc. Jpn., 2019, 127, 602-605.
[http://dx.doi.org/10.2109/jcersj2.19050]
[47]
Lenhart, S.J.; Blum, Y.D.; Laine, R.M. Corrosion resistance of an aluminum alloy coated with polysilazane-derived ceramics. Corrosion, 1989, 45(6), 503-506.
[http://dx.doi.org/10.5006/1.3582050]
[48]
Blum, Y.D.; Laine, R.M.; Schwartz, K.B.; Rowcliffe, D.J.; Bening, R.C.; Cotts, D.B. A new catalytic method for producing preceramic polysilazanes. Proc. MRS, 1986, 73, 389-394.
[http://dx.doi.org/10.1557/PROC-73-389]
[49]
Chow, A.W.; Hamlin, R.D.; Blum, Y. Polymerization kinetics of polysilazane by transition metal catalyzed dehydrocoupling reaction, Journal of Polymer Sci.: Part C, 26th ed; Polymer Letters, 1988, pp. 103-108.
[50]
Nakashita, J.; Matsumoto, K.; Matsuoka, H. Synthesis of Si, N-containing ceramic nanoparticles via micellization and pyrolysis of silazane block copolymers. Polymer Preprints, 2005.
[51]
Liu, M.Y.; Li, Y.L.; Qu, S.X.; Han, S.S.; Wang, S.H. Fabrication of carbon nanofiber and silicon carbonitride ceramic nanomposites by in-situ growth during ceramic formation. Key Eng. Mater., 2014, 602-603, 221-225.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.602-603.221]
[52]
Gao, F.; Peng, Z.; Fu, X. One-step synthesis and characterization of silica nano-/submicron spheres by catalyst-assisted pyrolysis of a preceramic polymer. J. Nanomater., 2013, 2013, 1-4.
[http://dx.doi.org/10.1155/2013/843570]
[53]
Yang, W.; Xie, Z.; Li, J.; Miao, H.; Zhang, L.; An, L. Ultra-long single-crystalline α-Si3N4 nanowires: Derived from a polymeric precursor. J. Am. Ceram. Soc., 2005, 88(6), 1647-1650.
[http://dx.doi.org/10.1111/j.1551-2916.2005.00270.x]
[54]
Zhang, X.; Chen, Y.; Xie, Z.; Yang, W. Shape and doping enhanced field emission properties of quasialigned 3C-SiC nanowires. J. Phys. Chem. C, 2010, 114(18), 8251-8255.
[http://dx.doi.org/10.1021/jp101067f]
[55]
Zhu, N.; Peng, Z.; Fu, X.; Wang, C.; Fu, Z.; Qi, L.; Miao, H. A simple approach to controllably grow network-like branched single-crystalline Si3N4 nanostructures. Solid State Sci., 2010, 12(7), 1076-1079.
[http://dx.doi.org/10.1016/j.solidstatesciences.2010.04.024]
[56]
Yang, W.; Xie, Z.; Miao, H. Synthesis of single-crystalline silicon nitride nanobelts via catalyst-assisted pyrolysis of a polysilazane. J. Am. Ceram. Soc., 2005, 88, 466-469.
[57]
Horcher, A.; Tangermann-Gerk, K.; Barroso, G.; Schmidt, M.; Motz, G. Laser and furnace pyrolyzed organosilazane-based glass/ZrO2 composite coating system-A comparison. J. Eur. Ceram. Soc., 2020, 40(7), 2642-2651.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2019.10.040]
[58]
Stalin, M.; Rajaguru, K.; Rangaraj, L. Processing of Cf/SiC composites by hot pressing using polymer binders followed by polymer impregnation and pyrolysis. J. Eur. Ceram. Soc., 2020, 40(2), 290-297.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2019.09.047]
[59]
Wang, Y.; Liu, W.; Guo, J.; Li, M.; Fan, B.; Wang, H.; Xu, H.; Lu, H.; Shao, G.; Zhang, R.; An, L. In situ formation of Si3N4–SiC nanocomposites through polymer-derived SiAlCN ceramics and spark plasma sintering. Ceram. Int., 2021, 47(15), 22049-22054.
[http://dx.doi.org/10.1016/j.ceramint.2021.04.225]
[60]
Mainzer, B.; Frieß, M.; Jemmali, R.; Koch, D. Development of polyvinylsilazane-derived ceramic matrix composites based on Tyranno SA3 fibers. J. Ceram. Soc. Jpn., 2016, 124(10), 1035-1041.
[http://dx.doi.org/10.2109/jcersj2.16107]
[61]
Ribeiro, L.; Bezerra, A.; Gervais, C.; Bernard, S.; Machado, R.; Motz, G. The influence of pyrolysis temperature on the oxidation resistance of carbon-rich SiCN ceramics derived from reaction of silazanes with acrylonitrile. J. Eur. Ceram. Soc., 2021, 41(6), 3285-3291.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2021.01.042]
[62]
Jeong, D.H.; Septiadi, A.; Fitriani, P.; Yoon, D-H. Joining of SiCf/SiC using polycarbosilane and polysilazane preceramic mixtures. Ceram. Int., 2018, 44(9), 10443-10450.
[http://dx.doi.org/10.1016/j.ceramint.2018.03.061]
[63]
Schütz, A.; Günthner, M.; Motz, G.; Greißl, O.; Glatzel, U. Characterisation of novel precursor-derived ceramic coatings with glass filler particles on steel substrates. Surf. Coat. Tech., 2012, 207, 319-327.
[http://dx.doi.org/10.1016/j.surfcoat.2012.07.013]
[64]
Mainzer, B.; Lin, C.; Jemmali, R.; Frieß, M.; Riedel, R.; Koch, D. Characterization and application of a novel low viscosity polysilazane for the manufacture of C- and SiC-fiber reinforced SiCN ceramic matrix composites by PIP process. J. Eur. Ceram. Soc., 2019, 39(2-3), 212-221.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2018.09.042]
[65]
Wang, X.; Wang, K.; Kong, J.; Wang, Y.; An, L. Synthesis of non-oxide porous ceramics using random copolymers as precursors. J. Mater. Sci. Technol., 2015, 31(1), 120-124.
[http://dx.doi.org/10.1016/j.jmst.2014.04.008]
[66]
Seifollahi Bazarjani, M.; Kleebe, H.J.; Müller, M.M.; Fasel, C.; Baghaie Yazdi, M.; Gurlo, A.; Riedel, R. Nanoporous silicon oxycarbonitride ceramics derived from polysilazanes in situ modified with nickel nanoparticles. Chem. Mater., 2011, 23(18), 4112-4123.
[http://dx.doi.org/10.1021/cm200589n]
[67]
Drechsel, C.; Peterlik, H.; Gierl-Mayer, C.; Stöger-Pollach, M.; Konegger, T. Influence of DVB as linker molecule on the micropore formation in polymer-derived SiCN ceramics. J. Eur. Ceram. Soc., 2021, 41(6), 3292-3302.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2021.01.051]
[68]
Su, D.; Yan, X.; Hou, F. Fabrication of macroporous SiCN ceramics from mixed polysilazanes. Key Eng. Mater., 2014, 602-603, 384-387.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.602-603.384]
[69]
Santhosh, B.; Vakifahmetoglu, C.; Ionescu, E.; Reitz, A.; Albert, B.; Sorarù, G.D. Processing and thermal characterization of polymer derived SiCN(O) and SiOC reticulated foams. Ceram. Int., 2020, 46(5), 5594-5601.
[http://dx.doi.org/10.1016/j.ceramint.2019.11.003]
[70]
He, J.G.; Shi, L.; Jiang, Y.Y. Oxidation of isopropanol and ethanol by a magnesium oxide-supported polysilazane-platinum complex catalyst. Reactive Polymers, 1991, 15, 131-134.
[http://dx.doi.org/10.1016/0923-1137(91)90156-I]
[71]
Chen, C.W.; Yu, H.; Huang, M.Y.; Jiang, Y-Y. Hydrogenation of m-xylene catalyzed by a silica-supported polysilazane-platinum complex. Polym. Adv. Technol., 1996, 7(2), 79-83.
[http://dx.doi.org/10.1002/(SICI)1099-1581(199602)7:2<79:AID-PAT444>3.0.CO;2-K]
[72]
Chen, C.W.; Yu, H.; Huang, M.Y.; Jiang, Y-Y. Catalytic behavior of silica-supported polysilazane-platinum complex in the hydrogenation of xylenes. React. Poly., 1995, 24(3), 255-260.
[http://dx.doi.org/10.1016/0923-1137(94)00091-I]
[73]
Chen, C.W.; Zhang, L.; Su, S.J.; Huang, M-Y.; Mao, S-F.; Jiang, Y-Y. Stereochemistry of the hydrogenation of o-xylene over a silica-supported polysilazane-platinum complex. Polym. Adv. Technol., 1996, 7(8), 711-714.
[http://dx.doi.org/10.1002/(SICI)1099-1581(199608)7:8<711:AID-PAT574>3.0.CO;2-J]
[74]
Sachau, S.M.; Zaheer, M.; Lale, A. Micro-/mesoporous platinum–SiCN nanocomposite catalysts (Pt@SiCN): from design to catalytic applications. Chem. A. Eur. J., 2016, 22(2016), 15508-15512.
[75]
Chen, X.; Han, S.; Yin, D.; Liang, C. Intermetallic Ni 2 Si/SiCN as a highly efficient catalyst for the one-pot tandem synthesis of imines and secondary amines. Inorg. Chem. Front., 2020, 7(1), 82-90.
[http://dx.doi.org/10.1039/C9QI01077G]
[76]
Li, Q.; Yin, X.; Duan, W.; Hao, B.; Kong, L.; Liu, X. Dielectric and microwave absorption properties of polymer derived SiCN ceramics annealed in N2 atmosphere. J. Eur. Ceram. Soc., 2014, 34(3), 589-598.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2013.08.042]
[77]
Feng, Y. Electrochemical properties of heat-treated polymer-derived SiCN anode for lithium ion batteries. Electrochim. Acta, 2010, 55(20), 5860-5866.
[http://dx.doi.org/10.1016/j.electacta.2010.05.036]
[78]
Su, D.; Li, Y.L.; Feng, Y.; Jin, J. Electrochemical properties of polymer-derived SiCN materials as the anode in lithium ion batteries. J. Am. Ceram. Soc., 2009, 92(12), 2962-2968.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03317.x]
[79]
Wilamowska, M.; Graczyk-Zajac, M.; Riedel, R. Composite materials based on polymer-derived SiCN ceramic and disordered hard carbons as anodes for lithium-ion batteries. J. Power Sources, 2013, 244, 80-86.
[http://dx.doi.org/10.1016/j.jpowsour.2013.03.137]
[80]
Moyano, J.J.; Mosa, J.; Aparicio, M.; Pérez-Coll, D.; Belmonte, M.; Miranzo, P.; Osendi, M.I. Strong and light cellular silicon carbonitride – Reduced graphene oxide material with enhanced electrical conductivity and capacitive response. Addit. Manuf., 2019, 30, 100849.
[http://dx.doi.org/10.1016/j.addma.2019.100849]
[81]
Bhandavat, R.; Singh, G. Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-ion battery anode. ACS Appl. Mater. Interfaces, 2012, 4(10), 5092-5097.
[http://dx.doi.org/10.1021/am3015795] [PMID: 23030550]
[82]
David, L.; Asok, D.; Singh, G. Synthesis and extreme rate capability of Si-Al-C-N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode. ACS Appl. Mater. Interfaces, 2014, 6(18), 16056-16064.
[http://dx.doi.org/10.1021/am5052729] [PMID: 25178109]
[83]
David, L.; Bernard, S.; Gervais, C.; Miele, P.; Singh, G. Facile synthesis and high rate capability of silicon carbonitride/boron nitride composite with a sheet-like morphology. J. Phys. Chem. C, 2015, 119(5), 2783-2791.
[http://dx.doi.org/10.1021/jp508075x]
[84]
Reinold, L.M.; Graczyk-Zajac, M.; Fasel, C.; Riedel, R. Prevention of solid electrolyte interphase damaging on silicon by using polymer derived SiCN ceramics. ECS Trans., 2011, 35(34), 37-44.
[http://dx.doi.org/10.1149/1.3654200]
[85]
Kong, J.; Kong, M.; Zhang, X.; Chen, L.; An, L. Magnetoceramics from the bulk pyrolysis of polysilazane cross-linked by polyferrocenylcarbosilanes with hyperbranched topology. ACS Appl. Mater. Interfaces, 2013, 5(20), 10367-10375.
[http://dx.doi.org/10.1021/am403464e] [PMID: 24060298]
[86]
Zhou, C.; Yang, L.; Geng, H.; Zheng, Q.; Min, H.; Yu, Z.; Xia, H. Preparation of Si–C–N–Fe magnetic ceramic derived from iron-modified polysilazane. Ceram. Int., 2012, 38(8), 6815-6822.
[http://dx.doi.org/10.1016/j.ceramint.2012.05.080]
[87]
Li, J.; Zhang, Z.; Zheng, Z.; Guo, L.; Xu, G.; Xie, Z. Preparation and magnetic properties of Fe/Si/C/N ceramics derived from a polymeric precursor. J. Appl. Polym. Sci., 2007, 105(4), 1786-1792.
[http://dx.doi.org/10.1002/app.26161]
[88]
Wang, S.; Mao, J.; Liu, Y.; Lin, X.; Sheng, M.; Zhao, C.; Zeeshan, S.; Gong, H.; Zhang, Y. Electromagnetic wave absorption properties of cobalt-containing polymer-derived SiCN ceramics. IOP Conf. Series Mater. Sci. Eng., 2019, 678(1), 012047.
[http://dx.doi.org/10.1088/1757-899X/678/1/012047]
[89]
Hauser, R.; Francis, A.; Theismann, R.; Riedel, R. Processing and magnetic properties of metal-containing SiCN ceramic micro- and nano-composites. J. Mater. Sci., 2008, 43(12), 4042-4049.
[http://dx.doi.org/10.1007/s10853-007-2143-3]
[90]
Zhang, X.; Chen, L.; Meng, L.; Chen, F.; Kong, J. Nickel silicide nanocrystal-containing magnetoceramics from the bulk pyrolysis of polysilazane and nickelocene. Ceram. Int., 2014, 40(5), 6937-6947.
[http://dx.doi.org/10.1016/j.ceramint.2013.12.017]
[91]
Yan, X.; Cheng, X.; Han, G. Synthesis and magnetic properties of polymer derived metal/SiCN ceramic composites. Key Eng. Mater., 2007, 353-358(2007), 1485-1488.
[92]
Yan, X.; Cheng, X.N.; Li, C.S.; Hauser, R.; Riedel, R. Synthesis and low temperature magnetic properties of metal elements filled polymer-derived SiCN ceramic composites. Mater. Sci. Forum, 2007, 546-549, 2269-2272.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.546-549.2269]
[93]
Liu, H.; Li, S.; Chen, Z. Joining of Cf/SiC ceramic matrix composite using SiC-Si3N4 preceramic polymer. Mater. Sci. Forum, 2005, 1267-1270.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.475-479.1267]
[94]
Liu, H.L.; Tian, C.Y.; Wu, M.Z. Technique of joining of Cf/SiC composite via preceramic silicone polysilazane and joining properties. Zhongguo Youse Jinshu Xuebao, 2008, 18, 278-281.
[95]
Jia, J.; Li, C.; Chen, Q.; Bai, S.; Chang, J.; Xiong, D.; Gao, M.; Li, S.; Xiao, J. Effects of SiC content on the mechanical and thermophysical properties of 3D Cf/SiC–Al composites. Ceram. Int., 2022, 48(14), 20571-20578.
[http://dx.doi.org/10.1016/j.ceramint.2022.04.024]
[96]
Liu, H.; Li, M. Effect of active filler on joining property of silicon carbide to itself by polysilazane. Hanjie Xuebao/Trans. China Welding Institut, 2008, 29(6), 65-67.
[97]
Liu, H.; Li, S.; Li, X. Effect of nickel nanopowders addition on joining property of silicon carbide to itself by polysilazane. Xiyou Jinshu Cailiao Yu Gongcheng. Rare Met. Mater. Eng., 2005, 34, 1905-1908.
[98]
Coan, T.; Barroso, G.S.; Machado, R.A.F.; de Souza, F.S.; Spinelli, A.; Motz, G. A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection. Prog. Org. Coat., 2015, 89, 220-230.
[http://dx.doi.org/10.1016/j.porgcoat.2015.09.011]
[99]
Shayed, M.A.; Hund, R.D.; Cherif, C. Polysilazane-based heat- and oxidation-resistant coatings on carbon fibers. J. Appl. Polym. Sci., 2012, 124(3), 2022-2029.
[http://dx.doi.org/10.1002/app.35228]
[100]
Luan, X.; Chang, S.; Riedel, R.; Cheng, L. An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route. Ceram. Int., 2018, 44(7), 8476-8483.
[http://dx.doi.org/10.1016/j.ceramint.2018.02.045]
[101]
Xiao, F.; Zhang, Z.; Zeng, F.; Luo, Y.; Xu, C. Fabrication of ceramic coatings from polysilazane/aluminum: Effect of aluminum content on chemical composition, microstructure, and mechanical properties. Ceram. Int., 2014, 40(1), 745-752.
[http://dx.doi.org/10.1016/j.ceramint.2013.06.064]
[102]
Huang, X.; Wang, D.; Hu, L.; Song, J.; Chen, Y. Preparation of a novel antibacterial coating precursor and its antibacterial mechanism. Appl. Surf. Sci., 2019, 465, 478-485.
[http://dx.doi.org/10.1016/j.apsusc.2018.09.160]
[103]
Kappa, M.; Kebianyor, A.; Scheffler, M. A two-component preceramic polymer system for structured coatings on metals. Thin Solid Films, 2010, 519(1), 301-305.
[http://dx.doi.org/10.1016/j.tsf.2010.08.091]
[104]
Fedel, M.; Rodríguez Gómez, F.J.; Rossi, S.; Deflorian, F. Characterization of polyorganosilazane-derived hybrid coatings for the corrosion protection of mild steel in chloride solution. Coatings, 2019, 9(10), 680.
[http://dx.doi.org/10.3390/coatings9100680]
[105]
Amouzou, D.; Fourdrinier, L.; Maseri, F.; Sporken, R. Formation of Me–O–Si covalent bonds at the interface between polysilazane and stainless steel. Appl. Surf. Sci., 2014, 320, 519-523.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.109]
[106]
Huo, X.; Guo, K.; Wang, F.; Zhu, Y.; Qi, H. Preparation of hybrid cyanate ester resin in the presence of polysilazane and its properties. High Perform. Polym., 2021, 33(2), 184-195.
[http://dx.doi.org/10.1177/0954008320951610]
[107]
Anand, R.; Nayak, B.B.; Behera, S.K. Phase, nanostructure, and oxidation of precursor derived SiCN–TiO2 ceramic nanocomposites. Ceram. Int., 2021, 47(19), 27822-27832.
[http://dx.doi.org/10.1016/j.ceramint.2021.06.210]
[108]
Liu, X.; Li, M.; Liu, H.; Duan, W.; Fasel, C.; Chen, Y.; Qu, F.; Xie, W.; Fan, X.; Riedel, R.; Weidenkaff, A. Nanocellulose-polysilazane single-source-precursor derived defect-rich carbon nanofibers/SiCN nanocomposites with excellent electromagnetic absorption performance. Carbon, 2022, 188, 349-359.
[http://dx.doi.org/10.1016/j.carbon.2021.11.058]
[109]
Yang, K.; Cheng, L.; An, L.; Shao, G. Ceramic nanocomposites reinforced with a high volume fraction of carbon nanotubes. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32(1), 47-50.
[http://dx.doi.org/10.1007/s11595-017-1556-3]
[110]
Jeong, H.R.; Huh, T.H.; Kim, B.H.; Kwark, Y.J. Preparation of conductive Si/C/N/Ni ceramic nanocomposites using phenyl-substituted polysilazane and nickelocene as precursors. Ceram. Int., 2022, 48(12), 16576-16583.
[http://dx.doi.org/10.1016/j.ceramint.2022.02.202]
[111]
Kim, K.; Ryu, S.; Kim, J. Melt-processable aggregated boron nitride particle via polysilazane coating for thermal conductive composite. Ceram. Int., 2017, 43(2), 2441-2447.
[http://dx.doi.org/10.1016/j.ceramint.2016.11.038]
[112]
Schwab, S.T.; Graef, R.C.; Davidson, D.L. Processing of SiC fiber reinforced SI3N4 composites using preceramic polymersAmerican Society of Mechanical Engineers; Aerospace Division (Publication) AD, 1991.
[113]
Song, Y.C.; Zhao, Y.; Feng, C.X.; Lu, Y. Synthesis and pyrolysis of polysilazane as the precursor of Si3N4/SiC ceramic. J. Mater. Sci., 1994, 29(21), 5745-5756.
[http://dx.doi.org/10.1007/BF00349975]
[114]
Ribeiro, L.F.B.; Flores, O.; Furtat, P.; Gervais, C.; Kempe, R.; Machado, R.A.F.; Motz, G. A novel PAN/silazane hybrid polymer for processing of carbon-based fibres with extraordinary oxidation resistance. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(2), 720-729.
[http://dx.doi.org/10.1039/C6TA09293D]
[115]
Liu, Y.; Chen, K.; Dong, F.; Peng, S.; Cui, Y.; Zhang, C.; Han, K.; Yu, M.; Zhang, H. Effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers. Ceram. Int., 2018, 44(9), 10199-10203.
[http://dx.doi.org/10.1016/j.ceramint.2018.03.012]
[116]
Wang, Z.; Han, K.; Zhang, J. Study on the melt spinnability of polyborosilazane. ICAFPM 2011-Proceedings of 2011 International Conference on Advanced Fibers and Polymer Materials, 2011.
[117]
Ma, B.; Cao, Y.; Gao, Y.; Wang, Y. Fabrication of a thin double-layer thermistor based on DVB-modified polymer-derived SiCN ceramics. J. Alloys Compd., 2018, 732, 491-497.
[http://dx.doi.org/10.1016/j.jallcom.2017.10.242]
[118]
Jung, S.; Seo, D.; Lombardo, S.J. Fabrication using filler controlled pyrolysis and characterization of polysilazane PDC RTD arrays on quartz wafers, Sensor. Actuat. A-Phys., 2012, 175, 53-59.
[119]
Li, X.; Chen, S.; Ying, P.; Gao, F.; Liu, Q.; Shang, M.; Yang, W. A giant negative piezoresistance effect in 3C-SiC nanowires with B dopants. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(27), 6466-6472.
[http://dx.doi.org/10.1039/C6TC01882C]
[120]
Hu, L.H.; Raj, R.; Riedel, R. Semiconductive behavior of polymer-derived SiCN ceramics for hydrogen sensing. J. Am. Ceram. Soc., 2015, 98(4), 1052-1055.
[http://dx.doi.org/10.1111/jace.13520]
[121]
Nakashima, H.; Koyama, S.; Kuroda, K.; Sugahara, Y. Conversion of a precursor derived from cage-type and cyclic molecular building blocks into Al-Si-N-C ceramic composites. J. Am. Ceram. Soc., 2002, 85(1), 59-64.
[http://dx.doi.org/10.1111/j.1151-2916.2002.tb00039.x]
[122]
Qi, G.J.; Zhang, C.R.; Hu, H.F. Synthesis and characterization of perhydropolysilazane. Guofang Ke-ji Daxue Xuebao, 2005, 27, 14-17.
[123]
Zimmermann, C.J.; Partch, R.E.; Matijevic, E. Synthesis of a silazane polymer by chemical reaction in an aerosol: A precursor for silicon nitride. J. Aerosol Sci., 1991, 22(7), 881-886.
[http://dx.doi.org/10.1016/0021-8502(91)90081-R]
[124]
Wen, G.; Bai, H.; Huang, X.; Han, Z. Lotus-type porous SiOCN ceramic fabricated by undirectional solidification and pyrolysis. J. Am. Ceram. Soc., 2011, 94(5), 1309-1313.
[http://dx.doi.org/10.1111/j.1551-2916.2011.04440.x]
[125]
Zhao, Y.; Shao, C.; Ji, X.; Zhang, S. Synthesis and characterization of meltable and soluble reticulating polysilazane modified via melamine toward SiCN ternary ceramics. J. Inorg. Organomet. Polym. Mater., 2020, 30(6), 2017-2026.
[http://dx.doi.org/10.1007/s10904-019-01365-z]
[126]
Wang, J.; Schölch, V.; Görke, O.; Schuck, G.; Wang, X.; Shao, G.; Schorr, S.; Bekheet, M.F.; Gurlo, A. Metal-containing ceramic nanocomposites synthesized from metal acetates and polysilazane. Open Ceram., 2020, 1, 100001.
[http://dx.doi.org/10.1016/j.oceram.2020.100001]
[127]
Wang, C.; Song, N.; Ni, L.; Bao, C. Synthesis, thermal properties, and ceramization of a novel ethynylaniline-terminated polysilazane. High Perform. Polym., 2016, 28(3), 359-367.
[http://dx.doi.org/10.1177/0954008315583161]
[128]
Wang, C.C.; Song, N.; Ni, L.Z. Synthesis, thermal properties and ceramization performance of ethynylaniline-terminated polysilazane. Huadong Ligong Daxue Xuebao J. East China Uni. Sci. Technol., 2015, 41, 593-598.
[129]
Abarca, S.A.C.; Flores, O.; Prette, A.L.G. Synthesis and thermal characterization of silicon-based hybrid polymer. Chem. Eng. Trans., 2013, 32, 1621-1626.
[130]
Lee, J.; Butt, D.P.; Baney, R.H.; Bowers, C.R.; Tulenko, J.S. Synthesis and pyrolysis of novel polysilazane to SiBCN ceramic. J. Non-Cryst. Solids, 2005, 351(37-39), 2995-3005.
[http://dx.doi.org/10.1016/j.jnoncrysol.2005.06.038]
[131]
Wang, H.; Yu, J.S.; Li, X.; Kim, D. Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template. Chem. Commun. (Camb.), 2004, 20(20), 2352-2353.
[http://dx.doi.org/10.1039/b407350a] [PMID: 15490016]
[132]
Xu, C.; Liu, C.; Zheng, Z.; Li, Y.; Zhang, Z.; Yang, S.; Xie, Z. Synthesis and pyrolysis of polysilazane precursors containing linear-cyclic structures for Si/N/C-based ceramics. J. Appl. Polym. Sci., 2001, 82(11), 2827-2831.
[http://dx.doi.org/10.1002/app.2136]
[133]
Li, Y.; Zheng, Z.; Reng, C.; Zhang, Z.; Gao, W.; Yang, S.; Xie, Z. Preparation of Si-C-N-Fe magnetic ceramics from iron-containing polysilazane. Appl. Organomet. Chem., 2003, 17(2), 120-126.
[http://dx.doi.org/10.1002/aoc.400]
[134]
Iwamoto, Y.; Kikuta, K.; Hirano, S. Synthesis of poly-titanosilazanes and conversion into Si3N4-TiN ceramics. J. Ceram. Soc. Jpn., 2000, 108(1256), 350-356.
[http://dx.doi.org/10.2109/jcersj.108.1256_350]
[135]
Hu, H.; Chen, Z.; Xiao, J.; Zheng, W. Synthesis and characterization of polysilazane precursor. J. Mater. Sci. Lett., 1999, 18(16), 1271-1272.
[http://dx.doi.org/10.1023/A:1006696910212]
[136]
Zhang, Q.; Yang, Z.; Jia, D.; Chen, Q.; Zhou, Y. Synthesis and structural evolution of dual-boron-source-modified polysilazane derived SiBCN ceramics. New J. Chem., 2016, 40(8), 7034-7042.
[http://dx.doi.org/10.1039/C5NJ03723A]
[137]
Sujith, R.; Kousaalya, A.B.; Kumar, R. Synthesis and phase stability of precursor derived HfO2/Si–C–N–O nanocomposites. Ceram. Int., 2012, 38(2), 1227-1233.
[http://dx.doi.org/10.1016/j.ceramint.2011.08.053]
[138]
Li, Q.; Yin, X.; Feng, L. Dielectric properties of Si3N4–SiCN composite ceramics in X-band. Ceram. Int., 2012, 38(7), 6015-6020.
[http://dx.doi.org/10.1016/j.ceramint.2012.03.045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy