Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Review on the Encapsulation, Microencapsulation, and Nano- Encapsulation: Synthesis and Applications in the Process Industry for Corrosion Inhibition

Author(s): Jotiram Gujar*, Sanjay Patil and Shriram Sonawane

Volume 20, Issue 3, 2024

Published on: 31 March, 2023

Page: [314 - 327] Pages: 14

DOI: 10.2174/1573413719666230223142832

Price: $65

Abstract

Background: Surfaces of materials often corrode and deteriorate due to environmental conditions. There are various widely used methods of reducing corrosion rates to increase the lifetime of materials and equipment. Recently, there has been a growth in the use of nanotechnology to protect metals against corrosion. The application of nano-encapsulation techniques in the process industry is one of the important eras of nanotechnology. This review paper focuses on encapsulation, microencapsulation, and nano-encapsulation methods, emphasizing nanoencapsulation applications as corrosion inhibitions in the process industry.

Methods: Materials based on the self-healing mechanism were used in advanced applications such as structures, batteries, and coatings. These technologies may be studied in two ways: compounds with intrinsic self-healing properties and extrinsic self-healing materials with additives such as microcapsules filled with healing agents. Nano-coatings have advantages, like accelerated ground hardness, adhesive energy, long-time period and/or high-temperature corrosion resistance, tribological residence enhancement, etc. Nano-coatings can also be carried out in thinner and smoother layers, considering flexibility, accelerated performance, decreased fuel costs, and smaller carbon footprints, as well as occasional maintenance. The review of corrosion characteristics of polymeric nanocomposite material was discussed in this paper.

Results: This review paper presents an updated overview summarizing the latest advances in the various micro/nanocarriers used for self-healing corrosion protective coatings.

Conclusion: With this information, the investigators will be able to modify the structure of the inhibitor to get the necessary corrosion inhibition capabilities. The need for a physical examination is rising as a result.

Graphical Abstract

[1]
Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev., 2015, 44(16), 5793-5805.
[http://dx.doi.org/10.1039/C4CS00362D] [PMID: 25669838]
[2]
Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization and application of ultra-small nanoparticles. Chem. Mater., 2014, 26(1), 59-71.
[http://dx.doi.org/10.1021/cm402225z]
[3]
Dong, F.; Koodali, R.T.; Wang, H.; Ho, W. Nanomaterials for environmental applications. J. Nanomater., 2014, 2014, 1-4.
[http://dx.doi.org/10.1155/2014/276467]
[4]
Salata, O.V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[5]
Sabir, S.; Arshad, M.; Chaudhari, S.K. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. ScientificWorldJournal, 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/925494] [PMID: 25436235]
[6]
Hakke, V.; Sonawane, S.; Anandan, S.; Sonawane, S.; Ashokkumar, M. Process intensification approach using microreactors for synthesizing nanomaterials—A Critical Review. Nanomaterials (Basel), 2021, 11(1), 98.
[http://dx.doi.org/10.3390/nano11010098] [PMID: 33406661]
[7]
Kumar, N. Sonawane, S.H.S.; Shriram S. Sonawane; Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluids. Int. Commun. Heat Mass Transf., 2018, 90, 1-10.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.10.001]
[8]
King, T.; Osmond-McLeod, M.J.; Duffy, L.L. Nanotechnology in the food sector and potential applications for the poultry industry. Trends Food Sci. Technol., 2018, 72, 62-73.
[http://dx.doi.org/10.1016/j.tifs.2017.11.015]
[9]
Thakur, P.; Sonawane, S.; Potoroko, I.; Sonawane, S.H. Recent advances in ultrasound-assisted synthesis of nano-emulsions and their industrial applications. Curr. Pharm. Biotechnol., 2021, 22(13), 1748-1758.
[http://dx.doi.org/10.2174/18734316MTExaMTkhx] [PMID: 33148154]
[10]
Kumbhakar, P.; Ray, S.S.; Stepanov, A.L. Optical properties of nanoparticles and nanocomposites; J. Nanometer, 2014, 2014, .
[http://dx.doi.org/10.1155/2014/181365]
[11]
Patil, P.; Gujar, J.G.; Chavan, S.S.; Shriram, S.S. Rejection behaviour of manganese ions from synthetic wastewater by nanofiltration membrane. J. Indian Assoc. Environ. Manag., 2022, 42(2), 1-14.
[http://dx.doi.org/10.56042/jiaem.v42i2.62640]
[12]
Khodair, Z.T.; Khadom, A.A.; Jasim, H.A. Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating preparation, characterization and mathematical views. J. Mater. Res. Technol., 2019, 8(1), 424-435.
[http://dx.doi.org/10.1016/j.jmrt.2018.03.003]
[13]
Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Self-healing mechanisms in smart protective coatings: A review. Corros. Sci., 2018, 144, 74-88.
[http://dx.doi.org/10.1016/j.corsci.2018.08.005]
[14]
Jud, K.; Kausch, H.H.; Williams, J.G. Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci., 1981, 16(1), 204-210.
[http://dx.doi.org/10.1007/BF00552073]
[15]
Honarvar, M.; Zhang, N.Y.; Gang, A.M.; Jiang, X.; Yu, J.; Shi, W.X. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. Prog. Org. Coat., 2022, 162, 106573.
[http://dx.doi.org/10.1016/j.porgcoat.2021.106573]
[16]
Ouarga, A.; Lebaz, N.; Tarhini, M.; Noukrati, H.; Barroug, A.; Elaissari, A. Towards smart self-healing coatings: Advances in micro/nano-encapsulation processes as carriers for anti-corrosion coatings development. J. Mol. Liq., 2022, 354, 118862.
[http://dx.doi.org/10.1016/j.molliq.2022.118862]
[17]
Liu, T.; Ma, L.; Wang, X.; Wang, J.; Qian, H.; Zhang, D.; Li, X. Self-healing corrosion protective coatings based on micro/nanocarriers: A review. Corrosion Communications, 2021, 1, 18-25.
[http://dx.doi.org/10.1016/j.corcom.2021.05.004]
[18]
Wang, L.; Deng, L.; Zhang, D.; Qian, H.; Du, C.; Li, X.; Mol, J.M.C.; Terryn, H.A. Shape memory composite (SMC) self-healing coatings for corrosion protection. Prog. Org. Coat., 2016, 97, 261-268.
[http://dx.doi.org/10.1016/j.porgcoat.2016.04.041]
[19]
Judit, T.; Abdu, S.; Gyöngy, V. Micro/nano-capsules for anticorrosion coatings. In: Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization-Micro and Nano Technologies; Elsevier, 2016; pp. 521-551.
[20]
Khedkar, R.S.; Shrivastava, N.; Sonawane, S.S.; Wasewar, K.L. Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluids. Int. Commun. Heat Mass Transf., 2016, 73, 54-61.
[21]
Reginald, D. What are Nanocapsules?. AZoNano. Retrieved 2023. https://www.azonano.com/article.aspx?ArticleID=5846
[22]
An, S.; Lee, M.W.; Yarin, A.L.; Yoon, S.S. A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem. Eng. J., 2018, 344, 206-220.
[http://dx.doi.org/10.1016/j.cej.2018.03.040]
[23]
Jafari, S.M.; Fathi, M.; Mandala, I. Emerging product formation; Academic Press: San Diego, CA, 2015, pp. 293-317.
[24]
Gómez-Mascaraque, L.G.; Lagarón, J.M.; López-Rubio, A. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll., 2015, 49, 42-52.
[http://dx.doi.org/10.1016/j.foodhyd.2015.03.006]
[25]
Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Lebensm. Wiss. Technol., 2011, 44(9), 1908-1914.
[http://dx.doi.org/10.1016/j.lwt.2011.03.003]
[26]
Chakraborty, S.; Liao, I.C.; Adler, A.; Leong, K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev., 2009, 61(12), 1043-1054.
[http://dx.doi.org/10.1016/j.addr.2009.07.013] [PMID: 19651167]
[27]
Kailasapathy, K. Microencapsulation of probiotic bacteria: technology and potential applications. Curr. Issues Intest. Microbiol., 2002, 3(2), 39-48.
[PMID: 12400637]
[28]
Fustier, C.; Champagne, C.P.; Fustier, P. Microencapsulation for the improved delivery of bioactive compounds into foods. Curr. Opin. Biotechnol., 2007, 18(2), 184-190.
[29]
Abou Elmaaty, T.; Sayed-Ahmed, K.; Mondal, M.I. Microbial (viruses, bacteria and fungi) protective personal clothing. In: Protective Textiles from Natural Resources; Woodhead Publishing, 2022; pp. 199-226.
[30]
Augustin, M.A.; Hemar, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem. Soc. Rev., 2009, 38(4), 902-912.
[http://dx.doi.org/10.1039/B801739P] [PMID: 19421570]
[31]
Kircheva, N.; Dobrev, S.; Nikolova, V.; Angelova, S.; Dudev, T. Zinc and its critical role in Retinitis pigmentosa: Insights from DFT/SMD Calculations. Inorg. Chem., 2020, 59(23), 17347-17355.
[http://dx.doi.org/10.1021/acs.inorgchem.0c02664] [PMID: 33215912]
[32]
Rodrigues, D.R.; Shami, T.C.; Bhasker Rao, K.U. Microencapsulation technology and applications. Def. Sci. J., 2009, 59(1), 82-95.
[http://dx.doi.org/10.1533/9780857097613.1.78]
[33]
Bon, S.A. Pickering emulsion polymerization: SAF Bon Pickering suspension, mini-emulsion and emulsion polymerization. In: Ngai,T.; Bon, S.A.F., Eds.; Particle-stabilized emulsions and colloids:formation and applications; Royal Society of Chemistry: Cambridge,UK , 2015; pp. 65-92.
[http://dx.doi.org/10.1039/9781782620143]
[34]
Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application (Engineering Materials and Processes); Springer: Berlin, Germany, 2009.
[http://dx.doi.org/10.1007/978-1-84882-671-7]
[35]
Ayoub, A.; Sood, M.; Singh, J.; Bandral, J.D.; Gupta, N.; Bhat, A. Microencapsulation and its applications in food industry. J. Pharmacogn. Phytochem., 2019, 8(3), 32-37.
[36]
Wei, H. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem., 2015, 3, 469-480.
[http://dx.doi.org/10.1039/C4TA04791E]
[37]
Ekman, B.; Sjöholm, I. Improved stability of proteins immobilized in microparticles prepared by a modified emulsion polymerization technique. J. Pharm. Sci., 1978, 67(5), 693-696.
[http://dx.doi.org/10.1002/jps.2600670533] [PMID: 417171]
[38]
Sun, J.; Wang, Y.; Li, N.; Tian, L. Tribological and anticorrosion behavior of self-healing coating containing nanocapsules. Tribol. Int., 2019, 136, 332-341.
[http://dx.doi.org/10.1016/j.triboint.2019.03.062]
[39]
Trifkovic, K. Tadić G.; Bugarski, B. Short overview of encapsulation technologies for delivery of bioactives to food. J. Eng. Proc. Manag., 2017, 8(1), 103-111.
[http://dx.doi.org/10.7251/JEPMEN1608103T]
[40]
Ghosh, S.K. Self-healing Materials Fundamentals, Design Strategies, and Applications; Wiley VCH: America, NY, 2009.
[41]
Yang, J.; Keller, M.W.; Moore, J.S.; White, S.R.; Sottos, N.R. Microencapsulation of isocyanates for self-healing polymers. Macromolecules, 2008, 41(24), 9650-9655.
[http://dx.doi.org/10.1021/ma801718v]
[42]
Brown, E.N.; Kessler, M.R.; Sottos, N.R.; White, S.R. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J. Microencapsul., 2003, 20(6), 719-730.
[http://dx.doi.org/10.3109/02652040309178083] [PMID: 14594661]
[43]
Ghorab, M.M.; Zia, H.; Luzzi, L.A. Preparation of controlled release anticancer agents I: 5-fluorouracil-ethyl cellulose microspheres. J. Microencapsul., 1990, 7(4), 447-454.
[http://dx.doi.org/10.3109/02652049009040466] [PMID: 2266469]
[44]
Alex, R.; Bodmeier, R. Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. J. Microencapsul., 1990, 7(3), 347-355.
[http://dx.doi.org/10.3109/02652049009021845] [PMID: 2384837]
[45]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[46]
McDonald, C.J.; Devon, M.J. Hollow latex particles: synthesis and applications. Adv. Colloid Interface Sci., 2002, 99(3), 181-213.
[http://dx.doi.org/10.1016/S0001-8686(02)00034-9] [PMID: 12509114]
[47]
Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev., 2012, 112(7), 4124-4155.
[http://dx.doi.org/10.1021/cr200434v] [PMID: 22452296]
[48]
Guo, L.; Wu, W.; Zhou, Y.; Zhang, F.; Zeng, R.; Zeng, J. Layered double hydroxide coatings on magnesium alloys: A review. J. Mater. Sci. Technol., 2018, 34(9), 1455-1466.
[http://dx.doi.org/10.1016/j.jmst.2018.03.003]
[49]
Zeng, R.; Liu, Z.; Zhang, F.; Li, S.; Cui, H.; Han, E. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. J. Mater. Chem., 2014, 2, 13049-13057.
[http://dx.doi.org/10.1039/C4TA01341G]
[50]
Tedim, J.; Zheludkevich, M.L.; Bastos, A.C.; Salak, A.N.; Lisenkov, A.D.; Ferreira, M.G.S. Influence of preparation conditions of Layered Double Hydroxide conversion films on corrosion protection. Electrochim. Acta, 2014, 117, 164-171.
[http://dx.doi.org/10.1016/j.electacta.2013.11.111]
[51]
Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.; Ramezanzadeh, B.; Farashi, S. Active corrosion protection of Mg-Al-PO 4 3− LDH nanoparticle in silane primer coated with epoxy on mild steel. J. Taiwan Inst. Chem. Eng., 2017, 75, 248-262.
[http://dx.doi.org/10.1016/j.jtice.2017.03.010]
[52]
Li, D.; Wang, F.; Yu, X.; Wang, J.; Liu, Q.; Yang, P.; He, Y.; Wang, Y.; Zhang, M. Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate. Prog. Org. Coat., 2011, 71(3), 302-309.
[http://dx.doi.org/10.1016/j.porgcoat.2011.03.023]
[53]
Zhang, M.; Ma, L.; Wang, L.; Sun, Y.; Liu, Y. Insights into the use of metal organic framework as high-performance anticorrosion coatings. ACS Appl. Mater. Interfaces, 2018, 10(3), 2259-2263.
[http://dx.doi.org/10.1021/acsami.7b18713] [PMID: 29314820]
[54]
Behera, A.; Mallick, P.; Mohapatra, S.S. Nanocoatings for anticorrosion an introduction. Corrosion Protection at the Nanoscale Micro and Nano Technologies; Eisevier, 2020, pp. 227-243.
[http://dx.doi.org/10.1016/B978-0-12-819359-4.00013-1]
[55]
Dana, H. A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials (Basel), 2019, 12(2), 210.
[http://dx.doi.org/10.3390/ma12020210]
[56]
Stansbury, E.E.; Buchanan, R.A. Fundamentals of electrochemical corrosion., ASM international, .
[57]
Baena.; L.M.; Gómez.; M.; Calderón.; J.A. Aggressiveness of a 20% bioethanol-80% gasoline mixture on autoparts I behavior of metallic materials and evaluation of their electrochemical properties. Fuel, 2012, 312-319.
[http://dx.doi.org/10.1016/j.fuel.2011.12.003]
[58]
Du, D.; Chen, K.; Lu, H.; Zhang, L.; Shi, X.; Xu, X.; Andresen, P.L. Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water. Eval. Program Plann., 2016, 110, 134-142.
[http://dx.doi.org/10.1016/j.corsci.2016.04.035]
[59]
Rahmani, K.; Jadidian, R.; Haghtalab, S. Evaluation of inhibitors and biocides on the corrosion, scaling and biofouling control of carbon steel and copper-nickel alloys in a power plant cooling water system. Desalination, 2015, 393, 174-185.
[60]
Ejaz, H.; Gujar, J.G.; Sonawane, S.S. Kinetics and isotherm studies for adsorption of boron from water using titanium dioxide. Can. J. Chem. Eng., 2023, 101(3), 1335-1344.
[http://dx.doi.org/10.1002/cjce.24429]
[61]
Li, Q.; Zeng, D.; An, M. Elevating the photo-generated cathodic protection of corrosion product layers on electrogalvanized steel through nano-electro deposition. Chem. Phys. Lett., 2019, 722, 1-5.
[http://dx.doi.org/10.1016/j.cplett.2019.02.030]
[62]
Berger, L.M.; Stahr, C.C.; Saaro, S.; Thiele, S.; Kelling, N. Dry sliding up to 7.5 m/s and 800_C of thermally sprayed coatings of the TiO2-Cr2O3 system and (Ti,Mo) (C,N)-Ni (Co). Wear, 2009, 267, 954-964.
[63]
Chen, S.S.; Li, W.H.; Zeng, X.R. Enhanced room-temperature plasticity in a Zr-based glassy alloy by micro-arcoxidation treatment. J. Non-Cryst. Solids, 2018, 502, 184-189.
[http://dx.doi.org/10.1016/j.jnoncrysol.2018.09.009]
[64]
Carneiro, J.O.; Teixeira, V.; Carvalho, P.; Azevedo, S.; Manninen, N. Self-cleaning smart nanocoatings.Nanocoatings and Ultra-Thin Films. In: Nanocoatings and Ultra-Thin Films Technologies and Applications; Woodhead Publishing, 2011, pp. 397-413.
[65]
Ren, Q.; Chen, J.; Chu, F.; Li, J.; Fang, J. Graphene/star polymer nanocoating. Prog. Org. Coat., 2017, 103, 15-22.
[http://dx.doi.org/10.1016/j.porgcoat.2016.11.026]
[66]
Kumar, A.; Thakur, A. Encapsulated nanoparticles in organic polymers for corrosion inhibition. In: Corrosion Protection at the Nanoscale; Ed.; Elsevier, 2020; p. 345-362.
[http://dx.doi.org/10.1016/B978-0-12-819359-4.00018-0]
[67]
Guan, X.; Wang, Y.; Xue, Q.; Wang, L. Toward high load bearing capacity and corrosion resistance Cr/Cr2N nano-multilayer coatings against seawater attack. Surf. Coat. Tech., 2015, 282, 78-85.
[http://dx.doi.org/10.1016/j.surfcoat.2015.10.016]
[68]
Kumar, P.U.; Kennady, C.J.; Zhou, Q. Effect of salicylaldehyde on microstructure and corrosion resistance of electrodeposited nanocrystalline Ni–W alloy coatings. Surf. Coat. Tech., 2015, 283, 148-155.
[http://dx.doi.org/10.1016/j.surfcoat.2015.10.056]
[69]
Youssef, K.M.S.; Koch, C.C.; Fedkiw, P.S. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corros. Sci., 2004, 46(1), 51-64.
[http://dx.doi.org/10.1016/S0010-938X(03)00142-2]
[70]
Selvi, V.E.; Seenivasan, H.; Rajam, K.S. Electrochemical corrosion behavior of pulse and DC electrodeposited Co–P coatings. Surf. Coat. Tech., 2012, 206(8-9), 2199-2206.
[http://dx.doi.org/10.1016/j.surfcoat.2011.09.063]
[71]
Jung, H.; Alfantazi, A. An electrochemical impedance spectroscopy and polarization study of nanocrystalline Co and Co–P alloy in 0.1M H2SO4 solution. Electrochim. Acta, 2006, 51(8-9), 1806-1814.
[http://dx.doi.org/10.1016/j.electacta.2005.06.037]
[72]
Wang, L.; Zhang, J.; Gao, Y.; Xue, Q.; Hu, L.; Xu, T. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution. Scr. Mater., 2006, 55(7), 657-660.
[http://dx.doi.org/10.1016/j.scriptamat.2006.04.009]
[73]
Afshari, V.; Dehghanian, C. Effects of grain size on the electrochemical corrosion behaviour of electrodeposited nanocrystalline Fe coatings in alkaline solution. Corros. Sci., 2009, 51(8), 1844-1849.
[http://dx.doi.org/10.1016/j.corsci.2009.05.015]
[74]
Feng, Z.; Li, Q.; Zhang, J.; Yang, P.; Song, H.; An, M. Electrodeposition of nanocrystalline Zn–Ni coatings with single gamma phase from an alkaline bath. Surf. Coat. Tech., 2015, 270(270), 47-56.
[http://dx.doi.org/10.1016/j.surfcoat.2015.03.020]
[75]
Longfei, Z.; Shoufu, L.; Pengxing, L. A study on the anodic polarization behaviours of electroless nickel coatings in acidic, alkaline and neutral solutions. Surf. Coat. Tech., 1988, 36(1-2), 455-462.
[http://dx.doi.org/10.1016/0257-8972(88)90173-9]
[76]
Wang, L.; Lin, Y.; Zeng, Z.; Liu, W.; Xue, Q.; Hu, L.; Zhang, J. Electrochemical corrosion behavior of nanocrystalline Co coatings explained by higher grain boundary density. Electrochim. Acta, 2007, 52(13), 4342-4350.
[http://dx.doi.org/10.1016/j.electacta.2006.12.009]
[77]
Lu, H.B.; Li, Y.; Wang, F.H. Enhancement of the electrochemical behavior for Cu–70Zr alloy by grain refinement. Surf. Coat. Tech., 2006, 201(6), 3393-3398.
[http://dx.doi.org/10.1016/j.surfcoat.2006.07.208]
[78]
Mosavat, S.H.; Shariat, M.H.; Bahrololoom, M.E. Study of corrosion performance of electrodeposited nanocrystalline Zn–Ni alloy coatings. Corros. Sci., 2012, 59(59), 81-87.
[http://dx.doi.org/10.1016/j.corsci.2012.02.012]
[79]
Aglan, A.; Allie, A.; Ludwick, A.; Koons, L. Formulation and evaluation of nano-structured polymeric coatings for corrosion protection. Surf. Coat. Tech., 2007, 202(2), 370-378.
[http://dx.doi.org/10.1016/j.surfcoat.2007.05.090]
[80]
Liu, T.; Zhang, D.; Ma, L.; Huang, Y.; Hao, X. Terryn d H.; Mol A.; Li X. Smart protective coatings with self‐sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers. Corros. Sci., 2022, 200, 110254.
[http://dx.doi.org/10.1016/j.corsci.2022.110254]
[81]
Fayyad, E.M.; Sadasivuni, K.K.; Ponnamma, D.; Al-Maadeed, M.A.A. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel. Carbohydr. Polym., 2016, 151(151), 871-878.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.001] [PMID: 27474635]
[82]
Di, H.; Yu, Z.; Ma, Y.; Zhang, C.; Li, F.; Lv, L.; Pan, Y.; Shi, H.; He, Y. Corrosion-resistant hybrid coatings based on graphene oxide–zirconia dioxide/epoxy system. J. Taiwan Inst. Chem. Eng., 2016, 67(67), 511-520.
[http://dx.doi.org/10.1016/j.jtice.2016.08.008]
[83]
Chen, L.; Song, R.G.; Li, X.W.; Guo, Y.Q.; Wang, C.; Jiang, Y. The improvement of corrosion resistance of fluoropolymer coatings by SiO2/poly(styrene-co-butyl acrylate) nanocomposite particles. Appl. Surf. Sci., 2015, 353(353), 254-262.
[http://dx.doi.org/10.1016/j.apsusc.2015.06.148]
[84]
Radhakrishnan, S.; Siju, C.R.; Mahanta, D.; Patil, S.; Madras, G. Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim. Acta, 2009, 54(4), 1249-1254.
[http://dx.doi.org/10.1016/j.electacta.2008.08.069]
[85]
Patil, R.C.; Radhakrishnan, S. Conducting polymer based hybrid nano-composites for enhanced corrosion protective coatings. Prog. Org. Coat., 2006, 57(4), 332-336.
[http://dx.doi.org/10.1016/j.porgcoat.2006.09.012]
[86]
Mahato, N.; Cho, M.H. Graphene integrated polyaniline nanostructured composite coating for protecting steels from corrosion: Synthesis, characterization, and protection mechanism of the coating material in acidic environment. Constr. Build. Mater., 2016, 115(115), 618-633.
[http://dx.doi.org/10.1016/j.conbuildmat.2016.04.073]
[87]
Bhanvase, B.A.; Sonawane, S.H. New approach for simultaneous enhancement of anticorrosive and mechanical properties of coatings: Application of water repellent nano CaCO3–PANI emulsion nanocomposite in alkyd resin. Chem. Eng. J., 2010, 156(1), 177-183.
[http://dx.doi.org/10.1016/j.cej.2009.10.013]
[88]
Jafari, Y.; Ghoreishi, S.M.; Shabani-Nooshabadi, M. Polyaniline/Graphene nanocomposite coatings on copper: Electropolymerization, characterization, and evaluation of corrosion protection performance. Synth. Met., 2016, 217(217), 220-230.
[http://dx.doi.org/10.1016/j.synthmet.2016.04.001]
[89]
Rahman, O.; Kashif, M.; Ahmad, S. Nanoferrite dispersed waterborne epoxy-acrylate: Anticorrosive nanocomposite coatings. Prog. Org. Coat., 2015, 80(80), 77-86.
[http://dx.doi.org/10.1016/j.porgcoat.2014.11.023]
[90]
Dhoke, S.K.; Mangal Sinha, T.J.; Khanna, A.S. Effect of nano-Al2O3 particles on the corrosion behavior of alkyd based waterborne coatings. J. Coat. Technol. Res., 2009, 6(3), 353-368.
[http://dx.doi.org/10.1007/s11998-008-9127-3]
[91]
Dhoke, S.K.; Khanna, A.S.; Sinha, T.J.M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Prog. Org. Coat., 2009, 64(4), 371-382.
[http://dx.doi.org/10.1016/j.porgcoat.2008.07.023]
[92]
Nguyen-Tri, P.; Nguyen, T.A.; Carriere, P.; Ngo Xuan, C. Nanocomposite coatings: preparation, characterization, properties, and applications. Int. J. Corros., 2018, 2018, 1-19.
[http://dx.doi.org/10.1155/2018/4749501]
[93]
Li, X.; Guerieri, P.; Zhou, W.; Huang, C.; Zachariah, M.R. Direct deposit laminate nanocomposites with enhanced propellent properties. ACS Appl. Mater. Interfaces, 2015, 7(17), 9103-9109.
[http://dx.doi.org/10.1021/acsami.5b00891] [PMID: 25815706]
[94]
Wu, J.; Shen, X.; Jiang, L.; Wang, K.; Chen, K. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Appl. Surf. Sci., 2010, 256(9), 2826-2830.
[http://dx.doi.org/10.1016/j.apsusc.2009.11.034]
[95]
Song, Y.; Liu, Y.; Qi, T.; Li, G.L. Towards dynamic but super tough healable polymers through biomimetic hierarchical hydrogen‐ bonding interactions. Angew. Chem. Int. Ed., 2018, 57(42), 13838-13842.
[http://dx.doi.org/10.1002/anie.201807622] [PMID: 30144244]
[96]
Wu, C.; Liu, Q.; Chen, R.; Liu, J.; Zhang, H.; Li, R.; Takahashi, K.; Liu, P.; Wang, J. Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance. ACS Appl. Mater. Interfaces, 2017, 9(12), 11106-11115.
[http://dx.doi.org/10.1021/acsami.6b16848] [PMID: 28264161]
[97]
Wang, N.; Zhang, Y.; Chen, J.; Zhang, J.; Fang, Q. Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings. Prog. Org. Coat., 2017, 109, 126-134.
[http://dx.doi.org/10.1016/j.porgcoat.2017.04.024]
[98]
Gujar, J.G.; Patil, S.S.; Sonawane, S.S. A review on nanofluids: synthesis, stability, and uses in the manufacturing industry. Curr. Nanomater., 2023, 8(4), 303-318.
[http://dx.doi.org/10.2174/2405461507666220630153637]
[99]
Zhao, Y.; Jiang, F.; Chen, Y-Q.; Hu, J-M. Coatings embedded with GO/MOFs nanocontainers having both active and passive protecting properties. Corros. Sci., 2020, 168, 108563.
[http://dx.doi.org/10.1016/j.corsci.2020.108563]
[100]
Guo, Y.; Wang, J.; Zhang, D.; Qi, T.; Li, G.L. pH-responsive self-healing anticorrosion coatings based on benzotriazole-containing zeolitic imidazole framework. Colloids Surf. A Physicochem. Eng. Asp., 2019, 561, 1-8.
[http://dx.doi.org/10.1016/j.colsurfa.2018.10.044]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy