Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Microwave Synthesizer: A Biomedical Engineering Technique With Advanced Applications

Author(s): Pragati Silakari, Jyoti Singh* and Shaveta Sharma

Volume 17, Issue 1, 2024

Published on: 30 March, 2023

Page: [65 - 76] Pages: 12

DOI: 10.2174/2666145416666230223115523

Price: $65

conference banner
Abstract

In current times, all major discoveries are believed to occur at the intersections of various fields of science. In such a manner, perhaps the main creative region joining material science, biology and medication is the utilization of microwave advances. In such a way, the motivation behind this work was to explain the useful conceivable outcomes of diagnostic, analytical, synthetic and therapeutic microwave advancements. The related exploration and uses of microwave (MW) science are the arising methodologies of modern energy-based green science, on a nuclear and atomic self-aggregating level. As microwaves develop the synthetic response, they have the potential to greatly impact the chemical reaction. This technology has advanced its utilization in the field of research technology, chemical synthesis, diagnostic chemistry, wastewater treatment, and material science. This article cumulates the various available microwave synthesizers in the market with their pros and cons alongside their wide applications.

Graphical Abstract

[1]
Dove ES, Faraj SA, Kolker E, Özdemir V. Designing a post-genomics knowledge ecosystem to translate pharmacogenomics into pub-lic health action. Genome Med 2012; 4(11): 91.
[http://dx.doi.org/10.1186/gm392] [PMID: 23194449]
[2]
Wang Y, O’Connor D, Shen Z, et al. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constitu-ents, synthesizing methods, and influencing factors. J Clean Prod 2019; 226: 540-9.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.128]
[3]
Tundo P, Anastas P, Black DS, et al. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl Chem 2000; 72(7): 1207-28.
[http://dx.doi.org/10.1351/pac200072071207]
[4]
Nagra U, Shabbir M, Zaman M, Mahmood A, Barkat K. Review on methodologies used in the synthesis of metal nanoparticles: Sig-nificance of phytosynthesis using plant extract as an emerging Tool. Curr Pharm Des 2020; 26(40): 5188-204.
[http://dx.doi.org/10.2174/1381612826666200531150218] [PMID: 32473619]
[5]
Bhatia S, Kumar T, Batra S, Sharma S. Pharmaceutical applications of xanthan gum in ophthalmic delivery systems. J Pharm Technol Res Manag 2020; 8: 15-22.
[http://dx.doi.org/10.15415/jptrm.2020.81003]
[6]
Kappe CO. High-speed combinatorial synthesis utilizing microwave irradiation. Curr Opin Chem Biol 2002; 6(3): 314-20.
[http://dx.doi.org/10.1016/S1367-5931(02)00306-X] [PMID: 12023111]
[7]
Chambon D, Lours M, Chapelet F, et al. Design and metrological features of microwave synthesizers for atomic fountain frequency standard. IEEE Trans Ultrason Ferroelectr Freq Control 2007; 54(4): 729-35.
[http://dx.doi.org/10.1109/TUFFC.2007.306] [PMID: 17441582]
[8]
Nüchter M, Ondruschka B, Bonrath W, Gum A. Microwave assisted synthesis – a critical technology overview. Green Chem 2004; 6(3): 128-41.
[http://dx.doi.org/10.1039/B310502D]
[9]
Shields CW IV, Zhu S, Yang Y, et al. Field-directed assembly of patchy anisotropic microparticles with defined shape. Soft Matter 2013; 9(38): 9219-29.
[http://dx.doi.org/10.1039/c3sm51119g] [PMID: 24988939]
[10]
Bharti B, Kogler F, Hall CK, Klapp SHL, Velev OD. Multidirectional colloidal assembly in concurrent electric and magnetic fields. Soft Matter 2016; 12(37): 7747-58.
[http://dx.doi.org/10.1039/C6SM01475E] [PMID: 27537850]
[11]
Trueba A, García S, Otero FM, Vega LM, Madariaga E. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater. Biofouling 2015; 31(1): 19-26.
[http://dx.doi.org/10.1080/08927014.2014.994096] [PMID: 25567299]
[12]
Hoogenboom R, Wilms TFA, Erdmenger T, Schubert US. Microwave-assisted chemistry: A closer look at heating efficiency. Aust J Chem 2009; 62(3): 236-43.
[http://dx.doi.org/10.1071/CH08503]
[13]
Henary M, Kananda C, Rotolo L, Savino B, Owens EA, Cravotto G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances 2020; 10(24): 14170-97.
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[14]
Mehta VP, Van der Eycken EV. Microwave-assisted C–C bond forming cross-coupling reactions: An overview. Chem Soc Rev 2011; 40(10): 4925-36.
[http://dx.doi.org/10.1039/c1cs15094d] [PMID: 21717007]
[15]
CO K. Stadler A Microwaves in organic and medicinal chemistry wiley. Methods and Principles in Medicinal Chemistry. Wiley-VCH Verlag GmbH & Co. 2005.
[http://dx.doi.org/10.1002/3527606556]
[16]
Gedye R. Microwave-enhanced chemistry Fundamentals, sample preparation and applications. Washington, DC: American Chemical Society 1997.
[17]
Reader J. Automation in medicinal chemistry. Curr Top Med Chem 2004; 4(7): 671-86.
[http://dx.doi.org/10.2174/1568026043451069] [PMID: 15032681]
[18]
Leadbeater NE, Torenius HM. A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 2002; 67(9): 3145-8.
[http://dx.doi.org/10.1021/jo016297g] [PMID: 11975584]
[19]
Aslam A, Parveen M, Singh K, Azeem M. Green synthesis of fused chromeno-pyrazolo-phthalazine derivatives with silica supported bismuth nitrate under solvent-free conditions. Curr Org Synth 2021; 18(8): 854-61.
[http://dx.doi.org/10.2174/1570179417666201208112520] [PMID: 33292122]
[20]
Fear EC, Hagness SC, Meaney PM, Okoniewski M, Stuchly MA. Enhancing breast tumor detection with near-field imaging. IEEE Microw Mag 2002; 3(1): 48-56.
[http://dx.doi.org/10.1109/6668.990683]
[21]
Hernández-López MA, Quintillán-González M, González GS, Rubio BA, Gómez MR. A rotating array of antennas for confocal mi-crowave breast imaging. Microw Opt Technol Lett 2003; 39(4): 307-11.
[http://dx.doi.org/10.1002/mop.11199]
[22]
Huo Y, Bansal R, Zhu Q. Modeling of noninvasive microwave characterization of breast tumors. IEEE Trans Biomed Eng 2004; 51(7): 1089-94.
[http://dx.doi.org/10.1109/TBME.2004.827956] [PMID: 15248525]
[23]
Hagness SC, Taflove A, Bridges JE. Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detec-tion: Fixed-focus and antenna-array sensors. IEEE Trans Biomed Eng 1998; 45(12): 1470-9.
[http://dx.doi.org/10.1109/10.730440] [PMID: 9835195]
[24]
Martusevich AK, Peretyagin SP, Vanin AF. The study of some porducts is generating with medical device for the synthesis of NO-containing cold plasma/Medical physics. EPJ AP 2012; 4: 80-6.
[25]
Martusevich AK, Soloveva AG, Yanin DV, Galka AG, Krasnova Y. The influence of gelium cold plasma on the parameters of blood oxidative metabolism in vitro. Gerald of New Med Tech 2017; 24: 163-6.
[26]
Martusevich AK, Yanin DV, Bogomolova EB, Galka AG, Klemenova IA, Kostrov AV. Possibilities and perspectives of the use of microwave tomography in sin testing. Biomed Radioelectr 2017; 12: 3-12.
[27]
de Titto E, Savino AA, Townend WK. Healthcare waste management: The current issues in developing countries. Waste Manag Res 2012; 30(6): 559-61.
[http://dx.doi.org/10.1177/0734242X12447999] [PMID: 22692903]
[28]
Edlich R, Borel L, Jensen HG, et al. Revolutionary advances in medical waste management. The Sanitec system. J Long Term Eff Med Implants 2006; 16(1): 9-18.
[http://dx.doi.org/10.1615/JLongTermEffMedImplants.v16.i1.20] [PMID: 16566741]
[29]
Tonuci LRS, Paschoalatto CFPR, Pisani R Jr. Microwave inactivation of Escherichia coli in healthcare waste. Waste Manag 2008; 28(5): 840-8.
[http://dx.doi.org/10.1016/j.wasman.2007.02.009] [PMID: 17412582]
[30]
Carr KL, Cevasco P, Dunlea P, Shaeffer J. Radiometric sensing: An adjuvant to mammography to determine breast biopsy. Proceedings of the 2000 IEEE MTT-S International Microwave Symposium Digest (Cat No 00CH37017). Boston, MA, USA. 2000; pp. 929-32.
[http://dx.doi.org/10.1109/MWSYM.2000.863509]
[31]
Mudhoo A, Sharma SK. Microwave irradiation technology in waste sludge and wastewater treatment research. Crit Rev Environ Sci Technol 2011; 41(11): 999-1066.
[http://dx.doi.org/10.1080/10643380903392767]
[32]
Rui W, Peng W, Guangshan Z, Nannan W, Tong Z. Microwave-responsive catalysts for wastewater treatment: A review. Chem Eng J 2020; 382: 1-24.
[33]
Sondhi S, Kaur PS, Kaur M. Techno-economic analysis of bioethanol production from microwave pretreated kitchen waste. SN Ap-plied Sciences 2020; 2(9): 1558.
[http://dx.doi.org/10.1007/s42452-020-03362-1]
[34]
Berteaud AJ, Badot JC. High temperature microwave heating in refractory materials. J Microw Power 1976; 11(4): 315-2320.
[http://dx.doi.org/10.1080/00222739.1976.11689007]
[35]
Fujikawa H, Ushioda H, Kudo Y. Kinetics of Escherichia coli destruction by microwave irradiation. Appl Environ Microbiol 1992; 58(3): 920-4.
[http://dx.doi.org/10.1128/aem.58.3.920-924.1992] [PMID: 1575494]
[36]
Akyel C, Bilgen E. Microwave and radio-frequency curing of polymers: Energy requirements, cost and market penetration. Energy 1989; 14(12): 839-51.
[http://dx.doi.org/10.1016/0360-5442(89)90038-8]
[37]
Hoffmann J, Nüchter M, Ondruschka B, Wasserscheid P. Ionic liquids and their heating behaviour during microwave irradiation-A state of the art report and challenge to assessment. Green Chem 2003; 5(3): 296-9.
[http://dx.doi.org/10.1039/B212533A]
[38]
Mallakpour S, Rafiee Z. Application of Microwave-assisted reactions in step-growth polymerization (A Review). Iran Polym J 2008; 17: 907-35.
[39]
Nagao Y, Takasu A. Principles of step growth polymerization. J Polym Sci A Polym Chem 2010; 48: 4207-18.
[http://dx.doi.org/10.1002/pola.24206]
[40]
Guerrero-Sanchez C, Hoogenboom R, Schubert US. Microwave-assisted homogeneous polymerizations in water-soluble ionic liquids: An alternative and green approach for polymer synthesis. Chem Commun 2006; 3797-9.
[http://dx.doi.org/10.1039/B608364A] [PMID: 16969461]
[41]
Bernou C, Rebière D, Pistré J. Microwave sensors: A new sensing principle. Application to humidity detection. Sens Actuators B Chem 2000; 68(1-3): 88-93.
[http://dx.doi.org/10.1016/S0925-4005(00)00466-4]
[42]
Mason aA, Shaw A, Al-Shamma’a A. Co-planar microwave sensor for biomedical applications. Procedia Eng 2012; 47: 438-41.
[http://dx.doi.org/10.1016/j.proeng.2012.09.178]
[43]
Mishra V, Singh N, Tiwari U, Kapur P. Fiber grating sensors in medicine: Current and emerging applications. Sens Actuators A Phys 2011; 167(2): 279-90.
[http://dx.doi.org/10.1016/j.sna.2011.02.045]
[44]
Korostynska O. Glucose monitoring using electromagnetic waves and microsensor with interdigitated electrodes. Sensors Applications Symposium IEEE 17-19 February 2009; New Orleans, LA, USA 2009; pp. 34-7.
[http://dx.doi.org/10.1109/SAS.2009.4801772]
[45]
Connolly C. A review of medical microscopy techniques. Sens Rev 2005; 25(4): 252-8.
[http://dx.doi.org/10.1108/02602280510620097]
[46]
Wylie SR, Shaw A, Al-Shamma’a AI. RF sensor for multiphase flow measurement through an oil pipeline. Meas Sci Technol 2006; 17(8): 2141-9.
[http://dx.doi.org/10.1088/0957-0233/17/8/013]
[47]
Goh JH, Mason A, Al-Shamma’a AI, Field M, Browning P. Lactate detection using microwave spectroscopy for in-situ medical appli-cations. Int J Smart Sensing Intell Syst 2011; 4(3): 338-52. [September.
[http://dx.doi.org/10.21307/ijssis-2017-443]
[48]
Goh JH. Lactate detection using a microwave cavity sensor for biomedical applications. Fifth International Conference on Sensing Technology. Palmerston North, New Zealand 2011; 28: pp 436-441.
[http://dx.doi.org/10.1109/ICSensT.2011.6137016]
[49]
Choi JW, Cho J, Lee Y, et al. Microwave detection of metastasized breast cancer cells in the lymph node; potential application for sen-tinel lymphadenectomy. Breast Cancer Res Treat 2004; 86(2): 107-15.
[http://dx.doi.org/10.1023/B:BREA.0000032979.52773.fb] [PMID: 15319563]
[50]
Wei-Rei Z, Suozhu B, Rui W. Application of microwave technology in chemistry. Guangzhou Chem Ind 2015; (20): 20-1.
[51]
Zhang Y. The application of microwave technology in chemistry and chemical engineering. In Conference: 2016 International Conference on Engineering Management (Iconf-EM 2016) 2006; pp. 50-3.
[52]
Hui X, Weiping L. Yuanzhi. Microwave synthesis and properties of LiFePO4/C cathode materials. Mat Rev B 2018; 25: 1-13.
[53]
Gomber C, Saxena S. In vitro anti-staphylococcal activity of alkaloids from the leaves of Callestimone rigidus r Br J pharm technol res manag 2013; 1(1): 31-42.
[http://dx.doi.org/10.15415/jptrm.2013.11003]
[54]
Peterson ER. Microwave chemical processing. Res Chem Intermed 1994; 20(1): 93-6.
[http://dx.doi.org/10.1163/156856794X00108]
[55]
Gawande MB, Shelke SN, Zboril R, Varma RS. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nano-materials and organics. Acc Chem Res 2014; 47(4): 1338-48.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[56]
Polshettiwar V, Nadagouda MN, Varma RS. Microwave assisted chemistry: A rapid and sustainable route to synthesis of organics and nanomaterials. Aust J Chem 2009; 62(1): 16-26.
[http://dx.doi.org/10.1071/CH08404]
[57]
Baruwati B, Polshettiwar V, Varma RS. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using mi-crowaves. Green Chem 2009; 11(7): 926-30.
[http://dx.doi.org/10.1039/b902184a]
[58]
Kou J, Varma RS. Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles. ChemSusChem 2012; 5(12): 2435-41.
[http://dx.doi.org/10.1002/cssc.201200477] [PMID: 22945662]
[59]
Kou J, Varma RS. Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using micro-waves. RSC Advances 2012; 2(27): 10283-90.
[http://dx.doi.org/10.1039/c2ra21908e]
[60]
Nadagouda MN, Polshettiwar V, Varma RS. Self-assembly of palladium nanoparticles: Synthesis of nanobelts, nanoplates and na-notrees using vitamin B1, and their application in carbon–carbon coupling reactions. J Mater Chem 2009; 19(14): 2026-31.
[http://dx.doi.org/10.1039/b817112b]
[61]
Polshettiwar V, Baruwati B, Varma RS. Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and applica-tion in catalysis. ACS Nano 2009; 3(3): 728-36.
[http://dx.doi.org/10.1021/nn800903p] [PMID: 19209927]
[62]
Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA. Synthesis of inorganic solids using microwaves. Chem Mater 1999; 11(4): 882-95.
[http://dx.doi.org/10.1021/cm9803859]
[63]
Fürstner A, Seidel G. Microwave-assisted synthesis of pinacol boronates from aryl chlorides catalyzed by a palladium/imidazolium salt system. Org Lett 2002; 4(4): 541-3.
[http://dx.doi.org/10.1021/ol0171463] [PMID: 11843586]
[64]
Galema SA. Microwave chemistry. Chem Soc Rev 1997; 26(3): 233-8.
[http://dx.doi.org/10.1039/cs9972600233]
[65]
Lin Z, Wragg DS, Morris RE. Microwave-assisted synthesis of anionic metal–organic frameworks under ionothermal conditions. Chem Commun 2006; 19(19): 2021-3.
[http://dx.doi.org/10.1039/B600814C] [PMID: 16767262]
[66]
Boscencu R. Microwave synthesis under solvent-free conditions and spectral studies of some mesoporphyrinic complexes. Molecules 2012; 17(5): 5592-603.
[http://dx.doi.org/10.3390/molecules17055592] [PMID: 22576229]
[67]
Das S, Mukhopadhyay AK, Datta S, Basu D. Prospects of microwave processing: An overview. Bull Mater Sci 2009; 32(1): 1-13.
[http://dx.doi.org/10.1007/s12034-009-0001-4]
[68]
Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 2011; 50(48): 11312-59.
[http://dx.doi.org/10.1002/anie.201101274] [PMID: 22058070]
[69]
Kar S. An overview of recent advances in application of some inorganic materials-biological and technological perspectives. J Biotechnol Biomater 2016; 6(3): 1-7.
[http://dx.doi.org/10.4172/2155-952X.1000244]
[70]
Sandoval W, Pham V, Ingle E, Liu P, Lill J. Applications of microwave-assisted proteomics in biotechnology. Comb Chem High Throughput Screen 2007; 10(9): 751-65.
[http://dx.doi.org/10.2174/138620707783018504] [PMID: 18478957]
[71]
Lees NS, Hanzelmann P, Hernandez HL, et al. ENDOR spectroscopy shows that guanine n1 binds to [4fe−4s] cluster ii of the s-adenosylmethionine-dependent enzyme moaa: Mechanistic implications. J Am Chem Soc 2009; 131: 9184-5.
[http://dx.doi.org/10.1021/ja903978u] [PMID: 19566093]
[72]
Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN. Enzymatic hydrolysis of trilactone siderophores: Where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc 2009; 131(35): 12682-92.
[http://dx.doi.org/10.1021/ja903051q] [PMID: 19673474]
[73]
Elander N, Jones JR, Lu SY, Stone-Elander S. Microwave-enhanced radiochemistry. Chem Soc Rev 2000; 29(4): 239-49.
[http://dx.doi.org/10.1039/a901713e]
[74]
Gattavecchia E, Ferri E, Esposito B, Breccia A. Role of microwave radiation on radiopharmaceuticals preparations. In: Willert-Porada M. (eds) Advances in Microwave and Radio Frequency Processing. Springer, Berlin, Heidelberg 2006.
[http://dx.doi.org/10.1007/978-3-540-32944-2_38]
[75]
Glasnov TN, Kappe CO. Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 2007; 28(4): 395-410.
[http://dx.doi.org/10.1002/marc.200600665]
[76]
Jin Q, Liang F, Zhang H, Zhao L, Huan Y, Daqian S. Application of microwave techniques in analytical chemistry. Trends Analyt Chem 1999; 18(7): 479-84.
[http://dx.doi.org/10.1016/S0165-9936(99)00110-7]
[77]
Matursievicz H. A brief review on microwave assisted reactions. Anal Chem 1999; 71(15): 3145.
[78]
Zlotorzynski A. The application of microwave radiation to analytical and environmental chemistry. Crit Rev Anal Chem 1995; 25(1): 43-76.
[http://dx.doi.org/10.1080/10408349508050557]
[79]
Smith F, Arsenault E. Microwave-assisted sample preparation in analytical chemistry. Talanta 1996; 43(8): 1207-68.
[http://dx.doi.org/10.1016/0039-9140(96)01882-6] [PMID: 18966599]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy