Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Greener Approaches for Synthesis of Bioactive Thiadiazole Scaffolds

Author(s): Biswa Mohan Sahoo*, Bimal Krishna Banik, Abhishek Tiwari, Varsha Tiwari and Manoj Kumar Mahapatra

Volume 10, Issue 3, 2023

Published on: 04 May, 2023

Page: [237 - 249] Pages: 13

DOI: 10.2174/2213337210666230210142303

Price: $65

Abstract

Thiadiazole is a paradigm of five membered heterocyclic compound that contains two nitrogens and one sulphur as heteroatoms with molecular formula C2H2N2S. Thiadiazole is mainly present in four isomeric forms such as 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole and 1,3,4-thiadiazole. Out of these isomers, 1,3,4-thiadiazole has attracted remarkable attention in the field of medicinal chemistry. Some of the drugs containing 1,3,4-thiadiazole moiety are used clinically and are available in the market including Sulphamethizole (Antibacterial), Acetazolamide (Diuretic), Azetepa (Antineoplastic), Cefazolin (Antibiotic), Megazol (Antiprotozoal), Atibeprone (anti-depressant). Several greener approaches are applied for the synthesis of thiadiazole scaffolds including microwave irradiation, ultrasonic irradiation, grinding, ball milling technique, etc. These methods are eco-friendly, nonhazardous, reproducible, and economical approach. Based on these Green chemistry approaches, thiadiazole derivatives are synthesized from thiosemicarbazide. The functionalization of these heterocyclic compounds generates thiadiazole derivatives with diverse chemical structures. This review covers green synthesis, biological potentials, and structure activity relationship study of thiadiazole analogs.

Graphical Abstract

[1]
Li, Y.; Geng, J.; Liu, Y.; Yu, S.; Zhao, G. Thiadiazole-a promising structure in medicinal chemistry. ChemMedChem, 2013, 8(1), 27-41.
[http://dx.doi.org/10.1002/cmdc.201200355] [PMID: 23208773]
[2]
Matysiak, J. Biological and pharmacological activities of 1,3,4-thiadiazole based compounds. Mini Rev. Med. Chem., 2015, 15(9), 762-775.
[http://dx.doi.org/10.2174/1389557515666150519104057] [PMID: 25985954]
[3]
Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities. Chem. Biol. Drug Des., 2013, 81(5), 557-576.
[http://dx.doi.org/10.1111/cbdd.12125] [PMID: 23452185]
[4]
Sainy, J.; Mishra, G.P.; Sharma, R.; Chaturvedi, S.C. 2-Amino-5-sulfanyl-1,3,4-thiadiazoles: A novel series of anti-inflammatory and analgesic agents. Pharm. Chem. J., 2009, 43(1), 19-24.
[http://dx.doi.org/10.1007/s11094-009-0236-9]
[5]
Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem., 2015, 92(92), 156-177.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.035] [PMID: 25553540]
[6]
Sharma, S.; Gangal, S.; Rauf, A. Green chemistry approach to the sustainable advancement to the synthesis of heterocyclic chemistry. Rasayan J. Chem., 2008, 4, 693-717.
[7]
Verma, S.; Goyal, S.; Singla, S. Green chemistry: A new approach to the synthesis, processing and application of chemical substances. Int. J. Biotech. Bioeng, 2018, 4(4), 89-95.
[8]
Mahato, A.K.; Sahoo, B.M.; Banik, B.K. Microwave-assisted synthesis: Paradigm of green chemistry. J. Indian Chem. Soc., 2018, 95, 1-13.
[9]
Varma, R.S. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain. Chem. Eng., 2016, 4(11), 5866-5878.
[http://dx.doi.org/10.1021/acssuschemeng.6b01623] [PMID: 32704457]
[10]
Sahoo, B.M.; Panda, J.; Banik, B.K. Thermal and non-thermal effects of microwaves in synthesis. J. Indian Chem. Soc., 2018, 95, 1-9.
[11]
Sahoo, B.M.; Banik, B.K.; Panda, J. Microwave-Assisted Green Chemistry Approach: A Potential Tool for Drug Synthesis in Medicinal Chemistry, 1st ed; CRC Press: Florida, USA, 2018.
[http://dx.doi.org/10.1201/9781351240499-12]
[12]
Mohan, S.B. Microwave Assisted Drug Synthesis (MADS): A green technology in medicinal chemistry. J. Appl. Pharm., 2016, 8(1), e106.
[http://dx.doi.org/10.4172/1920-4159.1000e106]
[13]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[14]
Hussein, E.M.; Khairou, K.S. Sonochemistry: Synthesis of bioactive heterocycles. Synth. Commun., 2014, 44(15), 2155-2191.
[http://dx.doi.org/10.1080/00397911.2014.893360]
[15]
Dalodière, E.; Virot, M.; Morosini, V.; Chave, T.; Dumas, T.; Hennig, C.; Wiss, T.; Dieste Blanco, O.; Shuh, D.K.; Tyliszcak, T.; Venault, L.; Moisy, P.; Nikitenko, S.I. Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids. Sci. Rep., 2017, 7(1), 43514.
[http://dx.doi.org/10.1038/srep43514] [PMID: 28256635]
[16]
Reischauer, S.; Pieber, B. Emerging concepts in photocatalytic organic synthesis. i Sci., 2021, 24(3), 102209.
[17]
Jug, M.; Mura, P. Grinding as solvent-free green chemistry approach for cyclodextrin inclusion complex preparation in the solid state. Pharmaceutics, 2018, 10(4), 189.
[http://dx.doi.org/10.3390/pharmaceutics10040189] [PMID: 30332804]
[18]
Colombo, I.; Grassi, G.; Grassi, M. Drug mechanochemical activation. J. Pharm. Sci., 2009, 98(11), 3961-3986.
[http://dx.doi.org/10.1002/jps.21733] [PMID: 19338060]
[19]
Loh, Z.H.; Samanta, A.K.; Sia Heng, P.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. Sci., 2015, 10(4), 255-274.
[http://dx.doi.org/10.1016/j.ajps.2014.12.006]
[20]
Xing, T.; Sunarso, J.; Yang, W.; Yin, Y.; Glushenkov, A.M.; Li, L.H.; Howlett, P.C.; Chen, Y. Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale, 2013, 5(17), 7970-7976.
[http://dx.doi.org/10.1039/c3nr02328a] [PMID: 23864038]
[21]
Hu, Y.; Li, C.Y.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev., 2014, 114(10), 5572-5610.
[http://dx.doi.org/10.1021/cr400131u] [PMID: 24716666]
[22]
Abo-Bakr, A.M.; Hashem, H.E. New 1,3,4-thiadiazole derivatives: Synthesis, characterization, and antimicrobial activity. J. Heterocycl. Chem., 2019, 56(3), 1038-1047.
[http://dx.doi.org/10.1002/jhet.3489]
[23]
Lamani, R.S.; Shetty, N.S.; Kamble, R.R.; Khazi, I.A.M. Synthesis and antimicrobial studies of novel methylene bridged benzisoxazolyl imidazo[2,1-b][1,3,4]thiadiazole derivatives. Eur. J. Med. Chem., 2009, 44(7), 2828-2833.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.019] [PMID: 19168262]
[24]
Jazayeri, S.; Moshafi, M.H.; Firoozpour, L.; Emami, S.; Rajabalian, S.; Haddad, M.; Pahlavanzadeh, F.; Esnaashari, M.; Shafiee, A.; Foroumadi, A. Synthesis and antibacterial activity of nitroaryl thiadiazole–gatifloxacin hybrids. Eur. J. Med. Chem., 2009, 44(3), 1205-1209.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.012] [PMID: 18950903]
[25]
Talath, S.; Gadad, A.K. Synthesis, antibacterial and antitubercular activities of some 7-[4-(5-amino-[1,3,4]thiadiazole-2-sulfonyl)-piperazin-1-yl] fluoroquinolonic derivatives. Eur. J. Med. Chem., 2006, 41(8), 918-924.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.027] [PMID: 16781799]
[26]
Gadad, A.K.; Palkar, M.B.; Anand, K.; Noolvi, M.N.; Boreddy, T.S.; Wagwade, J. Synthesis and biological evaluation of 2-trifluoromethyl/sulfonamido-5,6-diaryl substituted imidazo[2,1-b]-1,3,4-thiadiazoles: A novel class of cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2008, 16(1), 276-283.
[http://dx.doi.org/10.1016/j.bmc.2007.09.038] [PMID: 17937989]
[27]
Amir, M.; Shikha, K. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. Eur. J. Med. Chem., 2004, 39(6), 535-545.
[http://dx.doi.org/10.1016/j.ejmech.2004.02.008] [PMID: 15183912]
[28]
Gupta, A.; Mishra, P.; Kashaw, S.K.; Jatav, V.; Stables, J.P. Synthesis and anticonvulsant activity of some novel 3-aryl amino/amino-4-aryl-5-imino-Δ2-1,2,4-thiadiazoline. Eur. J. Med. Chem., 2008, 43(4), 749-754.
[http://dx.doi.org/10.1016/j.ejmech.2007.05.008] [PMID: 17624632]
[29]
Stillings, M.R.; Welbourn, A.P.; Walter, D.S. Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 2. aminoalkyl derivatives. J. Med. Chem., 1986, 29(11), 2280-2284.
[http://dx.doi.org/10.1021/jm00161a025] [PMID: 3783590]
[30]
Yar, M.S.; Akhter, M.W. Synthesis and anticonvulsant activity of substituted oxadiazole and thiadiazole derivatives. Acta Pol. Pharm., 2009, 66(4), 393-397.
[PMID: 19702171]
[31]
Pattanayak, P.; Sharma, R.; Sahoo, P.K. Synthesis and evaluation of 2-amino-5-sulfanyl-1,3,4-thiadiazoles as antidepressant, anxiolytic, and anticonvulsant agents. Med. Chem. Res., 2009, 18(5), 351-361.
[http://dx.doi.org/10.1007/s00044-008-9132-1]
[32]
Yusuf, M.; Khan, R.A.; Ahmed, B. Syntheses and anti-depressant activity of 5-amino-1, 3, 4-thiadiazole-2-thiol imines and thiobenzyl derivatives. Bioorg. Med. Chem., 2008, 16(17), 8029-8034.
[http://dx.doi.org/10.1016/j.bmc.2008.07.056] [PMID: 18693019]
[33]
Chhajed, M.; Shrivastava, A.K.; Taile, V. Synthesis of 5-arylidine amino-1,3,4-thiadiazol-2-[(N-substituted benzyol)]sulphonamides endowed with potent antioxidants and anticancer activity induces growth inhibition in HEK293, BT474 and NCI-H226 cells. Med. Chem. Res., 2014, 23(6), 3049-3064.
[http://dx.doi.org/10.1007/s00044-013-0890-z] [PMID: 24719548]
[34]
Sun, J.; Yang, Y.S.; Li, W.; Zhang, Y.B.; Wang, X.L.; Tang, J.F.; Zhu, H.L. Synthesis, biological evaluation and molecular docking studies of 1,3,4-thiadiazole derivatives containing 1,4-benzodioxan as potential antitumor agents. Bioorg. Med. Chem. Lett., 2011, 21(20), 6116-6121.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.039] [PMID: 21889345]
[35]
Aliabadi, A.; Hasanvand, Z.; Kiani, A.; Mirabdali, S.S. Synthesis and In-vitro cytotoxicity assessment of N-(5-(Benzylthio)-1,3,4- thiadiazol-2-yl)-2-(4-(trifluoromethyl)phenyl)acetamide with potential anticancer activity. Iran. J. Pharm. Res., 2013, 12(4), 687-693.
[PMID: 24523748]
[36]
Yang, X.H.; Wen, Q.; Zhao, T.T.; Sun, J.; Li, X.; Xing, M.; Lu, X.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents. Bioorg. Med. Chem., 2012, 20(3), 1181-1187.
[http://dx.doi.org/10.1016/j.bmc.2011.12.057] [PMID: 22261027]
[37]
Karakuş S.; Rollas, S. Synthesis and antituberculosis activity of new N-phenyl-N'-[4-(5-alkyl/arylamino-1,3,4-thiadiazole-2-yl)phenyl]thioureas. Farmaco, 2002, 57(7), 577-581.
[http://dx.doi.org/10.1016/S0014-827X(02)01252-1] [PMID: 12164218]
[38]
Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202.
[http://dx.doi.org/10.1073/pnas.0804348105] [PMID: 18768813]
[39]
Nain, S.; Singh, R.; Ravichandran, S. Importance of microwave heating in organic synthesis. Adv. J. Chem.-Section A, 2019, 2(2), 94-104.
[http://dx.doi.org/10.29088/SAMI/AJCA.2019.2.94104]
[40]
Sahoo, B.M.; Banik, B.K.; Panda, J. Microwave Synthetic Technology: An Eco-friendly Approach in Organic Synthesis, 1st ed; CRC Press: Florida, USA, 2018.
[http://dx.doi.org/10.1201/9781351240499-11]
[41]
Gogate, P.R.; Pandit, A.B. Sonochemical reactors: scale up aspects. Ultrason. Sonochem., 2004, 11(3-4), 105-117.
[http://dx.doi.org/10.1016/j.ultsonch.2004.01.005] [PMID: 15081966]
[42]
Naidu, D.V.P.; Rajan, R.; Kumar, R.; Gandhi, K.S.; Arakeri, V.H.; Chandrasekaran, S. Modelling of a batch sonochemical reactor. Chem. Eng. Sci., 1994, 49(6), 877-888.
[http://dx.doi.org/10.1016/0009-2509(94)80024-3]
[43]
Hu, J.; Sun, J.; Zhou, T.; Xu, Y. Microwave-assisted synthesis of 1,3,4-thiadiazole schiff base derivatives. J. Chem. Res., 2011, 35(8), 442-443.
[http://dx.doi.org/10.3184/174751911X13128202305728]
[44]
Sahoo, B.M.; Dinda, S.C.; Ravi Kumar, B.V.V. Design, synthesis and antiepileptic evaluation of 5-(aryl)-N-phenyl-1,3,4- thiadiazol-2-amine. Int. J. Pharm. Pharm. Sci., 2012, 4(3), 747-751.
[45]
Dhepe, S.; Kumar, S.; Vinayakumar, R.; Ramareddy, S.A.; Karki, S.S. Microwave-assisted synthesis and antimicrobial activity of some imidazo[2,1-b][1,3,4]thiadiazole derivatives. Med. Chem. Res., 2012, 21(8), 1550-1556.
[http://dx.doi.org/10.1007/s00044-011-9671-8]
[46]
Chauhan, S.; Verma, P.; Mishra, A.; Srivastava, V. An expeditious ultrasound-initiated green synthesis of 1,2,4-thiadiazoles in water. Chem. Heterocycl. Compd., 2020, 56(1), 123-126.
[http://dx.doi.org/10.1007/s10593-020-02632-5]
[47]
Kekare, P.G.; Shastri, R.A. Conventional and ultrasound mediated synthesis of some substituted thiadiazole derivatives and evaluation for their antimicrobial and anti-tubercular activities. Int. J. Res. Pharm. Chem., 2014, 4(1), 67-73.
[48]
Yuan, J.; Xia, Q.; Zhu, W.; Wu, C.; Wang, B.; Liu, B.; Yang, X.; Xu, Y.; Xu, H. Sunlight-driven synthesis of 1,2,4-thiadiazoles via oxidative construction of a nitrogen-sulfur bond catalyzed by a reusable covalent organic framework. ChemPhotoChem, 2020, 4(6), 445-450.
[http://dx.doi.org/10.1002/cptc.201900263]
[49]
Srivastava, V.; Singh, P.K.; Singh, P.P.; Eosin, Y. Eosin Y catalyzed visible-light-promoted one –pot facile synthesis of 1,3,4- thiadiazole. Croat. Chem. Acta, 2015, 88(1), 59-65.
[http://dx.doi.org/10.5562/cca2520]
[50]
Er, M.; Ergüven, B.; Tahtaci, H.; Onaran, A.; Karakurt, T.; Ece, A. Synthesis, characterization, preliminary SAR and molecular docking study of some novel substituted imidazo[2,1-b][1,3,4]thiadiazole derivatives as antifungal agents. Med. Chem. Res., 2017, 26(3), 615-630.
[http://dx.doi.org/10.1007/s00044-017-1782-4]
[51]
Khadum, S.Y.; Ahmed, D.S.; Yousif, E. Chemical modification of PVC with Schiff base containing a thiadiazole moiety and its influence on the physicochemical and morphological properties. Res. J. Pharm. Technol., 2019, 12(9), 4518-4522.
[http://dx.doi.org/10.5958/0974-360X.2019.00778.9]
[52]
Ismael, M.; Hmood, A.B.; Shaalan, N.; Al-Taa’y, W.A.; Hasan, A.; Ali, M.; Ahmed, A.; Yousif, E. Study on optical properties of PVC-2,5di (2-Pyrrole hydrazone)-1,3,4-thiadiazole complexes. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(5), 2347-2355.
[53]
Yousif, E.; Rentschler, E.; Salih, N.; Salimon, J.; Hameed, A.; Katan, M. Synthesis and antimicrobial screening of tetra Schiff bases of 1,2,4,5-tetra (5-amino-1,3,4-thiadiazole-2-yl)benzene. J. Saudi Chem. Soc., 2014, 18(3), 269-275.
[http://dx.doi.org/10.1016/j.jscs.2011.07.007]
[54]
Yousif, E.; Bakir, E.; Salimon, J.; Salih, N. Evaluation of Schiff bases of 2,5-dimercapto-1,3,4-thiadiazole as photostabilizer for poly(methyl methacrylate). J. Saudi Chem. Soc., 2012, 16(3), 279-285.
[http://dx.doi.org/10.1016/j.jscs.2011.01.009]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy