Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

A Greener Synthetic Approach to Tetrazoles via Multicomponent Reactions

Author(s): Devalina Ray*

Volume 10, Issue 3, 2023

Published on: 17 April, 2023

Page: [250 - 262] Pages: 13

DOI: 10.2174/2213337210666230222093637

Price: $65

conference banner
Abstract

The synthesis of heterocyclic compounds has drawn considerable attention in the scientific community due to their existence in the majority of medicinal & pharmaceutically important compounds as well as natural products. Among them, the remarkable existence of tetrazoles has been realized in several commercially available drugs. In this regard, various synthetic protocols to access tetrazoles have been developed to address the efficiency and environmental impacts in terms of minimization of the steps, elevating yields, and conducting environmentally benign and sustainable chemistry. The management and detrimental environmental impact of waste has been recognised as a consistent concern, along with the costs associated with its disposal. Among various approaches to minimise unwanted materials from a process, one of the best alternatives is to perform a reaction in the absence of excess chemical reagents and catalysts. Other options include the reactions affected by the application of heat, light, sound, or electrolysis. The multicomponent reactions (MCR) display a unique approach establishing a step forward toward clean, step and atom-economical chemical synthesis. Most of them utilize the required substrates, eliminating the stoichiometric use of reagents, reducing the possibility of forming unwanted side products. The present review displays the concepts of MCR in the synthesis and functionalization of tetrazole, which contributes to green and sustainable chemistry.

« Previous
Graphical Abstract

[1]
(a) Arunkumar, S.S. A review on synthetic hetrocyclic compounds in agricultural and other applications. Int. J. Pharm. Tech. Res., 2015, 8, 170-179.;
(b) Lamberth, C. Heterocyclic chemistry in crop protection. Pest Manag. Sci., 2013, 69(10), 1106-1114.
[http://dx.doi.org/10.1002/ps.3615] [PMID: 23908156];
(c) Miao, J.; Dong, X.; Lin, D.; Wang, Q.; Liu, P.; Chen, F.; Du, Y.; Liu, X. Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes. Pest Manag. Sci., 2016, 72(8), 1572-1577.
[http://dx.doi.org/10.1002/ps.4189] [PMID: 26577849];
(d) Sulzer-Mosse, S.; Cederbaum, F.; Lamberth, C.; Berthon, G.; Umarye, J.; Grasso, V.; Schlereth, A.; Blum, M.; Waldmeier, R. Synthesis and fungicidal activity of N-thiazol-4-yl-salicylamides, a new family of anti-oomycete compounds. Bioorg. Med. Chem., 2015, 23(9), 2129-2138.
[http://dx.doi.org/10.1016/j.bmc.2015.03.007] [PMID: 25801153]
[2]
(a) Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48(1), 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z];
(b) Campos, J.F.; Besson, T.; Berteina-Raboin, S.. Review on the synthesis and therapeutic potential of pyrido[2,3-d], [3,2-d], [3,4-d] and [4,3-d]pyrimidine derivatives. Pharmaceuticals, 2022, 15, 352-379.;
(c) Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O.. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396];
(d) Zeng, Y.; Nie, L.; Liu, L.; Niu, C.; Li, Y.; Bozorov, K.; Zhao, J.; Shen, J.; Aisa, H.A.. Design, synthesis, in vitro evaluation of a new pyrrolo[1,2‐ a ]thiazolo[5,4‐ d ]pyrimidinone derivatives as cholinesterase inhibitors against Alzheimer’s disease. J. Heterocycl. Chem., 2022, 59(6), 1086-1101.
[http://dx.doi.org/10.1002/jhet.4452]
[3]
(a) Baskar, R.; Lgaz, H.; Salghi, R. Heterocyclic compounds as corrosion inhibitors for mild steel: A review. Chem. Sci. Engineer. Res., 2019, 1(1), 32-54.
[http://dx.doi.org/10.36686/Ariviyal.CSER.2019.01.01.005];
(b) El-Hendawy, M.M.; Kamel, A.M.; Mohamed, M.M.A. The anti-corrosive behavior of benzo-fused N-heterocycles: An in silico study toward developing organic corrosion inhibitors. Phys. Chem. Chem. Phys., 2022, 24(2), 743-756.
[http://dx.doi.org/10.1039/D1CP04820A] [PMID: 34935799];
(c) Goni, L.K.M.O.; Jafar Mazumder, M.A.; Quraishi, M.A.; Mizanur Rahman, M. Bioinspired heterocyclic compounds as corrosion inhibitors: A comprehensive review. Chem. Asian J., 2021, 16(11), 1324-1364.
[http://dx.doi.org/10.1002/asia.202100201] [PMID: 33844882]
[4]
(a) Ali, M.; El-Hiti, G.; Yousif, E. Photostabilizing efficiency of Poly(vinyl chloride) in the presence of Organotin(IV) complexes as photostabilizers. Molecules, 2016, 21(9), 1151.
[http://dx.doi.org/10.3390/molecules21091151] [PMID: 27589707];
(b) Bojinov, V.B.; Panova, I.P.; Simeonov, D.B. The synthesis of novel photostable fluorescein-based dyes containing an s-triazine UV absorber and a HALS unit and their acrylonitrile copolymers. Dyes Pigments, 2009, 83(2), 135-143.
[http://dx.doi.org/10.1016/j.dyepig.2008.10.007]
[5]
Cao, X.; Sun, Z.; Cao, Y.; Wang, R.; Cai, T.; Chu, W.; Hu, W.; Yang, Y. Design, synthesis, and structure-activity relationship studies of novel fused heterocycles-linked triazoles with good activity and water solubility. J. Med. Chem., 2014, 57(9), 3687-3706.
[http://dx.doi.org/10.1021/jm4016284] [PMID: 24564525]
[6]
Achar, K.C.S.; Hosamani, K.M.; Seetharamareddy, H.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(5), 2048-2054.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.029] [PMID: 20133024]
[7]
Pradhan, K.; Tiwary, B.K.; Hossain, M.; Chakraborty, R.; Nanda, A.K. A mechanistic study of carbonyl activation under solvent-free conditions: Evidence drawn from the synthesis of imidazoles. RSC Advances, 2016, 6(13), 10743-10749.
[http://dx.doi.org/10.1039/C5RA16386B]
[8]
(a) Joseph; Sanu, M.C.; Chacko, D.; Vinod, B.; Daisy, P.A. A review on five membered nitrogen containing heterocyclic compounds with various biological activities. Int. J. Pharm. Sci. Rev. Res., 2021, 69(1), 9-14.
[http://dx.doi.org/10.47583/ijpsrr.2021.v69i01.002];
(b) Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317];
(c) Varala, R.; Bollikolla, H.B.; Kurmarayuni, C.M. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues—a review. Curr. Org. Synth., 2021, 18(2), 101-124.
[http://dx.doi.org/10.2174/18756271MTA54OTEc0] [PMID: 32928090]
[9]
(a) Salem, M.S.; Farhat, M.; Errayes, A.O.; Madkour, H.M.F. Antioxidant activity of novel fused heterocyclic compounds derived from tetrahydropyrimidine derivative. Chem. Pharm. Bull. (Tokyo), 2015, 63(11), 866-872.
[http://dx.doi.org/10.1248/cpb.c15-00452] [PMID: 26521851];
(b) Parshikov, I.A.; Silva, E.O.; Furtado, N.A.J.C. Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms. Appl. Microbiol. Biotechnol., 2014, 98(4), 1497-1506.
[http://dx.doi.org/10.1007/s00253-013-5429-1] [PMID: 24352731];
(c) Mohareb, R.; Mohamed, A.; Abdalla, A. New approaches for the synthesis, cytotoxicity and toxicity of heterocyclic compounds derived from 2-cyanomethyl benzo[c]imidazole. Acta Chim. Slov., 2016, 63(2), 227-240.
[http://dx.doi.org/10.17344/acsi.2015.1668] [PMID: 27333544]
[10]
(a) Behrouz, S.; Navid Soltani Rad, M.; Abdollahzadeh, M.; Amin Piltan, M. Ultrasound‐promoted mild, and efficient protocol for three‐component synthesis of 2,4,5‐trisubstituted imidazoles using urea and PPh 3 as the sources of nitrogen and organocatalyst. ChemistrySelect, 2020, 5(25), 7467-7473.
[http://dx.doi.org/10.1002/slct.202001722];
(b) Khandebharad, A.U.; Sarda, S.R.; Gill, C.; Agrawal, B.R. An efficient synthesis of substituted imidazoles catalyzed by 3-N-Morpholinopropanesulfonic Acid (MOPS) under ultrasound irradiation. Org. Prep. Proced. Int., 2020, 52(6), 524-529.
[http://dx.doi.org/10.1080/00304948.2020.1804773];
(c) Kiranmye, T.; Vadivelu, M.; Sampath, S.; Muthu, K.; Karthikeyan, K. Ultrasound-assisted catalyst free synthesis of 1,4- /1,5-disubstituted-1,2,3-triazoles in aqueous medium. Sustain. Chem. Pharm., 2021, 19, 100358.
[http://dx.doi.org/10.1016/j.scp.2020.100358]
[11]
(a) Campos, J.F.; Berteina-Raboin, S. Greener synthesis of nitrogencontaining heterocycles in water, PEG, and bio-based solvents. Catalysts, 2020, 10(4), 429.
[http://dx.doi.org/10.3390/catal10040429];
(b) Prasad, A.; Reddy, B. Cascade synthesis of n-heterocyclic compounds through one-pot MCR over CuII−hydrotalcite catalyst. Curr. Catal., 2013, 2(3), 159-172.
[http://dx.doi.org/10.2174/22115447113029990002];
(c) Bhaskaruni, S.V.H.S.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem., 2020, 13(1), 1142-1178.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.016]
[12]
(a) Ugi, I.; Heck, S. The multicomponent reactions and their libraries for natural and preparative chemistry. Comb. Chem. High Throughput Screen., 1970, 4(1), 1-34.
[http://dx.doi.org/10.2174/1386207013331291] [PMID: 11281825];
(b) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[13]
(a) Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608];
(b) Huang, Y.; Khoury, K.; Chanas, T.; Dömling, A. Multicomponent synthesis of diverse 1,4-benzodiazepine scaffolds. Org. Lett., 2012, 14(23), 5916-5919.
[http://dx.doi.org/10.1021/ol302837h] [PMID: 23157402];
(c) Zhao, T.; Boltjes, A.; Herdtweck, E.; Dömling, A. Tritylamine as an ammonia surrogate in the Ugi tetrazole synthesis. Org. Lett., 2013, 15(3), 639-641.
[http://dx.doi.org/10.1021/ol303348m] [PMID: 23331054]
[14]
(a) Nasrollahzadeh, M.; Nezafat, Z.; Bidgoli, N.S.S.; Shafiei, N. Use of tetrazoles in catalysis and energetic applications: Recent developments. Molecular Catalysis, 2021, 513, 111788.
[http://dx.doi.org/10.1016/j.mcat.2021.111788];
(b) Pirota, V.; Benassi, A.; Doria, F. Lights on 2,5-diaryl tetrazoles: Applications and limits of a versatile photoclick reaction. Photochem. Photobiol. Sci., 2022, 21(5), 879-898.
[http://dx.doi.org/10.1007/s43630-022-00173-8] [PMID: 35188652]
[15]
Kaushik, N.; Kumar, N.; Kumar, A.; Singh, U.K. Tetrazoles: Synthesis and biological activity. Immunol. Endocr. Metab. Agents Med. Chem., 2018, 18(1), 3-21.
[http://dx.doi.org/10.2174/1871522218666180525100850]
[16]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[17]
Jayashree, B.S.; Nikhil, P.S.; Paul, S. Bioisosterism in drug discovery and development - An overview. Med. Chem., 2022, 18(9), 915-925.
[http://dx.doi.org/10.2174/1573406418666220127124228] [PMID: 35086456]
[18]
Patil, P.; Khoury, K.; Herdtweck, E.; Dömling, A. MCR synthesis of a tetracyclic tetrazole scaffold. Bioorg. Med. Chem., 2015, 23(11), 2699-2715.
[http://dx.doi.org/10.1016/j.bmc.2014.12.021] [PMID: 25630499]
[19]
Kroon, E.; Kurpiewska, K. Kalinowska-Tłuścik, J.; Dömling, A. Cleavable β-cyanoethyl isocyanide in the ugi tetrazole reaction. Org. Lett., 2016, 18(19), 4762-4765.
[http://dx.doi.org/10.1021/acs.orglett.6b01826] [PMID: 27610711]
[20]
(a) Ugi, I.. Von isocyaniden via vierkomponenten-kondensation zu antibiotica-synthesen. Angew. Chem., 1982, 94(11), 826-835.
[http://dx.doi.org/10.1002/ange.19820941103];
(b) Ugi, I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem., 2001, 73(1), 187-191.
[http://dx.doi.org/10.1351/pac200173010187];
(c) Hulme, C.; Bienaymé, H.; Nixey, T.; Chenera, B.; Jones, W.; Tempest, P.; Smith, A.L. Library generation via postcondensation modifications of isocyanide-based multicomponent reactions. Methods Enzymol., 2003, 369, 469-496.
[http://dx.doi.org/10.1016/S0076-6879(03)69024-5] [PMID: 14722968];
(d) Patil, P.; de Haan, M.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Versatile protecting-group free tetrazolomethane amine synthesis by ugi reaction. ACS Comb. Sci., 2016, 18(3), 170-175.
[http://dx.doi.org/10.1021/acscombsci.5b00189] [PMID: 26848739]
[21]
Patil, P.; Madhavachary, R.; Kurpiewska, K. De novo assembly of highly substituted morpholines and piperazines. Org. Lett., 2017, 19, 642-645.
[http://dx.doi.org/10.1021/acs.orglett.6b03807] [PMID: 28102692]
[22]
Pharande, S.G.; Corrales Escobosa, A.R.; Gámez-Montaño, R. Endogenous water-triggered and ultrasound accelerated synthesis of 1,5-disubstituted tetrazoles via a solvent and catalyst-free Ugi-azide reaction. Green Chem., 2017, 19(5), 1259-1262.
[http://dx.doi.org/10.1039/C6GC03324E]
[23]
Surmiak, E.; Neochoritis, C.G.; Musielak, B.; Twarda-Clapa, A.; Kurpiewska, K.; Dubin, G.; Camacho, C.; Holak, T.A.; Dömling, A. Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. Eur. J. Med. Chem., 2017, 126, 384-407.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.029] [PMID: 27907876]
[24]
Zarezin, D.P.; Khrustalev, V.N.; Nenajdenko, V.G. Diastereoselectivity of azido-ugi reaction with secondary amines. stereoselective synthesis of tetrazole derivatives. J. Org. Chem., 2017, 82(12), 6100-6107.
[http://dx.doi.org/10.1021/acs.joc.7b00611] [PMID: 28558241]
[25]
Zarganes-Tzitzikas, T.; Patil, P.; Khoury, K.; Herdtweck, E.; Dömling, A. Concise synthesis of tetrazole-ketopiperazines by two consecutive ugi reactions. Eur. J. Org. Chem., 2015, 2015(1), 51-55.
[http://dx.doi.org/10.1002/ejoc.201403401] [PMID: 26949370]
[26]
Abdessalam, M.; Sidhoum, M.A.; Zradni, F.Z.; Ilikti, H. Synthesis of 1,5-disubstituted tetrazoles in aqueous micelles at room temperature. Molbank, 2021, 2021(1), M1194.
[http://dx.doi.org/10.3390/M1194]
[27]
Aguilar-Morales, C.M.; de Loera, D.; Contreras-Celedón, C.; Cortés-García, C.J.; Chacón-García, L. Synthesis of 1,5-disubstituted tetrazole-1,2,3 triazoles hybrids via Ugi-azide/CuAAC. Synth. Commun., 2019, 49(16), 2086-2095.
[http://dx.doi.org/10.1080/00397911.2019.1616301]
[28]
Abdelraheem, E.M.M.; de Haan, M.P.; Patil, P.; Kurpiewska, K. Kalinowska-Tłuścik, J.; Shaabani, S.; Dömling, A. Concise synthesis of tetrazole macrocycle. Org. Lett., 2017, 19(19), 5078-5081.
[http://dx.doi.org/10.1021/acs.orglett.7b02319] [PMID: 28901777]
[29]
Shaaban, S.; Negm, A.; Ashmawy, A.M.; Ahmed, D.M.; Wessjohann, L.A. Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma. Eur. J. Med. Chem., 2016, 122, 55-71.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.005] [PMID: 27343853]
[30]
Naeimi, H.; Mohamadabadi, S. Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1H-tetrazoles under solvent-free conditions. Dalton Trans., 2014, 43(34), 12967-12973.
[http://dx.doi.org/10.1039/C4DT01664E] [PMID: 25030453]
[31]
Khalafi-Nezhad, A.; Mohammadi, S. Highly efficient synthesis of 1- and 5-substituted 1H-tetrazoles using chitosan derived magnetic ionic liquid as a recyclable biopolymer-supported catalyst. RSC Advances, 2013, 3(13), 4362-4371.
[http://dx.doi.org/10.1039/c3ra23107k]
[32]
Habibi, D.; Pakravan, N.; Arabi, A.; Kaboudvand, Z. Preparation of Fe3O4@5,10-dihydropyrido[2,3- b]quinoxaline-7,8-diol copper complex: A capable nanocatalyst for the green synthesis of 1-substituted 1 H -tetrazoles. Appl. Organomet. Chem., 2018, 32(1), e3988.
[http://dx.doi.org/10.1002/aoc.3988]
[33]
Nouri Parouch, A.; Koukabi, N.; Abdous, E. Tetrazole derivatives synthesis using Fe3O4@fibroin-SO3H as a magnetically separable green solid acid nanocatalyst under solvent-free conditions. Res. Chem. Intermed., 2020, 46(7), 3295-3310.
[http://dx.doi.org/10.1007/s11164-020-04131-w]
[34]
Khodamorady, M.; Bahrami, K. Fe3O4 @BNPs‐CPTMS‐Chitosan‐Pd(0) as an efficient and stable heterogeneous magnetic nanocatalyst for the chemoselective oxidation of alcohols and homoselective synthesis of 5‐subestituted 1 H ‐tetrazoles. ChemistrySelect, 2019, 4(28), 8183-8194.
[http://dx.doi.org/10.1002/slct.201901497]
[35]
Akbarzadeh, P.; Koukabi, N.; Hosseini, M.M. Magnetic carbon nanotube as a highly stable and retrievable support for the heterogenization of sulfonic acid and its application in the synthesis of 2‐(1 H ‐tetrazole‐5‐yl) acrylonitrile derivatives. J. Heterocycl. Chem., 2020, 57(6), 2455-2465.
[http://dx.doi.org/10.1002/jhet.3961]
[36]
Esmaeilpour, M.; Javidi, J.; Zahmatkesh, S. One-pot synthesis of 1- and 5-substituted 1 H -tetrazoles using 1,4-dihydroxyanthraquinone-copper(II) supported on superparamagnetic Fe3O4 @SiO2 magnetic porous nanospheres as a recyclable catalyst. Appl. Organomet. Chem., 2016, 30(11), 897-904.
[http://dx.doi.org/10.1002/aoc.3518]
[37]
Esmaeilpour, M.; Javidi, J.; Nowroozi Dodeji, F.; Mokhtari Abarghoui, M. Facile synthesis of 1- and 5-substituted 1H-tetrazoles catalyzed by recyclable ligand complex of copper(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles. J. Mol. Catal. Chem., 2014, 393, 18-29.
[http://dx.doi.org/10.1016/j.molcata.2014.06.001]
[38]
Dehghani, F.; Sardarian, A.R.; Esmaeilpour, M. Salen complex of Cu(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: An efficient and recyclable catalyst for synthesis of 1- and 5-substituted 1H-tetrazoles. J. Organomet. Chem., 2013, 743, 87-96.
[http://dx.doi.org/10.1016/j.jorganchem.2013.06.019]
[39]
Khorramabadi, V.; Habibi, D.; Heydari, S. Facile synthesis of tetrazoles catalyzed by the new copper nano-catalyst. Green Chem. Lett. Rev., 2020, 13(1), 50-59.
[http://dx.doi.org/10.1080/17518253.2020.1726505]
[40]
Khorramabadi, V.; Habibi, D.; Heydari, S. 3-mercapto-1,2,4-triazole functionalized Fe 3 O 4 based Cu nanoparticles: A capable catalyst for the synthesis of diverse tetrazoles from amino acids. Org. Prep. Proced. Int., 2020, 52(2), 139-146.
[http://dx.doi.org/10.1080/00304948.2020.1716624]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy