Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

DDR1-Induced Paracrine Factors of Hepatocytes Promote HSC Activation and Fibrosis Development

Author(s): Ying Meng, Tong Zhao, Tiyun Han, Huilin Chen, Zhengyi Zhang and Dekui Zhang*

Volume 17, 2024

Published on: 04 May, 2023

Article ID: e220223213911 Pages: 19

DOI: 10.2174/1874467216666230222124515

Price: $65

Abstract

Background: This study investigated the role and potential mechanisms of Discoidin domain receptors-1 (DDR1) during liver fibrogenesis.

Methods: Blood and livers were collected from mice. In the in vitro experiments, human normal hepatocyte (LO2 cell line) and human hepatoma cells (HepG2 cell line) with overexpressed DDR1 (DDR1-OE) or DDR1 knockdown (DDR1-KD) were constructed by transfecting the corresponding lentivirus. Human hepatic stellate cells (LX2 cell line) were incubated with a conditioned medium (CM) of the above stable transfected cells treated with collagen. The cells and supernatants were collected for molecular and biochemical analyses.

Results: DDR1 expression was increased in hepatocytes from carbon tetrachloride (CCL4)-induced fibrotic livers compared to normal livers in wild-type (WT) mice. Liver fibrosis was relieved, and hepatic stellate cells (HSC) activation was decreased in CCL4-treated DDR1 knockout (DDR1-KO) mice compared with CCL4-treated WT mice. LX2 cells cultured in CM of LO2 DDR1-OE cells revealed increased α-smooth muscle actin (αSMA) and type I collagen (COL1) expressions and cell proliferation. Meanwhile, cell proliferation and the expression levels of αSMA and COL1 in LX2 cells cultured in CM of HepG2 DDR1-KD cells were decreased. Moreover, IL6, TNFα, and TGFβ1 in CM of DDR1-OE cells appeared to promote LX2 cell activation and proliferation, regulated by NF-κB and Akt pathways.

Conclusion: These results indicated that DDR1 in hepatocytes promoted HSC activation and proliferation and that paracrine factors IL6, TNFα, and TGFβ1 induced by DDR1 through activating NF-κB and Akt pathways may be the underlying mechanisms. Our study suggests that collagen-receptor DDR1 may be a potential therapeutic target for hepatic fibrosis.

[1]
Karsdal, M.A.; Daniels, S.J.; Holm Nielsen, S.; Bager, C.; Rasmussen, D.G.K.; Loomba, R.; Surabattula, R.; Villesen, I.F.; Luo, Y.; Shevell, D.; Gudmann, N.S.; Nielsen, M.J.; George, J.; Christian, R.; Leeming, D.J.; Schuppan, D. Collagen biology and non‐invasive biomarkers of liver fibrosis. Liver Int., 2020, 40(4), 736-750.
[http://dx.doi.org/10.1111/liv.14390] [PMID: 31997561]
[2]
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[3]
Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet, 2021, 398(10308), 1359-1376.
[http://dx.doi.org/10.1016/S0140-6736(21)01374-X] [PMID: 34543610]
[4]
Friedman, S.L.; Sheppard, D.; Duffield, J.S.; Violette, S. Therapy for fibrotic diseases: nearing the starting line. Sci. Transl. Med., 2013, 5(167), 167sr1.
[http://dx.doi.org/10.1126/scitranslmed.3004700] [PMID: 23303606]
[5]
Orgel, J.P.R.O.; Madhurapantula, R.S. A structural prospective for collagen receptors such as DDR and their binding of the collagen fibril. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(11), 118478.
[http://dx.doi.org/10.1016/j.bbamcr.2019.04.008] [PMID: 31004686]
[6]
Carafoli, F.; Hohenester, E. Collagen recognition and transmembrane signalling by discoidin domain receptors. Biochim. Biophys. Acta. Proteins Proteomics, 2013, 1834(10), 2187-2194.
[http://dx.doi.org/10.1016/j.bbapap.2012.10.014] [PMID: 23128141]
[7]
Chen, E.A.; Lin, Y.S. Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(11), 118458.
[http://dx.doi.org/10.1016/j.bbamcr.2019.03.005] [PMID: 30880148]
[8]
Agarwal, G.; Smith, A.W.; Jones, B. Discoidin domain receptors: Micro insights into macro assemblies. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(11), 118496.
[http://dx.doi.org/10.1016/j.bbamcr.2019.06.010] [PMID: 31229648]
[9]
Leitinger, B.; Saltel, F. Discoidin domain receptors: multitaskers for physiological and pathological processes. Cell Adhes. Migr., 2018, 12(4), 1-2.
[http://dx.doi.org/10.1080/19336918.2018.1491495] [PMID: 29969346]
[10]
Leitinger, B. Discoidin domain receptor functions in physiological and pathological conditions. Int. Rev. Cell Mol. Biol., 2014, 310, 39-87.
[http://dx.doi.org/10.1016/B978-0-12-800180-6.00002-5] [PMID: 24725424]
[11]
Flamant, M.; Placier, S.; Rodenas, A.; Curat, C.A.; Vogel, W.F.; Chatziantoniou, C.; Dussaule, J.C. Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. J. Am. Soc. Nephrol., 2006, 17(12), 3374-3381.
[http://dx.doi.org/10.1681/ASN.2006060677] [PMID: 17093065]
[12]
Avivi-Green, C.; Singal, M.; Vogel, W.F. Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med., 2006, 174(4), 420-427.
[http://dx.doi.org/10.1164/rccm.200603-333OC] [PMID: 16690978]
[13]
Song, S.; Shackel, N.A.; Wang, X.M.; Ajami, K.; McCaughan, G.W.; Gorrell, M.D. Discoidin domain receptor 1: isoform expression and potential functions in cirrhotic human liver. Am. J. Pathol., 2011, 178(3), 1134-1144.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.068] [PMID: 21356365]
[14]
Yu, B.; Jin, G.; Ma, M.; Liang, H.; Zhang, B.; Chen, X.; Ding, Z. Taurocholate induces connective tissue growth factor expression in hepatocytes through ERK-YAP signaling. Cell. Physiol. Biochem., 2018, 50(5), 1711-1725.
[http://dx.doi.org/10.1159/000494790] [PMID: 30384360]
[15]
Torgler, R.; Bongfen, S.E.; Romero, J.C.; Tardivel, A.; Thome, M.; Corradin, G. Sporozoite-mediated hepatocyte wounding limits Plasmodium parasite development via MyD88-mediated NF-kappa B activation and inducible NO synthase expression. J. Immunol., 2008, 180(6), 3990-3999.
[http://dx.doi.org/10.4049/jimmunol.180.6.3990] [PMID: 18322208]
[16]
Abiru, S.; Nakao, K.; Ichikawa, T.; Migita, K.; Shigeno, M.; Sakamoto, M.; Ishikawa, H.; Hamasaki, K.; Nakata, K.; Eguchi, K. Aspirin and NS-398 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells. Hepatology, 2002, 35(5), 1117-1124.
[http://dx.doi.org/10.1053/jhep.2002.32676] [PMID: 11981761]
[17]
Caligiuri, A.; Gentilini, A.; Pastore, M.; Gitto, S.; Marra, F. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells, 2021, 10(10), 2759.
[http://dx.doi.org/10.3390/cells10102759] [PMID: 34685739]
[18]
Jun, J.I.; Lau, L.F. Resolution of organ fibrosis. J. Clin. Invest., 2018, 128(1), 97-107.
[http://dx.doi.org/10.1172/JCI93563] [PMID: 29293097]
[19]
Hammel, P.; Couvelard, A.; O’Toole, D.; Ratouis, A.; Sauvanet, A.; Fléjou, J.F.; Degott, C.; Belghiti, J.; Bernades, P.; Valla, D.; Ruszniewski, P.; Lévy, P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N. Engl. J. Med., 2001, 344(6), 418-423.
[http://dx.doi.org/10.1056/NEJM200102083440604] [PMID: 11172178]
[20]
Marcellin, P.; Gane, E.; Buti, M.; Afdhal, N.; Sievert, W.; Jacobson, I.M.; Washington, M.K.; Germanidis, G.; Flaherty, J.F.; Schall, R.A.; Bornstein, J.D.; Kitrinos, K.M.; Subramanian, G.M.; McHutchison, J.G.; Heathcote, E.J. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet, 2013, 381(9865), 468-475.
[http://dx.doi.org/10.1016/S0140-6736(12)61425-1] [PMID: 23234725]
[21]
Kisseleva, T.; Brenner, D.A. Mechanisms of Fibrogenesis. Exp. Biol. Med. (Maywood), 2008, 233(2), 109-122.
[http://dx.doi.org/10.3181/0707-MR-190] [PMID: 18222966]
[22]
Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[23]
Gaul, S.; Leszczynska, A.; Alegre, F.; Kaufmann, B.; Johnson, C.D.; Adams, L.A.; Wree, A.; Damm, G.; Seehofer, D.; Calvente, C.J.; Povero, D.; Kisseleva, T.; Eguchi, A.; McGeough, M.D.; Hoffman, H.M.; Pelegrin, P.; Laufs, U.; Feldstein, A.E. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J. Hepatol., 2021, 74(1), 156-167.
[http://dx.doi.org/10.1016/j.jhep.2020.07.041] [PMID: 32763266]
[24]
Mooring, M.; Fowl, B.H.; Lum, S.Z.C.; Liu, Y.; Yao, K.; Softic, S.; Kirchner, R.; Bernstein, A.; Singhi, A.D.; Jay, D.G.; Kahn, C.R.; Camargo, F.D.; Yimlamai, D. Hepatocyte stress increases expression of yes‐associated protein and transcriptional coactivator with PDZ‐binding motif in hepatocytes to promote parenchymal inflammation and fibrosis. Hepatology, 2020, 71(5), 1813-1830.
[http://dx.doi.org/10.1002/hep.30928] [PMID: 31505040]
[25]
Yang, F.; Li, H.; Li, Y.; Hao, Y.; Wang, C.; Jia, P.; Chen, X.; Ma, S.; Xiao, Z. Crosstalk between hepatic stellate cells and surrounding cells in hepatic fibrosis. Int. Immunopharmacol., 2021, 99, 108051.
[http://dx.doi.org/10.1016/j.intimp.2021.108051] [PMID: 34426110]
[26]
Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Invest., 2005, 115(2), 209-218.
[http://dx.doi.org/10.1172/JCI24282] [PMID: 15690074]
[27]
Calabro, S.R.; Maczurek, A.E.; Morgan, A.J.; Tu, T.; Wen, V.W.; Yee, C.; Mridha, A.; Lee, M.; d’Avigdor, W.; Locarnini, S.A.; McCaughan, G.W.; Warner, F.J.; McLennan, S.V.; Shackel, N.A. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS One, 2014, 9(7), e90571.
[http://dx.doi.org/10.1371/journal.pone.0090571] [PMID: 25076423]
[28]
del Carmen Garcíade León, M.; Montfort, I.; Tello Montes, E.; López Vancell, R.; Olivos García, A.; González Canto, A.; Nequiz-Avendaño, M.; Pérez-Tamayo, R. Hepatocyte production of modulators of extracellular liver matrix in normal and cirrhotic rat liver. Exp. Mol. Pathol., 2006, 80(1), 97-108.
[http://dx.doi.org/10.1016/j.yexmp.2005.03.008] [PMID: 16332368]
[29]
Guerrot, D.; Kerroch, M.; Placier, S.; Vandermeersch, S.; Trivin, C.; Mael-Ainin, M.; Chatziantoniou, C.; Dussaule, J.C. Discoidin domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy. Am. J. Pathol., 2011, 179(1), 83-91.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.023] [PMID: 21640971]
[30]
Franco, C.; Hou, G.; Ahmad, P.J.; Fu, E.Y.K.; Koh, L.; Vogel, W.F.; Bendeck, M.P. Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. Circ. Res., 2008, 102(10), 1202-1211.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.170662] [PMID: 18451340]
[31]
Matsuyama, W.; Wang, L.; Farrar, W.L.; Faure, M.; Yoshimura, T. Activation of discoidin domain receptor 1 isoform b with collagen up-regulates chemokine production in human macrophages: Role of p38 mitogen-activated protein kinase and NF-kappa B. J. Immunol., 2004, 172(4), 2332-2340.
[http://dx.doi.org/10.4049/jimmunol.172.4.2332] [PMID: 14764702]
[32]
Lacour, S.; Gautier, J.C.; Pallardy, M.; Roberts, R. Cytokines as potential biomarkers of liver toxicity. Cancer Biomark., 2005, 1(1), 29-39.
[http://dx.doi.org/10.3233/CBM-2005-1105] [PMID: 17192030]
[33]
Mack, M. Inflammation and fibrosis. Matrix Biol., 2018, 68-69, 106-121.
[http://dx.doi.org/10.1016/j.matbio.2017.11.010] [PMID: 29196207]
[34]
Dewidar, B.; Meyer, C.; Dooley, S.; Meindl-Beinker, A.N. TGF-β in hepatic stellate cell activation and liver fibrogenesis—updated 2019. Cells, 2019, 8(11), 1419.
[http://dx.doi.org/10.3390/cells8111419] [PMID: 31718044]
[35]
Dooley, S.; Hamzavi, J.; Ciuclan, L.; Godoy, P.; Ilkavets, I.; Ehnert, S.; Ueberham, E.; Gebhardt, R.; Kanzler, S.; Geier, A.; Breitkopf, K.; Weng, H.; Mertens, P.R. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology, 2008, 135(2), 642-659.e46.
[http://dx.doi.org/10.1053/j.gastro.2008.04.038] [PMID: 18602923]
[36]
Gadiya, M.; Chakraborty, G. Signaling by discoidin domain receptor 1 in cancer metastasis. Cell Adhes. Migr., 2018, 12(4), 1-9.
[http://dx.doi.org/10.1080/19336918.2018.1520556] [PMID: 30187813]
[37]
Seo, M.C.; Kim, S.; Kim, S.H.; Zheng, L.T.; Park, E.K.; Lee, W.H.; Suk, K. Discoidin domain receptor 1 mediates collagen-induced inflammatory activation of microglia in culture. J. Neurosci. Res., 2008, 86(5), 1087-1095.
[http://dx.doi.org/10.1002/jnr.21552] [PMID: 17969104]
[38]
Vogel, W.F.; Abdulhussein, R.; Ford, C.E. Sensing extracellular matrix: An update on discoidin domain receptor function. Cell. Signal., 2006, 18(8), 1108-1116.
[http://dx.doi.org/10.1016/j.cellsig.2006.02.012] [PMID: 16626936]
[39]
Moll, S.; Yasui, Y.; Abed, A.; Murata, T.; Shimada, H.; Maeda, A.; Fukushima, N.; Kanamori, M.; Uhles, S.; Badi, L.; Cagarelli, T.; Formentini, I.; Drawnel, F.; Georges, G.; Bergauer, T.; Gasser, R.; Bonfil, R.D.; Fridman, R.; Richter, H.; Funk, J.; Moeller, M.J.; Chatziantoniou, C.; Prunotto, M. Selective pharmacological inhibition of DDR1 prevents experimentally-induced glomerulonephritis in prevention and therapeutic regime. J. Transl. Med., 2018, 16(1), 148.
[http://dx.doi.org/10.1186/s12967-018-1524-5] [PMID: 29859097]
[40]
Tao, J.; Zhang, M.; Wen, Z.; Wang, B.; Zhang, L.; Ou, Y.; Tang, X.; Yu, X.; Jiang, Q. Inhibition of EP300 and DDR1 synergistically alleviates pulmonary fibrosis in vitro and in vivo. Biomed. Pharmacother., 2018, 106, 1727-1733.
[http://dx.doi.org/10.1016/j.biopha.2018.07.132] [PMID: 30119248]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy